Introducing IPv6 and Defining IPv6 Addressing

BSCI Module 8 Lessons 1 and 2
Objectives

- Explain the need for IPv6 address space.
- Explain how IPv6 deals with the limitations of IPv4.
- Describe the features of IPv6 addressing.
- Describe the structure of IPv6 headers in terms of format and extension headers.
- Show how an IPv6 address is represented.
- Describe the three address types used in IPv6.
IPv6 Advanced Features

Larger address space
- Global reachability and flexibility
- Aggregation
- Multihoming
- Autoconfiguration
- Plug-and-play
- End to end without NAT
- Renumbering

Simpler header
- Routing efficiency
- Performance and forwarding rate scalability
- No broadcasts
- No checksums
- Extension headers
- Flow labels
IPv6 Advanced Features (Cont.)

Mobility and security
- Mobile IP RFC-compliant
- IPSec mandatory (or native) for IPv6

Transition richness
- Dual stack
- 6to4 tunnels
- Translation
IPv4

- 32 bits or 4 bytes long
 - 4,200,000,000 possible addressable nodes

IPv6

- 128 bits or 16 bytes: four times the bits of IPv4
 - 3.4×10^{38} possible addressable nodes
 - $340,282,366,920,938,463,374,607,432,768,211,456$ addresses
 - 5×10^{28} addresses per person
Larger Address Space Enables Address Aggregation

- Aggregation of prefixes announced in the global routing table
- Efficient and scalable routing
- Improved bandwidth and functionality for user traffic
Simple and Efficient Header

A simpler and more efficient header means:

- 64-bit aligned fields and fewer fields
- Hardware-based, efficient processing
- Improved routing efficiency and performance
- Faster forwarding rate with better scalability
IPv4 and IPv6 Header Comparison

IPv4 Header
- **Version**
- **IHL**
- **Type of Service**
- **Total Length**
- **Identification**
- **Flags**
- **Fragment Offset**
- **Time to Live**
- **Protocol**
- **Header Checksum**
- **Source Address**
- **Destination Address**
- **Options**
- **Padding**

IPv6 Header
- **Version**
- **Traffic Class**
- **Flow Label**
- **Payload Length**
- **Next Header**
- **Hop Limit**
- **Source Address**
- **Destination Address**

Legend
- **Field’s Name Kept from IPv4 to IPv6**
- **Fields Not Kept in IPv6**
- **Name and Position Changed in IPv6**
- **New Field in IPv6**
IPv6 Extension Headers

Simpler and more efficient header means:

- IPv6 has extension headers.
- IPv6 handles the options more efficiently.
- IPv6 enables faster forwarding rate and end nodes processing.
IPv6 Address Representation

- \textbf{x:x:x:x:x:x:x}, where \textbf{x} is a 16-bit hexadecimal field
- Leading zeros in a field are optional:

 2031:0:130F:0:0:9C0:876A:130B
- Successive fields of 0 can be represented as ::, but only once per address.

Examples:

- 2031:0000:130F:0000:0000:09C0:876A:130B
- 2031:0:130f::9c0:876a:130b
- FF01:0:0:0:0:0:0:1 >>> FF01::1
- 0:0:0:0:0:0:0:1 >>> ::1
- 0:0:0:0:0:0:0:0 >>> ::
IPv6—Addressing Model

- Addresses are assigned to interfaces
 Change from IPv4 mode:
 - Interface “expected” to have multiple addresses
- Addresses have scope
 - Link Local
 - Unique Local
 - Global
- Addresses have lifetime
 - Valid and preferred lifetime
IPv6 Address Types

- **Unicast**
 - Address is for a single interface.
 - IPv6 has several types (for example, global and IPv4 mapped).

- **Multicast**
 - One-to-many
 - Enables more efficient use of the network
 - Uses a larger address range

- **Anycast**
 - One-to-nearest (allocated from unicast address space).
 - Multiple devices share the same address.
 - All anycast nodes should provide uniform service.
 - Source devices send packets to anycast address.
 - Routers decide on closest device to reach that destination.
 - Suitable for load balancing and content delivery services.
IPv6 Global Unicast (and Anycast) Addresses

The global unicast and the anycast share the same address format.

- Uses a global routing prefix—a structure that enables aggregation upward, eventually to the ISP.
- A single interface may be assigned multiple addresses of any type (unicast, anycast, multicast).
- Every IPv6-enabled interface must contain at least one loopback (::1/128) and one link-local address.
- Optionally, every interface can have multiple unique local and global addresses.
- Anycast address is a global unicast address assigned to a set of interfaces (typically on different nodes).
- IPv6 anycast is used for a network multihomed to several ISPs that have multiple connections to each other.
IPv6 Global Unicast Addresses (Cont.)

- Global unicast and anycast addresses are defined by a global routing prefix, a subnet ID, and an interface ID.
IPv6 Unicast Addressing

- IPv6 addressing rules are covered by multiple RFCs. Architecture defined by RFC 4291.

- Unicast: One to one
 - Global
 - Link local (FE80::/10)

- A single interface may be assigned multiple IPv6 addresses of any type: unicast, anycast, or multicast.
Implementing Dynamic IPv6 Addresses

BSCI Module 8
Aggregatable Global Unicast Addresses

Aggregatable Global Unicast Addresses Are:

- Addresses for generic use of IPv6
- Structured as a hierarchy to keep the aggregation
IPv6 Interface ID

- Cisco uses the extended universal identifier (EUI)-64 format to do stateless autoconfiguration.
- This format expands the 48-bit MAC address to 64 bits by inserting “FFFFE” into the middle 16 bits.
- To make sure that the chosen address is from a unique Ethernet MAC address, the universal/local (U/L bit) is set to 1 for global scope (0 for local scope).
• This format expands the 48-bit Ethernet MAC address format to a 64-bit version by inserting "FFFE" in the middle of the 48 bits.
• This creates a 64-bit, unique interface identifier.
• The 7th bit (starting with the leftmost bit as “1”) in an IPv6 interface identifier is referred to as the Universal/Local bit, or U/L bit.
Link-Local Address

- Mandatory address for communication between two IPv6 devices (similar to ARP but at Layer 3)
- Automatically assigned by router as soon as IPv6 is enabled
- Also used for next-hop calculation in routing protocols
- Only link specific scope
- Remaining 54 bits could be zero or any manual configured value
Multicasting

Multicast is frequently used in IPv6 and replaces broadcast.
Examples of Permanent Multicast Addresses

<table>
<thead>
<tr>
<th>Permanent Multicast Address</th>
<th>Meaning</th>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF02::1</td>
<td>All nodes</td>
<td>Link-local</td>
</tr>
<tr>
<td>FF02::2</td>
<td>All routers</td>
<td>Link-local</td>
</tr>
<tr>
<td>FF02::9</td>
<td>All RIP routers</td>
<td>Link-local</td>
</tr>
<tr>
<td>FF02::1:FFXX:XXXXX</td>
<td>Solicited-node</td>
<td>Link-local</td>
</tr>
<tr>
<td>FF05::101</td>
<td>All NTP servers</td>
<td>Site-local</td>
</tr>
</tbody>
</table>
Solicited-Node Multicast Address

- Used in neighbor solicitation messages
- Multicast address with a link-local scope
- Solicited-node multicast consists of prefix + lower 24 bits from unicast, FF02::1:FF:
R1#sh ipv6 int e0
Ethernet0 is up, line protocol is up
 IPv6 is enabled, link-local address is FE80::200:CFF:FE3A:8B18
 No global unicast address is configured
 Joined group address(es):
 FF02::1
 FF02::2
 FF02::1:FE3A:8B18
MTU is 1500 bytes
ICMP error messages limited to one every 100 milliseconds
ICMP redirects are enabled
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds
ND advertised reachable time is 0 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND router advertisements are sent every 200 seconds
ND router advertisements live for 1800 seconds
Hosts use stateless autoconfig for addresses.
R1#
Anycast

- An IPv6 anycast address is a global unicast address that is assigned to more than one interface.
Stateless Autoconfiguration

- A router sends network information to all the nodes on the local link.
- A host can autoconfigure itself by appending its IPv6 interface identifier (64-bit format) to the local link prefix (64 bits).
- The result is a full 128-bit address that is usable and guaranteed to be globally unique.
A Standard Stateless Autoconfiguration

- Stage 1: The PC sends a router solicitation to request a prefix for stateless autoconfiguration.
Stage 2: The router replies with a router advertisement.
IPv6 Mobility
IPv6 Routing Protocols
IPv6 Routing Protocols

- IPv6 routing types:
 - Static
 - RIPng (RFC 2080)
 - OSPFv3 (RFC 2740)
 - IS-IS for IPv6
 - MP-BGP4 (RFC 2545/2858)
 - EIGRP for IPv6

- `ipv6 unicast-routing` command is required to enable IPv6 before any routing protocol configured.
RIPng

- Same as IPv4:
 Distance-vector, radius of 15 hops, split-horizon, and poison reverse
 Based on RIPv2

- Updated features for IPv6:
 IPv6 prefix, next-hop IPv6 address
 Uses the multicast group FF02::9, the all-rip-routers multicast group, as the destination address for RIP updates
 Uses IPv6 for transport
 Named RIPng
Integrated Intermediate System-to-Intermediate System (IS-IS)

- Same as for IPv4.

- Extensions for IPv6:

 2 new type-length-values (TLV):

 IPv6 reachability (with 128 bits prefix)
 IPv6 interface address (with 128 bits)

 New protocol identifier

 Not yet an IETF standard
Multiprotocol Border Gateway Protocol (MP-BGP) (RFC 2858)

- Multiprotocol extensions for BGPv4:
 Enables protocols other than IPv4.
 New identifier for the address family.

- IPv6 specific extensions:
 Scoped addresses: NEXT_HOP contains a global IPv6 address and potentially a link-local address (only when there is a link-local reachability with the peer).
 NEXT_HOP and NLRI (Network Layer Reachability Information) are expressed as IPv6 addresses and prefix in the multiprotocol attributes.
OSPF Version 3 (OSPFv3) (RFC 2740)

- Similar to OSPV for IPv4:
 Same mechanisms, but a major rewrite of the internals of the protocol

- Updated features for IPv6:
 Every IPv4-specific semantic is removed
 Carry IPv6 addresses
 Link-local addresses used as source
 IPv6 transport
 OSPF for IPv6 is currently an IETF proposed standard
OSPFv3
OSPFv3—Hierarchical Structure

- Topology of an area is invisible from outside of the area:
 - LSA flooding is bounded by area.
 - SPF calculation is performed separately for each area.

- Backbones must be contiguous.

- All areas must have a connection to the backbone:
 - Otherwise a virtual link must be used to connect to the backbone.
OSPFv3—Similarities with OSPFv2

- OSPFv3 is OSPF for IPv6 (RFC 2740):
 Based on OSPFv2, with enhancements
 Distributes IPv6 prefixes
 Runs directly over IPv6

- OSPFv3 & v2 can be run concurrently, because each address family has a separate SPF (ships in the night).

- OSPFv3 uses the same basic packet types as OSPFv2:
 Hello
 Database description blocks (DDB)
 Link state request (LSR)
 Link state update (LSU)
 Link state acknowledgement (ACK)
Enhanced Routing Protocol Support

Differences from OSPFv2

- OSPFv3 has the same five packet types, but some fields have been changed.

<table>
<thead>
<tr>
<th>Packet Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hello</td>
</tr>
<tr>
<td>2</td>
<td>Database Description</td>
</tr>
<tr>
<td>3</td>
<td>Link State Request</td>
</tr>
<tr>
<td>4</td>
<td>Link State Update</td>
</tr>
<tr>
<td>5</td>
<td>Link State Acknowledgement</td>
</tr>
</tbody>
</table>

- All OSPFv3 packets have a 16-byte header verses the 24-byte header in OSPFv2.
OSPFv3—Differences from OSPFv2

OSPFv3 protocol processing per-link, not per-subnet:

- IPv6 connects interfaces to links.
- Multiple IPv6 subnets can be assigned to a single link.
- Two nodes can talk directly over a single link, even though they do not share a common subnet.
- The terms “network” and “subnet” are being replaced with “link”.
- An OSPF interface now connects to a link instead of a subnet.
OSPFv3—Differences from OSPFv2

Multiple OSPFv3 protocol instances can now run over a single link:

- This allows for separate autonomous systems, each running OSPF, to use a common link. A single link could belong to multiple areas.

- Instance ID is a new field that is used to have multiple OSPFv3 protocol instances per link.

- In order to have two instances talk to each other, they need to have the same instance ID. By default it is 0, and for any additional instance it is increased.
OSPFv3—Differences from OSPFv2

- **Multicast addresses:**
 - FF02::5 – Represents all SPF routers on the link local scope; equivalent to 224.0.0.5 in OSPFv2.
 - FF02::6 – Represents all DR routers on the link local scope; equivalent to 224.0.0.6 in OSPFv2.

- **Removal of address semantics:**
 - IPv6 addresses are no longer present in OSPF packet header (part of payload information).
 - Router LSA and network LSA do not carry IPv6 addresses.
 - Router ID, area ID, and link-state ID remains at 32 bits.
 - DR and BDR are now identified by their router ID and no longer by their IP address.

- **Security:**
 - OSPFv3 uses IPv6 AH and ESP extension headers instead of variety of mechanisms defined in OSPFv2.
LSA Overview

<table>
<thead>
<tr>
<th>LSA Function Code</th>
<th>LSA Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router-LSA</td>
<td>1</td>
</tr>
<tr>
<td>Network-LSA</td>
<td>2</td>
</tr>
<tr>
<td>Inter-Area-Prefix-LXA</td>
<td>3</td>
</tr>
<tr>
<td>Inter-Area-Router-LSA</td>
<td>4</td>
</tr>
<tr>
<td>AS-External-LSA</td>
<td>5</td>
</tr>
<tr>
<td>Group-Membership-LSA</td>
<td>6</td>
</tr>
<tr>
<td>Type-7-LSA</td>
<td>7</td>
</tr>
<tr>
<td>Link-LSA</td>
<td>8</td>
</tr>
<tr>
<td>Intra-Area-Prefix-LSA</td>
<td>9</td>
</tr>
</tbody>
</table>
Larger Address Space Enables Address Aggregation

- Aggregation of prefixes announced in the global routing table
- Efficient and scalable routing
- Improved bandwidth and functionality for user traffic
OSPFv3 Configuration
Configuring OSPFv3 in Cisco IOS Software

- Similar to OSPFv2:
 Prefixing existing Interface and exec mode commands with "ipv6"

- Interfaces configured directly:
 Replaces network command

- “Native” IPv6 router mode:
 Not a submode of router ospf command
Enabling OSPFv3 Globally

- Enables the forwarding of IPv6 unicast datagrams.
- Enables the OSPFv3 process number 1 on the router.
- Identifies 2.2.2.2 as the router-id for this router. It must be unique on each router.

```
router#
routerto# configure terminal
router(config)# ipv6 unicast-routing
router(config)# ipv6 router ospf 1
router(config-router) router-id 2.2.2.2
```
Enabling OSPFv3 on an Interface

```
router(config)# interface Ethernet0/0
router(config)# ipv6 address 3FFE:FFFF:1::1/64
router(config)# ipv6 ospf 1 area 0
router(config)# ipv6 ospf cost 20
```
OSPFv3 Configuration Example

Router1#
interface S1/1
 ipv6 address
 2001:410:FFFF:1::1/64
 ipv6 ospf 100 area 0

interface S2/0
 ipv6 address
 3FFE:B00:FFFF:1::2/64
 ipv6 ospf 100 area 1

 ipv6 router ospf 100
 router-id 10.1.1.3

Router2#
interface S3/0
 ipv6 address
 3ffe:b00:ffff:1::1/64
 ipv6 ospf 100 area 1

 ipv6 router ospf 100
 router-id 10.1.1.4
OSPFv3 Verification
Verifying Cisco IOS OSPFv3

Router2#show ipv6 ospf int s 3/0
S3/0 is up, line protocol is up
 Link Local Address 3FFE:B00:FFFF:1::1, Interface ID 7
 Area 1, Process ID 100, Instance ID 0, Router ID 10.1.1.4
 Network Type POINT_TO_POINT, Cost: 1
 Transmit Delay is 1 sec, State POINT_TO_POINT,
 Timer intervals configured, Hello 10, Dead 40, Wait 40,
 Retransmit 5
 Hello due in 00:00:02
 Index 1/1/1, flood queue length 0
 Next 0x0(0)/0x0(0)/0x0(0)
 Last flood scan length is 3, maximum is 3
 Last flood scan time is 0 msec, maximum is 0 msec
 Neighbor Count is 1, Adjacent neighbor count is 1
 Adjacent with neighbor 10.1.1.3
 Suppress hello for 0 neighbor(s)
show ipv6 ospf

```
R7#show ipv6 ospf
Routing Process “ospfv3 1” with ID 75.0.7.1
It is an area border and autonomous system boundary router
Redistributing External Routes from, connected
SPF schedule delay 5 secs, Hold time between two SPF's 10 secs
Minimum LSA interval 5 secs. Minimum LSA arrival 1 secs
LSA group pacing timer 240 secs
Interface floor pacing timer 33 msecs
Retransmission pacing timer 33 msecs
Number of external LSA 3. Checksum Sum 0x12B75
```
show ipv6 ospf neighbor detail

Router2#show ipv6 ospf neighbor detail

Neighbor 10.1.1.3
 In the area 0 via interface S2/0
 Neighbor: interface-id 14, link-local address 3FFE:B00:FFFF:1::2
 Neighbor priority is 1, State is FULL, 6 state changes
 Options is 0x63AD1B0D
 Dead timer due in 00:00:33
 Neighbor is up for 00:48:56
 Index 1/1/1, retransmission queue length 0, number of retransmission 1
 First 0x0(0)/0x0(0)/0x0(0) Next 0x0(0)/0x0(0)/0x0(0)
 Last retransmission scan length is 1, maximum is 1
 Last retransmission scan time is 0 msec, maximum is 0 msec
show ipv6 ospf database

Router Link States (Area 1)

<table>
<thead>
<tr>
<th>ADV Router</th>
<th>Age</th>
<th>Seq#</th>
<th>Fragment ID</th>
<th>Link count</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.50.0.1</td>
<td>1812</td>
<td>0x80000048</td>
<td>0</td>
<td>1</td>
<td>None</td>
</tr>
<tr>
<td>26.50.0.2</td>
<td>1901</td>
<td>0x80000006</td>
<td>0</td>
<td>1</td>
<td>B</td>
</tr>
</tbody>
</table>

Net Link States (Area 1)

<table>
<thead>
<tr>
<th>ADV Router</th>
<th>Age</th>
<th>Seq#</th>
<th>Link ID</th>
<th>Rtr count</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.50.0.1</td>
<td>57</td>
<td>0x8000003B</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Inter Area Prefix Link States (Area 1)

<table>
<thead>
<tr>
<th>ADV Router</th>
<th>Age</th>
<th>Seq#</th>
<th>Prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.50.0.2</td>
<td>139</td>
<td>0x80000003</td>
<td>3FFE:FFFF:26::/64</td>
</tr>
<tr>
<td>26.50.0.2</td>
<td>719</td>
<td>0x80000001</td>
<td>3FFE:FFF:26::/64</td>
</tr>
</tbody>
</table>

Inter Area Router Link States (Area 1)

<table>
<thead>
<tr>
<th>ADV Router</th>
<th>Age</th>
<th>Seq#</th>
<th>Link ID</th>
<th>Dest RtrID</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.50.0.2</td>
<td>772</td>
<td>0x80000001</td>
<td>1207959556</td>
<td>72.0.0.4</td>
</tr>
<tr>
<td>26.50.0.4</td>
<td>5</td>
<td>0x80000003</td>
<td>1258292993</td>
<td>75.0.7.1</td>
</tr>
</tbody>
</table>
Using IPv6 with IPv4

BSCI Module 8
IPv4-to-IPv6 Transition

Transition richness means:

- No fixed day to convert; no need to convert all at once.
- Different transition mechanisms are available:
 - Smooth integration of IPv4 and IPv6
 - Use of dual stack or 6-to-4 tunnels
- Different compatibility mechanisms:
 - IPv4 and IPv6 nodes can communicate
Dual Stack

- Dual stack is an integration method where a node has "implementation and connectivity" to both an IPv4 and IPv6 network.
Cisco IOS Software Is IPV6-Ready: Cisco IOS Dual Stack

- If both IPv4 and IPv6 are configured on an interface, this interface is dual-stacked.
Tunneling

- Tunneling is an integration method where an IPv6 packet is encapsulated within another protocol, such as IPv4. This method of encapsulation is IPv4 protocol 41:
 - This includes a 20-byte IPv4 header with no options and an IPv6 header and payload.
 - This is considered dual stacking.
Cisco IOS Software Is IPv6-Ready: Overlay Tunnels

- Tunneling encapsulates the IPv6 packet in the IPv4 packet.
Encapsulation can be done by edge routers between hosts or between a host and a router.
Cisco IOS Software Is IPv6-Ready: Configured Tunnel

- Configured tunnels require:
 - Dual-stack endpoints
 - IPv4 and IPv6 addresses configured at each end
Example: Cisco IOS Tunnel Configuration

```
Router1#
    interface Tunnel0
    ipv6 address 2001:db8:1::1/64
    tunnel source 192.0.2.1
    tunnel destination 192.0.30.1
    tunnel mode ipv6ip

Router2#
    interface Tunnel0
    ipv6 address 2001:db8:1::2/64
    tunnel source 192.0.30.1
    tunnel destination 192.0.2.1
    tunnel mode ipv6ip
```
Configuring static routes for 6-to-4 tunnels

A 6-to-4 tunnel establishes a transient link between IPv6 domains which are connected by an IPv4 backbone

- Create a tunnel interface
- Set tunnel mode with the `tunnel mode ipv6ip 6to4` command
- Create an IPv6 specific address
- Set the source interface for the tunnel
- Configure an Ipv6 static route
Converting IPv4 addresses to IPv6 for 6-4 Tunnel

- A 6-4 tunnel uses special addresses in the 2002::/16 address space
- The first 16 bits are the hexadecimal number 2002
- The next 32 bits are the original source address in hexadecimal form
- The IPv4 address of 172.16.12.1 is converted into AC10:0C01
- The complete address would be 2002:AC10:0C01:1::1/64
Configuration example for 6-to-4 tunnel between R1 and R3

R1
- R1(config-if)# interface tunnel 0
- R1(config-if)# tunnel mode ipv6ip to 6to4
- R1(config-if)# ipv6 address 2002:AC10:0C01:1::1/64
- R1(config-if)# tunnel source s0/0/0
- Exit
- R1(config)# ipv6 route 2002::/16 tunnel 0

Verification
- R1#ping 2002:AC10:1703:1::3

R3
- R3(config-if)# interface tunnel 0
- R3(config-if)# tunnel mode ipv6ip to 6to4
- R3(config-if)# ipv6 address 2002:AC10:1703:1::3/64
- R3(config-if)# tunnel source s0/0/1
- Exit
- R3(config)# ipv6 route 2002::/16 tunnel 0

Verification
- R3#ping 2002:AC10:1::1
IPv6 Tunnel Static Route Configuration

Router 1

Router1(config)# ipv6 unicast-routing
Router1(config)# ipv6 route FEC0::30/112 2002:AC10:1703:1::3

Router 2

Router2(config)# ipv6 unicast-routing
Router2(config)# ipv6 route FEC0::1:0/112 2002:AC10:C01:1::1

The next hop for both routers is the IPv6 address at the other end of the tunnel
Cisco IOS Software Is IPv6-Ready: 6-to-4 Tunneling

- **6-to-4:**
 - Is an automatic tunnel method
 - Gives a prefix to the attached IPv6 network
NAT-Protocol Translation (NAT-PT) is a translation mechanism that sits between an IPv6 network and an IPv4 network.

The job of the translator is to translate IPv6 packets into IPv4 packets and vice versa.