IP Multicasting: Explaining Multicast
Objectives

- Describe the IP multicast group.
- Compare and contrast Unicast packets and multicast packets.
- List the advantages and disadvantages of multicast traffic.
- Discuss two types of multicast applications.
- Describe the types of IP multicast addresses.
- Describe how receivers can learn about a scheduled multicast session.
Multicast Overview
IP Multicast

Distribute information to large audiences over an IP network
Multicast Advantages

Enhanced efficiency: Controls network traffic and reduces server and CPU loads

Optimized performance: Eliminates traffic redundancy

Distributed applications: Makes multipoint applications possible

- For the equivalent amount of multicast traffic, the sender needs much less processing power and bandwidth.

- Multicast packets do not impose as high a rate of bandwidth utilization as unicast packets, so there is a greater possibility that they will arrive almost simultaneously at the receivers.
Multicast Disadvantages

Multicast is UDP-based.

- **Best-effort delivery**
 - Heavy drops in Voice traffic
 - Moderate to Heavy drops in Video

- **No congestion avoidance**

- **Duplicate packets may be generated**

- **Out-of-sequence delivery may occur**

- **Efficiency issues in filtering and in security**
Types of Multicast Applications

One-to-many
- A single host sending to two or more (n) receivers

Many-to-many
- Any number of hosts sending to the same multicast group; hosts are also members of the group (sender = receiver)

Many-to-one
- Any number of receivers sending data back to a source (via unicast or multicast)
IP Multicast Applications

- Live TV and Radio Broadcast to the Desktop
- Multicast File Transfer
- Distance Learning
- Data and File Replication
- Corporate Broadcasts
- Training
- Whiteboard/Collaboration
- Videoconferencing
- Video-on-Demand
- Real-Time Data Delivery—Financial
Multicast Addressing
IP Multicast Address Structure

IP group addresses:

- Class D address (high-order three bits are set)
- Range from 224.0.0.0 through 239.255.255.255
Multicast Addressing

IPv4 Header

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>The version number of the IPv4 protocol.</td>
</tr>
<tr>
<td>IHL</td>
<td>The Internet Header Length, which specifies the length of the header.</td>
</tr>
<tr>
<td>Type of Service</td>
<td>The type of service for the packet.</td>
</tr>
<tr>
<td>Protocol</td>
<td>The protocol number of the upper-layer protocol being carried.</td>
</tr>
<tr>
<td>Header Checksum</td>
<td>The checksum of the header.</td>
</tr>
<tr>
<td>Identification</td>
<td>The 16-bit identifier of the packet.</td>
</tr>
<tr>
<td>Flags</td>
<td>The flags field of the packet.</td>
</tr>
<tr>
<td>Fragment Offset</td>
<td>The offset of the fragment within the original message.</td>
</tr>
</tbody>
</table>

Source Address

- Class A, B, C: 1.0.0.0 - 223.255.255.255

Destination Address

- Class D: 224.0.0.0 - 239.255.255.255

Multicast Group Address Range

- Class D: 224.0.0.0 - 239.255.255.255

Source Address can never be

- Class D Multicast Group Address
IP Multicast Address Groups

- Local scope addresses
 224.0.0.0 to 224.0.0.255

- Global scope addresses
 224.0.1.0 to 238.255.255.255

- Administratively scoped addresses
 239.0.0.0 to 239.255.255.255
Local Scope Addresses

Well-known addresses assigned by IANA

- Reserved use: 224.0.0.0 through 224.0.0.255
 - 224.0.0.1 (all multicast systems on subnet)
 - 224.0.0.2 (all routers on subnet)
 - 224.0.0.4 (all DVMRP routers)
 - 224.0.0.13 (all PIMv2 routers)
 - 224.0.0.5, 224.0.0.6, 224.0.0.9, and 224.0.0.10 used by unicast routing protocols
Global Scope Addresses

- Transient addresses, assigned and reclaimed dynamically (within applications):
 Global range: 224.0.1.0-238.255.255.255
 224.2.X.X usually used in MBONE applications

- Part of a global scope recently used for new protocols and temporary usage
Administratively Scoped Addresses

Transient addresses, assigned and reclaimed dynamically (within applications):

- **Limited (local) scope**: 239.0.0.0/8 for private IP multicast addresses (RFC-2365)
 - Site-local scope: 239.255.0.0/16
 - Organization-local scope: 239.192.0.0 to 239.251.255.255
Layer 2 Multicast Addressing

IEEE 802.3 MAC Address Format

Octet 0 Octet 1 Octet 2 Octet 3 Octet 4 Octet 5
07 07 07 07 07 07

xxxxxx11 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

Broadcast or multicast bit
Locally administered address bit
IANA Ethernet MAC Address Range

Available range of MAC addresses for IP multicast

01-00-5e-00-00-00 through 01-00-5e-7f-ff-ff
IANA Ethernet MAC Address Range

Available range of MAC addresses for IP multicast

- Within this range, these MAC addresses have the first 25 bits in common.
- The remaining 23 bits are available for mapping to the lower 23 bits of the IP multicast group address.
Ethernet MAC Address Mapping
Multicast Addressing

IP Multicast MAC Address Mapping
(FDDI & Ethernet)

Be Aware of the 32:1 Address Overlap

32 - IP Multicast Addresses

224.1.1.1
224.129.1.1
225.1.1.1
225.129.1.1
238.1.1.1
238.129.1.1
239.1.1.1
239.129.1.1

1 - Multicast MAC Address
(FDDI and Ethernet)

0x0100.5E01.0101
IP Multicasting: IGMP and Layer 2 Issues

BSCI Module 7 Lesson 2
Internet Group Management Protocol (IGMP)

How hosts tell routers about group membership

- Routers solicit group membership from directly connected hosts
 - RFC 1112 specifies IGMPv1
 - Supported on Windows 95
 - RFC 2236 specifies IGMPv2
 - Supported on latest service pack for Windows and most UNIX systems
 - RFC 3376 specifies IGMPv3
 - Supported in Windows XP and various UNIX systems
IGMPv2
RFC 2236

- Group-specific query
 - Router sends query membership message to a single group rather than all hosts (reduces traffic).

- Leave group message
 - Host sends leave message if it leaves the group and is the last member (reduces leave latency in comparison to v1).

- Query-interval response time
 - The Query router sets the maximum Query-Response time (controls burstiness and fine-tunes leave latencies).

- Querier election process
 - IGMPv2 routers can elect the Query Router without relying on the multicast routing protocol.
IGMPv2—Joining a Group

1.1.1.10
H1

1.1.1.11
H2

1.1.1.12
H3

224.1.1.1
Join Group

1.1.1.1
rtr-a

IGMP State in rtr-a

rtr-a>show ip igmp group
IGMP Connected Group Membership
Group Address Interface Uptime Expires Last Reporter
224.1.1.1 Ethernet0 0d1h3m 00:02:31 1.1.1.11
IGMPv2—Leaving a Group

IGMPv2 has explicit Leave Group messages, which reduces overall leave latency.
Hosts H2 and H3 are members of group 224.1.1.1.

1. H2 sends a leave message.
2. Router sends group-specific query.
3. A remaining member host sends report, so group remains active.
IGMPv2—Leaving a Group (Cont.)

IGMP State in rtr-a after H2 leaves.

```
rtr-a>sh ip igmp group
IGMP Connected Group Membership
Group Address  Interface   Uptime  Expires  Last Reporter
224.1.1.1     Ethernet0  0d1h3m  00:01:47  1.1.1.12
```
IGMPv2—Leaving a Group (Cont.)

IGMP State in rtr-a after H3 leaves.

```
rtr-a>sh ip igmp group
IGMP Connected Group Membership
Group Address Interface Uptime Expires Last Reporter
```
IGMPv3—Joining a Group

Joining member sends IGMPv3 report to 224.0.0.22 immediately upon joining.
IGMPv3—Joining Specific Source(s)

IGMPv3 Report contains desired sources in the Include list. Only “Included” sources are joined.
IGMPv3—Maintaining State

Router sends periodic queries:

- All IGMPv3 members respond.
 - Reports contain multiple group state records.
IGMP Layer 2
Issues
Determining IGMP Version Running

Determining which IGMP version is running on an interface.

```
rtr-a>show ip igmp interface e0
Ethernet0 is up, line protocol is up
   Internet address is 1.1.1.1, subnet mask is 255.255.255.0
   IGMP is enabled on interface
   Current IGMP version is 2
   CGMP is disabled on interface
   IGMP query interval is 60 seconds
   IGMP querier timeout is 120 seconds
   IGMP max query response time is 10 seconds
   Inbound IGMP access group is not set
   Multicast routing is enabled on interface
   Multicast TTL threshold is 0
   Multicast designated router (DR) is 1.1.1.1 (this system)
   IGMP querying router is 1.1.1.1 (this system)
   Multicast groups joined: 224.0.1.40 224.2.127.254
```
Layer 2 Multicast Frame Switching

Problem: Layer 2 flooding of multicast frames

- Typical Layer 2 switches treat multicast traffic as unknown or broadcast and must flood the frame to every port (in VLAN).
- Static entries may sometimes be set to specify which ports receive which groups of multicast traffic.
- Dynamic configuration of these entries may reduce administration.
Layer 2 Multicast Switching Solutions

- **Cisco Group Management Protocol (CGMP):** Simple, proprietary; routers and switches
- **IGMP snooping:** Complex, standardized, proprietary implementations; switches only
Layer 2 Multicast Frame Switching

CGMP

Solution 1: CGMP

- Runs on switches and routers.
- CGMP packets sent by routers to switches at the CGMP multicast MAC address of 0100.0cdd.dddd.
- CGMP packet contains:
 - Type field: join or leave
 - MAC address of the IGMP client
 - Multicast MAC address of the group
- Switch uses CGMP packet information to add or remove an entry for a particular multicast MAC address.
IGMP Snooping

Solution 2: IGMP snooping

- Switches become IGMP-aware.
- IGMP packets are intercepted by the CPU or by special hardware ASICs.
- Switch examines contents of IGMP messages to learn which ports want what traffic.

Effect on switch without Layer 3-aware Hardware/ASICs
- Must process all Layer 2 multicast packets
- Administration load increased with multicast traffic load

Effect on switch with Layer 3-aware Hardware/ASICs
- Maintain high-throughput performance but cost of switch increases
IGMPv3 and IGMP Snooping

- Impact of IGMPv3 on IGMP Snooping
 - IGMPv3 Reports are sent to a separate group (224.0.0.22) reduces load on switch CPU
 - No Report Suppression in IGMPv3

- IGMP Snooping should not cause a serious performance problem once IGMPv3 is implemented.
Multicast Distribution Trees
Multicast Protocol Basics

Types of multicast distribution trees:

- **Source** distribution trees; also called *shortest path trees* (SPTs)

- **Shared** distribution trees; rooted at a meeting point in the network
 - A core router serves as a rendezvous point (RP)
Multicast Distribution Trees

Shortest Path or Source Distribution Tree

Source 1

Notation: \((S, G)\)
\(S = \text{Source}\)
\(G = \text{Group}\)

Source 2

Receiver 1

Receiver 2
Multicast Distribution Trees

Shortest Path or Source Distribution Tree

Notation: (S, G)
S = Source
G = Group

Source 1

Source 2

Receiver 1

Receiver 2
Multicast Distribution Trees

Shared Distribution Tree

Notation: \((*, G)\)
\(* = \text{All Sources}\)
\(G = \text{Group}\)

(A) \rightarrow (B) \rightarrow (D (RP)) \rightarrow (F)

(C) \rightarrow (RP)

(RP) PIM Rendezvous Point

Shared Tree

Receiver 1

Receiver 2
Multicast Distribution Trees

Shared Distribution Tree

Notation: (*, G)
* = All Sources
G = Group

Source 1

Source 2

Receiver 1

Receiver 2
Multicast Distribution Tree Identification

(S,G) entries

- For this particular source sending to this particular group
- Traffic is forwarded through the shortest path from the source

(*,G) entries

- For any (*) source sending to this group
- Traffic is forwarded through a meeting point for this group
Multicast Distribution Trees

Characteristics of Distribution Trees

Source or Shortest Path trees
- Uses more memory but optimal paths from source to all receivers; minimizes delay

Shared trees
- Uses less memory but sub-optimal paths from source to all receivers; may introduce extra delay
Multicast Routing
Protocols for IP Multicast Routing

PIM is used between routers so that they can track which multicast packets to forward to each other and to their directly connected LANs.
Protocol-Independent Multicast (PIM)

- **PIM** maintains the current IP multicast service mode of receiver-initiated membership.
- **PIM** is not dependent on a specific unicast routing protocol.
- With **PIM**, routers maintain forwarding tables to forward multicast datagrams.
- **PIM** can operate in dense mode or sparse mode.
 - Dense mode protocols flood multicast traffic to all parts of the network and prune the flows where there are no receivers using a periodic flood-and-prune mechanism.
 - Sparse mode protocols use an explicit join mechanism where distribution trees are built on demand by explicit tree join messages sent by routers that have directly connected receivers.
Multicast Tree Creation

PIM Join/Prune Control Messages

- Used to create/remove Distribution Trees
- Shortest Path trees
- PIM control messages are sent toward the Source
- Shared trees
- PIM control messages are sent toward RP
Multicast Forwarding

Multicast routing operation is the opposite of unicast routing.

- **Unicast** routing is concerned with *where the packet is going*.
- **Multicast** routing is concerned with *where the packet comes from*.

Multicast routing uses Reverse Path Forwarding (RPF) to prevent *forwarding loops*.
Reverse Path Forwarding (RPF)

The RPF Calculation

- The multicast source address is checked against the unicast routing table.
- This determines the interface and upstream router in the direction of the source to which PIM Joins are sent.
- This interface becomes the “Incoming” or RPF interface.
 - A router forwards a multicast datagram only if received on the RPF interface.
Reverse Path Forwarding (RPF)

RPF Calculation

- Based on Source Address.
- Best path to source found in Unicast Route Table.
- Determines where to send Joins.
- Joins continue towards Source to build multicast tree.
- Multicast data flows down tree.
Reverse Path Forwarding (RPF)

RPF Calculation (cont.)

- Repeat for other receivers…
Reverse Path Forwarding (RPF)

RPF Calculation

- What if we have equal-cost paths?
 - We can’t use both.

- Tie-Breaker
 - Use highest Next-Hop IP address.
Multicast Distribution Tree Creation

Shared Tree Example

![Diagram of multicast distribution tree with nodes A, B, D (RP), and F, connecting to receivers 1 and 2 with arrows indicating PIM rendezvous point and control message.]
PIM Dense Mode Operation
PIM-DM Flood and Prune

Initial Flooding

(S, G) state created in every router in the network.
PIM-DM Flood and Prune (Cont.)

Diagram showing multicast packets and prune messages flowing between routers and a receiver.
PIM-DM Flood and Prune (Cont.)

Results After Pruning

- (S, G) state created in every router in the network.
- Flood and prune process repeats every 3 minutes.
PIM Sparse Mode Operation
PIM Sparse Mode

- PIM-SM works with any of the underlying unicast routing protocols.
- PIM-SM supports both source and shared trees.
- PIM-SM is based on an explicit pull model.
- PIM-SM uses an RP.
 - Senders and receivers “meet each other.”
 - Senders are registered with RP by their first-hop router.
 - Receivers are joined to the shared tree (rooted at the RP) by their local DR.
PIM-SM Shared Tree Join

(*, G) Join

Shared Tree

Receiver

(*, G) State created only along the Shared Tree.
PIM-SM Sender Registration

Traffic Flow
Shared Tree
Source Tree
(S, G) Register
(S, G) Join

(S, G) State created only along the Source Tree.
PIM-SM Sender Registration

Traffic Flow
- Shared Tree
- Source Tree
- (S, G) Register
- (S, G) Register-Stop

Receiver

(S, G) traffic begins arriving at the RP through the Source tree.

RP sends a Register-Stop back to the first-hop router to stop the Register process.
PIM-SM Sender Registration

Source traffic flows natively along SPT to RP.
From RP, traffic flows down the Shared Tree to Receivers.
PIM-SM SPT Switchover

Source

Traffic Flow
Shared Tree
Source Tree
(S, G) Join

RP

Last-hop router joins the Source Tree.

Additional (S, G) State is created along new part of the Source Tree.

Receiver
Traffic begins flowing down the new branch of the Source Tree. Additional \((S, G)\) State is created along the Shared Tree to prune off \((S, G)\) traffic.
(S, G) Traffic flow is now pruned off of the Shared Tree and is flowing to the Receiver through the Source Tree.
PIM-SM SPT Switchover

(S, G) traffic flow is no longer needed by the RP so it Prunes the flow of (S, G) traffic.
PIM-SM SPT Switchover

(S, G) Traffic flow is now only flowing to the Receiver through a single branch of the Source Tree.
“The default behavior of PIM-SM is that routers with directly connected members will join the Shortest Path Tree as soon as they detect a new multicast source.”
PIM-SM Evaluation

Effective for Sparse or Dense distribution of multicast receivers

Advantages:

- Traffic only sent down “joined” branches
- Can switch to optimal source-trees for high traffic sources dynamically
- Unicast routing protocol-independent
- Basis for inter-domain multicast routing
Multiple RPs with Auto RP

PIM Sparse-Dense-Mode

Notation: (*, G)
* = All Sources
G = Group

(RP) A

Source 1

Source 2

B

D (RP)

F

C

E

Receiver 1

Receiver 2

(RP) PIM Rendezvous Point

Shared Trees
IGMPv3 and IGMP Snooping

- Impact of IGMPv3 on IGMP Snooping
 - IGMPv3 Reports are sent to a separate group (224.0.0.22) reduces load on switch CPU
 - No Report Suppression in IGMPv3

- IGMP Snooping should not cause a serious performance problem once IGMPv3 is implemented.