Catalyst 3550 Multilayer Switch Software Configuration Guide
Cisco IOS Release 12.1(13)EA1
March 2003

Corporate Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 526-4100

Customer Order Number: DOC-7811194=
Text Part Number: 78-11194-07
THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

CCIP, CCSP, the Cisco Arrow logo, the Cisco Powered Network mark, the Cisco Systems Verified logo, Cisco Unity, Follow Me Browsing, FormShare, iQ Breakthrough, iQ FastTrack, the iQ logo, iQ Net Readiness Scorecard, Networking Academy, ScriptShare, SMARTnet, TransPath, and Voice LAN are trademarks of Cisco Systems, Inc.; Changing the Way We Work, Live, Play, and Learn, The Fastest Way to Increase Your Internet Quotient, and iQuick Study are service marks of Cisco Systems, Inc.; and Aironet, ASIST, BPX, Catalyst, CCDA, CCDP, CCIE, CCNA, CCNP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, the Cisco IOS logo, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Empowering the Internet Generation, Enterprise/Solver, EtherChannel, EtherSwitch, Fast Step, GigaStack, Internet Quotient, IOS, IP/TV, iQ Expertise, LightStream, MGX, MICA, the Networkers logo, Network Registrar, Packet, PIX, Post-Routing, Pre-Routing, RateMUX, Registrar, SlideCast, StrataView Plus, StrataM, SwitchProbe, TeleRouter, and VCO are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and certain other countries.

All other trademarks mentioned in this document or Web site are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0301R)
CONTENTS

Preface xxxiii
Audience xxxiii
Purpose xxxiii
Conventions xxxiv
Related Publications xxxiv
Obtaining Documentation xxxv
Cisco.com xxxv
Documentation CD-ROM xxxv
Ordering Documentation xxxv
Documentation Feedback xxxvi
Obtaining Technical Assistance xxxvi
Cisco.com xxxvi
Technical Assistance Center xxxvii
Cisco TAC Website xxxvii
Cisco TAC Escalation Center xxxvii
Obtaining Additional Publications and Information xxxviii

CHAPTER 1 Overview 1-1
Features 1-1
Management Options 1-7
Management Interface Options 1-7
Advantages of Using CMS and Clustering Switches 1-7
Network Configuration Examples 1-8
Design Concepts for Using the Switch 1-9
Small to Medium-Sized Network Using Mixed Switches 1-12
Large Network Using Only Catalyst 3550 Switches 1-14
Multidwelling Network Using Catalyst 3550 Switches 1-15
Long-Distance, High-Bandwidth Transport Configuration 1-17
Where to Go Next 1-18

CHAPTER 2 Using the Command-Line Interface 2-1
IOS Command Modes 2-1
Getting Help 2-3
Contents

Abbreviating Commands 2-4
Using no and default Forms of Commands 2-4
Understanding CLI Messages 2-5
Using Command History 2-5
 Changing the Command History Buffer Size 2-5
 Recalling Commands 2-6
 Disabling the Command History Feature 2-6
Using Editing Features 2-6
 Enabling and Disabling Editing Features 2-7
 Editing Commands through Keystrokes 2-7
 Editing Command Lines that Wrap 2-8
Searching and Filtering Output of show and more Commands 2-9
Accessing the CLI 2-9
Accessing the CLI from a Browser 2-10

CHAPTER 3 Getting Started with CMS 3-1

Features 3-2
Front Panel View 3-3
 Cluster Tree 3-5
 Front-Panel Images 3-6
 Redundant Power System LED 3-7
 Port Modes and LEDs 3-8
 VLAN Membership Modes 3-9
Topology View 3-10
 Topology Icons and Labels 3-11
 Device and Link Labels 3-12
 Colors in the Topology View 3-12
 Topology Display Options 3-13
Menus and Toolbar 3-13
 Menu Bar 3-13
 Toolbar 3-19
 Front Panel View Popup Menus 3-20
 Device Popup Menu 3-20
 Port Popup Menu 3-21
 Topology View Popup Menus 3-21
 Link Popup Menu 3-21
 Device Popup Menus 3-22
Interaction Modes 3-24
Guide Mode 3-24
Expert Mode 3-24
Wizards 3-25
Tool Tips 3-25
Online Help 3-25

CMS Window Components 3-26
Host Name List 3-27
Tabs, Lists, and Tables 3-28
Filter Editor 3-28
Buttons 3-28
Green Border Around a Field or Cell 3-28
Red Border Around a Field 3-29

Accessing CMS 3-29
Access Modes in CMS 3-30
HTTP Access to CMS 3-31

Saving Your Configuration 3-31
Restoring Your Configuration 3-32
CMS Preferences 3-32
Using Different Versions of CMS 3-32
Where to Go Next 3-33

CHAPTER 4
Assigning the Switch IP Address and Default Gateway 4-1
Understanding the Boot Process 4-1
Assigning Switch Information 4-2
Default Switch Information 4-3
Understanding DHCP-Based Autoconfiguration 4-3
DHCP Client Request Process 4-4
Configuring the DHCP Server 4-5
Configuring the TFTP Server 4-5
Configuring the DNS 4-6
Configuring the Relay Device 4-6
Obtaining Configuration Files 4-7
Example Configuration 4-8
Manually Assigning IP Information 4-10
Checking and Saving the Running Configuration 4-10
Modifying the Startup Configuration 4-12
Default Boot Configuration 4-12
Automatically Downloading a Configuration File 4-12
Specifying the Filename to Read and Write the System Configuration 4-13
Booting Manually 4-13
Booting a Specific Software Image 4-14
Controlling Environment Variables 4-15
Scheduling a Reload of the Software Image 4-17
Configuring a Scheduled Reload 4-17
Displaying Scheduled Reload Information 4-18

CHAPTER 5
Configuring IE2100 CNS Agents 5-1
Understanding IE2100 Series Configuration Registrar Software 5-1
CNS Configuration Service 5-2
CNS Event Service 5-3
NameSpace Mapper 5-3
What You Should Know About ConfigID, DeviceID, and Host Name 5-3
ConfigID 5-3
DeviceID 5-4
Host Name and DeviceID 5-4
Using Host Name, DeviceID, and ConfigID 5-4
Understanding CNS Embedded Agents 5-5
Initial Configuration 5-5
Incremental (Partial) Configuration 5-6
Synchronized Configuration 5-6
Configuring CNS Embedded Agents 5-6
Enabling Automated CNS Configuration 5-6
Enabling the CNS Event Agent 5-8
Enabling the CNS Configuration Agent 5-9
Enabling an Initial Configuration 5-9
Enabling a Partial Configuration 5-12
Displaying CNS Configuration 5-13

CHAPTER 6
Clustering Switches 6-1
Understanding Switch Clusters 6-2
Command Switch Characteristics 6-3
Standby Command Switch Characteristics 6-3
Candidate Switch and Member Switch Characteristics 6-4
Planning a Switch Cluster 6-5
Automatic Discovery of Cluster Candidates and Members 6-5
Discovery through CDP Hops 6-6
Discovery through Non-CDP-Capable and Noncluster-Capable Devices 6-6
Discovery through Different VLANs 6-7
Discovery through the Same Management VLAN 6-8
Discovery through Different Management VLANs 6-9
Discovery through Routed Ports 6-10
Discovery of Newly Installed Switches 6-11
HSRP and Standby Command Switches 6-12
Virtual IP Addresses 6-13
Other Considerations for Cluster Standby Groups 6-13
Automatic Recovery of Cluster Configuration 6-15
IP Addresses 6-16
Host Names 6-16
Passwords 6-16
SNMP Community Strings 6-17
TACACS+ and RADIUS 6-17
Access Modes in CMS 6-17
LRE Profiles 6-18
Availability of Switch-Specific Features in Switch Clusters 6-18
Creating a Switch Cluster 6-18
 Enabling a Command Switch 6-19
 Adding Member Switches 6-20
 Creating a Cluster Standby Group 6-22
 Verifying a Switch Cluster 6-24
Using the CLI to Manage Switch Clusters 6-25
 Catalyst 1900 and Catalyst 2820 CLI Considerations 6-25
Using SNMP to Manage Switch Clusters 6-26

CHAPTER 7

Administering the Switch 7-1
Managing the System Time and Date 7-1
 Understanding the System Clock 7-1
 Understanding Network Time Protocol 7-2
Configuring NTP 7-3
 Default NTP Configuration 7-4
 Configuring NTP Authentication 7-4
 Configuring NTP Associations 7-5
 Configuring NTP Broadcast Service 7-6
 Configuring NTP Access Restrictions 7-7
 Configuring the Source IP Address for NTP Packets 7-9
 Displaying the NTP Configuration 7-10
 Configuring Time and Date Manually 7-10
Setting the Privilege Level for a Command 8-8
Changing the Default Privilege Level for Lines 8-9
Logging into and Exiting a Privilege Level 8-10
Controlling Switch Access with TACACS+ 8-10
Understanding TACACS+ 8-10
TACACS+ Operation 8-12
Configuring TACACS+ 8-12
 Default TACACS+ Configuration 8-13
 Identifying the TACACS+ Server Host and Setting the Authentication Key 8-13
 Configuring TACACS+ Login Authentication 8-14
 Configuring TACACS+ Authorization for Privileged EXEC Access and Network Services 8-16
Starting TACACS+ Accounting 8-17
Displaying the TACACS+ Configuration 8-17
Controlling Switch Access with RADIUS 8-18
Understanding RADIUS 8-18
RADIUS Operation 8-19
Configuring RADIUS 8-20
 Default RADIUS Configuration 8-20
 Identifying the RADIUS Server Host 8-20
 Configuring RADIUS Login Authentication 8-23
 Defining AAA Server Groups 8-25
 Configuring RADIUS Authorization for User Privileged Access and Network Services 8-27
Starting RADIUS Accounting 8-28
Configuring Settings for All RADIUS Servers 8-29
Configuring the Switch to Use Vendor-Specific RADIUS Attributes 8-29
Configuring the Switch for Vendor-Proprietary RADIUS Server Communication 8-31
Displaying the RADIUS Configuration 8-31
Controlling Switch Access with Kerberos 8-32
Understanding Kerberos 8-32
Kerberos Operation 8-34
 Authenticating to a Boundary Switch 8-35
 Obtaining a TGT from a KDC 8-35
 Authenticating to Network Services 8-35
Configuring Kerberos 8-35
Configuring the Switch for Local Authentication and Authorization 8-36
Configuring the Switch for Secure Shell 8-37
Understanding SSH 8-37
Configuring SSH 8-38
CHAPTER 9

Configuring 802.1X Port-Based Authentication 9-1

Understanding 802.1X Port-Based Authentication 9-1

Device Roles 9-2

Authentication Initiation and Message Exchange 9-3

Ports in Authorized and Unauthorized States 9-4

Voice VLAN Ports 9-5

Using 802.1X with Port Security 9-5

Using 802.1X with Per-User ACLs 9-6

Using 802.1X with VLAN Assignment 9-7

Supported Topologies 9-8

Configuring 802.1X Authentication 9-8

Default 802.1X Configuration 9-9

802.1X Configuration Guidelines 9-10

Enabling 802.1X Authentication 9-10

Configuring the Switch-to-RADIUS-Server Communication 9-12

Enabling Periodic Re-Authentication 9-13

Manually Re-Authenticating a Client Connected to a Port 9-14

Changing the Quiet Period 9-14

Changing the Switch-to-Client Retransmission Time 9-15

Setting the Switch-to-Client Frame-Retransmission Number 9-15

Enabling Multiple Hosts 9-16

Resetting the 802.1X Configuration to the Default Values 9-17

Displaying 802.1X Statistics and Status 9-17

CHAPTER 10

Configuring Interface Characteristics 10-1

Understanding Interface Types 10-1

Port-Based VLANs 10-2

Switch Ports 10-2

Access Ports 10-3

Trunk Ports 10-3

Tunnel Ports 10-4

Switch Virtual Interfaces 10-4

Routed Ports 10-4

EtherChannel Port Groups 10-5

Connecting Interfaces 10-5

Using the Interface Command 10-7

Procedures for Configuring Interfaces 10-7

Configuring a Range of Interfaces 10-8

Configuring and Using Interface Range Macros 10-10
Configuring Layer 2 Interfaces 10-11
 Default Layer 2 Ethernet Interface Configuration 10-12
 Configuring Interface Speed and Duplex Mode 10-13
 Configuration Guidelines 10-13
 Setting the Interface Speed and Duplex Parameters 10-14
 Configuring Inline Power on the Catalyst 3550-24PWR Ports 10-14
 Configuring IEEE 802.3X Flow Control 10-15
 Adding a Description for an Interface 10-17
Configuring Layer 3 Interfaces 10-18
 Monitoring and Maintaining the Interfaces 10-19
 Monitoring Interface and Controller Status 10-19
 Clearing and Resetting Interfaces and Counters 10-21
 Shutting Down and Restarting the Interface 10-22

CHAPTER 11
Configuring VLANs 11-1
 Understanding VLANs 11-1
 Supported VLANs 11-2
 VLAN Port Membership Modes 11-3
 Configuring Normal-Range VLANs 11-4
 Token Ring VLANs 11-5
 Normal-Range VLAN Configuration Guidelines 11-5
 VLAN Configuration Mode Options 11-6
 VLAN Configuration in config-vlan Mode 11-6
 VLAN Configuration in VLAN Configuration Mode 11-6
 Saving VLAN Configuration 11-7
 Default Ethernet VLAN Configuration 11-7
 Creating or Modifying an Ethernet VLAN 11-8
 Deleting a VLAN 11-10
 Assigning Static-Access Ports to a VLAN 11-11
 Configuring Extended-Range VLANs 11-12
 Default VLAN Configuration 11-12
 Extended-Range VLAN Configuration Guidelines 11-12
 Creating an Extended-Range VLAN 11-13
 Creating an Extended-Range VLAN with an Internal VLAN ID 11-14
 Displaying VLANs 11-15
 Configuring VLAN Trunks 11-16
 Trunking Overview 11-16
 Encapsulation Types 11-18
 802.1Q Configuration Considerations 11-18
Chapter 11	Layer 2 Ethernet Interface VLAN Configuration	11-18
Configuring an Ethernet Interface as a Trunk Port	11-19	
Interaction with Other Features	11-19	
Configuring a Trunk Port	11-20	
Defining the Allowed VLANs on a Trunk	11-21	
Changing the Pruning- Eligible List	11-22	
Configuring the Native VLAN for Untagged Traffic	11-22	
Load Sharing Using STP	11-23	
Load Sharing Using STP Port Priorities	11-24	
Load Sharing Using STP Path Cost	11-25	
Configuring VMPS	11-27	
Understanding VMPS	11-27	
Dynamic Port VLAN Membership	11-28	
VMPS Database Configuration File	11-28	
Default VMPS Configuration	11-30	
VMPS Configuration Guidelines	11-30	
Configuring the VMPS Client	11-31	
Entering the IP Address of the VMPS	11-31	
Configuring Dynamic Access Ports on VMPS Clients	11-31	
Reconfirming VLAN Memberships	11-32	
Changing the Reconfirmation Interval	11-32	
Changing the Retry Count	11-33	
Monitoring the VMPS	11-33	
Troubleshooting Dynamic Port VLAN Membership	11-34	
VMPS Configuration Example	11-34	

Chapter 12	Configuring VTP	12-1
Understanding VTP	12-1	
The VTP Domain	12-2	
VTP Modes	12-3	
VTP Advertisements	12-3	
VTP Version 2	12-4	
VTP Pruning	12-4	
Configuring VTP	12-6	
Default VTP Configuration	12-6	
VTP Configuration Options	12-7	
VTP Configuration in Global Configuration Mode	12-7	
VTP Configuration in VLAN Configuration Mode	12-7	
VTP Configuration Guidelines	12-8	
Domain Names 12-8
Passwords 12-8
VTP Version 12-8
Configuration Requirements 12-9
Configuring a VTP Server 12-9
Configuring a VTP Client 12-10
Disabling VTP (VTP Transparent Mode) 12-11
Enabling VTP Version 2 12-12
Enabling VTP Pruning 12-13
Adding a VTP Client Switch to a VTP Domain 12-14
Monitoring VTP 12-15

CHAPTER 13 Configuring Voice VLAN 13-1
Understanding Voice VLAN 13-1
Configuring Voice VLAN 13-2
Default Voice VLAN Configuration 13-2
Voice VLAN Configuration Guidelines 13-3
Configuring a Port to Connect to a Cisco 7960 IP Phone 13-3
Configuring Ports to Carry Voice Traffic in 802.1Q Frames 13-4
Configuring Ports to Carry Voice Traffic in 802.1P Priority-Tagged Frames 13-4
Overriding the CoS Priority of Incoming Data Frames 13-5
Configuring the IP Phone to Trust the CoS Priority of Incoming Data Frames 13-6
Displaying Voice VLAN 13-6

CHAPTER 14 Configuring 802.1Q and Layer 2 Protocol Tunneling 14-1
Understanding 802.1Q Tunneling 14-1
Configuring 802.1Q Tunneling 14-4
Default 802.1Q Tunneling Configuration 14-4
802.1Q Tunneling Configuration Guidelines 14-4
Native VLANs 14-4
System MTU 14-5
802.1Q Tunneling and Other Features 14-5
Configuring an 802.1Q Tunneling Port 14-6
Understanding Layer 2 Protocol Tunneling 14-7
Configuring Layer 2 Protocol Tunneling 14-9
Default Layer 2 Protocol Tunneling Configuration 14-9
Layer 2 Protocol Tunneling Configuration Guidelines 14-10
Configuring Layer 2 Tunneling Characteristics 14-11
CHAPTER 15

Configuring STP 15-1

Understanding Spanning-Tree Features 15-1

STP Overview 15-2

Supported Spanning-Tree Instances 15-2

Bridge Protocol Data Units 15-2

Election of the Root Switch 15-3

Bridge ID, Switch Priority, and Extended System ID 15-4

Spanning-Tree Timers 15-4

Creating the Spanning-Tree Topology 15-5

Spanning-Tree Interface States 15-5

Blocking State 15-7

Listening State 15-7

Learning State 15-7

Forwarding State 15-7

Disabled State 15-8

Spanning-Tree Address Management 15-8

STP and IEEE 802.1Q Trunks 15-8

VLAN-Bridge STP 15-8

Spanning Tree and Redundant Connectivity 15-9

Accelerated Aging to Retain Connectivity 15-9

Configuring Spanning-Tree Features 15-10

Default STP Configuration 15-10

STP Configuration Guidelines 15-11

Disabling STP 15-11

Configuring the Root Switch 15-12

Configuring a Secondary Root Switch 15-14

Configuring the Port Priority 15-15

Configuring the Path Cost 15-16

Configuring the Switch Priority of a VLAN 15-17

Configuring the Hello Time 15-18

Configuring the Forwarding-Delay Time for a VLAN 15-19

Configuring the Maximum-Aging Time for a VLAN 15-19

Configuring STP for Use in a Cascaded Stack 15-20

Displaying the Spanning-Tree Status 15-20

CHAPTER 16

Configuring RSTP and MSTP 16-1

Understanding RSTP 16-2
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning-Tree Instances Using RSTP</td>
<td>16-2</td>
</tr>
<tr>
<td>Port Roles and the Active Topology</td>
<td>16-2</td>
</tr>
<tr>
<td>Rapid Convergence</td>
<td>16-3</td>
</tr>
<tr>
<td>Synchronization of Port Roles</td>
<td>16-4</td>
</tr>
<tr>
<td>Bridge Protocol Data Unit Format and Processing</td>
<td>16-5</td>
</tr>
<tr>
<td>Processing Superior BPDU Information</td>
<td>16-6</td>
</tr>
<tr>
<td>Processing Inferior BPDU Information</td>
<td>16-6</td>
</tr>
<tr>
<td>Topology Changes</td>
<td>16-6</td>
</tr>
<tr>
<td>Understanding M STP</td>
<td>16-7</td>
</tr>
<tr>
<td>Multiple Spanning-Tree Regions</td>
<td>16-7</td>
</tr>
<tr>
<td>IST, CIST, and CST</td>
<td>16-8</td>
</tr>
<tr>
<td>Operations Within an MST Region</td>
<td>16-8</td>
</tr>
<tr>
<td>Operations Between MST Regions</td>
<td>16-9</td>
</tr>
<tr>
<td>Hop Count</td>
<td>16-10</td>
</tr>
<tr>
<td>Boundary Ports</td>
<td>16-10</td>
</tr>
<tr>
<td>Interoperability with 802.1D STP</td>
<td>16-11</td>
</tr>
<tr>
<td>Configuring RSTP and MST Features</td>
<td>16-11</td>
</tr>
<tr>
<td>Default RSTP and MST Configuration</td>
<td>16-12</td>
</tr>
<tr>
<td>RSTP and MST Configuration Guidelines</td>
<td>16-12</td>
</tr>
<tr>
<td>Specifying the MST Region Configuration and Enabling MST</td>
<td>16-13</td>
</tr>
<tr>
<td>Configuring the Root Switch</td>
<td>16-14</td>
</tr>
<tr>
<td>Configuring a Secondary Root Switch</td>
<td>16-16</td>
</tr>
<tr>
<td>Configuring the Port Priority</td>
<td>16-17</td>
</tr>
<tr>
<td>Configuring the Path Cost</td>
<td>16-18</td>
</tr>
<tr>
<td>Configuring the Switch Priority</td>
<td>16-19</td>
</tr>
<tr>
<td>Configuring the Hello Time</td>
<td>16-19</td>
</tr>
<tr>
<td>Configuring the Forwarding-Delay Time</td>
<td>16-20</td>
</tr>
<tr>
<td>Configuring the Maximum-Aging Time</td>
<td>16-21</td>
</tr>
<tr>
<td>Configuring the Maximum-Hop Count</td>
<td>16-21</td>
</tr>
<tr>
<td>Specifying the Link Type to Ensure Rapid Transitions</td>
<td>16-22</td>
</tr>
<tr>
<td>Restarting the Protocol Migration Process</td>
<td>16-22</td>
</tr>
<tr>
<td>Displaying the MST Configuration and Status</td>
<td>16-23</td>
</tr>
</tbody>
</table>

Chapter 17

Configuring Optional Spanning-Tree Features 17-1

Understanding Optional Spanning-Tree Features 17-1

Understanding Port Fast 17-2

Understanding BPDU Guard 17-3

Understanding BPDU Filtering 17-3

Understanding UplinkFast 17-4
Contents

Understanding Cross-Stack UplinkFast 17-5
 How CSUF Works 17-6
 Events that Cause Fast Convergence 17-7
 Limitations 17-8
 Connecting the Stack Ports 17-8
Understanding BackboneFast 17-10
Understanding EtherChannel Guard 17-12
Understanding Root Guard 17-12
Understanding Loop Guard 17-13

Configuring Optional Spanning-Tree Features 17-14
 Default Optional Spanning-Tree Configuration 17-14
 Enabling Port Fast 17-14
 Enabling BPDU Guard 17-15
 Enabling BPDU Filtering 17-16
 Enabling UplinkFast for Use with Redundant Links 17-17
 Enabling Cross-Stack UplinkFast 17-18
 Enabling BackboneFast 17-19
 Enabling EtherChannel Guard 17-19
 Enabling Root Guard 17-20
 Enabling Loop Guard 17-20
Displaying the Spanning-Tree Status 17-21

CHAPTER 18
Configuring the DHCP Option 82 for Subscriber Identification 18-1
 Understanding the DHCP and Option 82 Subscriber Identification 18-1
Configuring the DHCP Relay Agent 18-3
 Default DHCP Configuration 18-3
 DHCP Configuration Guidelines 18-4
 Enabling the DHCP Relay Agent and Relay Agent Information 18-4
 Validating the Relay Agent Information Option 82 18-4
 Configuring the Reforwarding Policy 18-5
 Specifying the Packet Forwarding Address 18-5
 Suppressing DHCP Broadcasts and Achieving Port-to-Port Isolation 18-7
Displaying the DHCP Information 18-7

CHAPTER 19
Configuring IGMP Snooping and MVR 19-1
 Understanding IGMP Snooping 19-1
 Joining a Multicast Group 19-2
 Leaving a Multicast Group 19-4
 Immediate-Leave Processing 19-4
Configuring IGMP Snooping 19-5
 Default IGMP Snooping Configuration 19-5
 Enabling or Disabling IGMP Snooping 19-5
 Setting the Snooping Method 19-6
 Configuring a Multicast Router Port 19-7
 Configuring a Host Statically to Join a Group 19-8
 Enabling IGMP Immediate-Leave Processing 19-9
Displaying IGMP Snooping Information 19-9
Understanding Multicast VLAN Registration 19-12
 Using MVR in a Multicast Television Application 19-12
Configuring MVR 19-14
 Default MVR Configuration 19-14
 MVR Configuration Guidelines and Limitations 19-15
 Configuring MVR Global Parameters 19-15
 Configuring MVR Interfaces 19-16
Displaying MVR Information 19-18
Configuring IGMP Filtering 19-19
 Default IGMP Filtering Configuration 19-20
 Configuring IGMP Profiles 19-20
 Applying IGMP Profiles 19-21
 Setting the Maximum Number of IGMP Groups 19-22
Displaying IGMP Filtering Configuration 19-23

CHAPTER 20
Configuring Port-Based Traffic Control 20-1
 Configuring Storm Control 20-1
 Understanding Storm Control 20-1
 Default Storm Control Configuration 20-3
 Enabling Storm Control 20-3
 Disabling Storm Control 20-4
 Configuring Protected Ports 20-5
 Configuring Port Blocking 20-6
 Blocking Flooded Traffic on an Interface 20-6
 Resuming Normal Forwarding on a Port 20-7
 Configuring Port Security 20-7
 Understanding Port Security 20-8
 Secure MAC Addresses 20-8
 Security Violations 20-8
 Default Port Security Configuration 20-9
Port Security Configuration Guidelines .. 20-9
Enabling and Configuring Port Security ... 20-10
Enabling and Configuring Port Security Aging 20-12
Displaying Port-Based Traffic Control Settings 20-14

CHAPTER 21 Configuring CDP ... 21-1
Understanding CDP .. 21-1
Configuring CDP ... 21-2
 Default CDP Configuration ... 21-2
 Configuring the CDP Characteristics ... 21-2
 Disabling and Enabling CDP ... 21-3
 Disabling and Enabling CDP on an Interface 21-4
 Monitoring and Maintaining CDP .. 21-5

CHAPTER 22 Configuring UDLD ... 22-1
Understanding UDLD .. 22-1
Configuring UDLD ... 22-3
 Default UDLD Configuration ... 22-3
 Enabling UDLD Globally .. 22-4
 Enabling UDLD on an Interface ... 22-4
 Resetting an Interface Shut Down by UDLD 22-5
 Displaying UDLD Status .. 22-6

CHAPTER 23 Configuring SPAN and RSPAN 23-1
Understanding SPAN and RSPAN .. 23-1
 SPAN and RSPAN Concepts and Terminology 23-3
 SPAN Session ... 23-3
 Traffic Types ... 23-3
 Source Port ... 23-4
 Destination Port .. 23-5
 Reflector Port ... 23-5
 VLAN-Based SPAN ... 23-6
 SPAN Traffic .. 23-6
 SPAN and RSPAN Interaction with Other Features 23-7
 SPAN and RSPAN Session Limits .. 23-8
 Default SPAN and RSPAN Configuration 23-8
 Configuring SPAN ... 23-8
 SPAN Configuration Guidelines ... 23-9
Creating a SPAN Session and Specifying Ports to Monitor 23-10
Creating a SPAN Session and Enabling Ingress Traffic 23-11
Removing Ports from a SPAN Session 23-13
Specifying VLANs to Monitor 23-14
Specifying VLANs to Filter 23-15
Configuring RSPAN 23-16
 RSPAN Configuration Guidelines 23-16
 Creating an RSPAN Session 23-17
 Creating an RSPAN Destination Session 23-18
 Creating an RSPAN Destination Session and Enabling Ingress Traffic 23-19
 Removing Ports from an RSPAN Session 23-20
 Specifying VLANs to Monitor 23-21
 Specifying VLANs to Filter 23-22
Displaying SPAN and RSPAN Status 23-23

CHAPTER 24
Configuring RM ON 24-1
 Understanding RM ON 24-1
 Configuring RM ON 24-2
 Default RM ON Configuration 24-3
 Configuring RM ON Alarms and Events 24-3
 Configuring RM ON Collection on an Interface 24-5
 Displaying RM ON Status 24-6

CHAPTER 25
Configuring System Message Logging 25-1
 Understanding System Message Logging 25-1
 Configuring System Message Logging 25-2
 System Log Message Format 25-2
 Default System Message Logging Configuration 25-3
 Disabling and Enabling Message Logging 25-4
 Setting the Message Display Destination Device 25-4
 Synchronizing Log Messages 25-6
 Enabling and Disabling Timestamps on Log Messages 25-7
 Enabling and Disabling Sequence Numbers in Log Messages 25-8
 Defining the Message Severity Level 25-8
 Limiting Syslog Messages Sent to the History Table and to SNMP 25-10
 Configuring UNIX Syslog Servers 25-10
 Logging Messages to a UNIX Syslog Daemon 25-11
 Configuring the UNIX System Logging Facility 25-11
 Displaying the Logging Configuration 25-12
CHAPTER 26

Configuring SNMP 26-1
Understanding SNMP 26-1
SNMP Versions 26-2
SNMP Manager Functions 26-3
SNMP Agent Functions 26-4
SNMP Community Strings 26-4
Using SNMP to Access MIB Variables 26-4
SNMP Notifications 26-5
Configuring SNMP 26-5
Default SNMP Configuration 26-6
SNMP Configuration Guidelines 26-6
Disabling the SNMP Agent 26-7
Configuring Community Strings 26-7
Configuring SNMP Groups and Users 26-9
Configuring SNMP Notifications 26-11
Setting the Agent Contact and Location Information 26-14
Limiting TFTP Servers Used Through SNMP 26-14
SNMP Examples 26-15
Displaying SNMP Status 26-16

CHAPTER 27

Configuring Network Security with ACLs 27-1
Understanding ACLs 27-1
Supported ACLs 27-2
Router ACLs 27-3
Port ACLs 27-4
VLAN Maps 27-4
Handling Fragmented and Unfragmented Traffic 27-5
Configuring IP ACLs 27-6
Hardware and Software Handling of Router ACLs 27-6
Unsupported Features 27-7
Creating Standard and Extended IP ACLs 27-8
Access List Numbers 27-8
Creating a Numbered Standard ACL 27-9
Creating a Numbered Extended ACL 27-11
Creating Named Standard and Extended IP ACLs 27-15
Using Time Ranges with ACLs 27-17
Including Comments in ACLs 27-19
Applying an IP ACL to an Interface or Terminal Line 27-19
IP ACL Configuration Examples 27-21
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numbered ACLs</td>
</tr>
<tr>
<td>Extended ACLs</td>
</tr>
<tr>
<td>Named ACLs</td>
</tr>
<tr>
<td>Time Range Applied to an IP ACL</td>
</tr>
<tr>
<td>Commented IP ACL Entries</td>
</tr>
<tr>
<td>ACL Logging</td>
</tr>
<tr>
<td>Configuring Named MAC Extended ACLs</td>
</tr>
<tr>
<td>Applying a MAC ACL to a Layer 2 Interface</td>
</tr>
<tr>
<td>Configuring VLAN Maps</td>
</tr>
<tr>
<td>VLAN Map Configuration Guidelines</td>
</tr>
<tr>
<td>Creating a VLAN Map</td>
</tr>
<tr>
<td>Examples of ACLs and VLAN Maps</td>
</tr>
<tr>
<td>Applying a VLAN Map to a VLAN</td>
</tr>
<tr>
<td>Using VLAN Maps in Your Network</td>
</tr>
<tr>
<td>Wiring Closet Configuration</td>
</tr>
<tr>
<td>Denying Access to a Server on Another VLAN</td>
</tr>
<tr>
<td>Using VLAN Maps with Router ACLs</td>
</tr>
<tr>
<td>Guidelines for Using Router ACLs and VLAN Maps</td>
</tr>
<tr>
<td>Examples of Router ACLs and VLAN Maps Applied to VLANs</td>
</tr>
<tr>
<td>ACLs and Switched Packets</td>
</tr>
<tr>
<td>ACLs and Bridged Packets</td>
</tr>
<tr>
<td>ACLs and Routed Packets</td>
</tr>
<tr>
<td>ACLs and Multicast Packets</td>
</tr>
<tr>
<td>Displaying ACL Information</td>
</tr>
<tr>
<td>Displaying ACL Configuration</td>
</tr>
<tr>
<td>Displaying ACL Resource Usage and Configuration Problems</td>
</tr>
<tr>
<td>Configuration Conflicts</td>
</tr>
<tr>
<td>ACL Configuration Fitting in Hardware</td>
</tr>
<tr>
<td>TCAM Usage</td>
</tr>
</tbody>
</table>

CHAPTER 28

Configuring QoS

Understanding QoS | 28-2 |
Basic QoS Model | 28-4 |
Classification | 28-5 |
Classification Based on QoS ACLs	28-7
Classification Based on Class Maps and Policy Maps	28-7
Policing and Marking	28-8
Mapping Tables	28-10
Queueing and Scheduling	28-11
Queueing and Scheduling on Gigabit-Capable Ports 28-11
Queueing and Scheduling on 10/100 Ethernet Ports 28-15
Packet Modification 28-17
Configuring Auto-QoS 28-17
 Generated Auto-QoS Configuration 28-18
 Effects of Auto-QoS on the Configuration 28-20
 Configuration Guidelines 28-20
 Enabling Auto-QoS for VoIP 28-21
Displaying Auto-QoS Information 28-22
Auto-QoS Configuration Example 28-23
Configuring Standard QoS 28-24
 Default Standard QoS Configuration 28-25
 Standard QoS Configuration Guidelines 28-26
 Enabling QoS Globally 28-28
Configuring Classification By Using Port Trust States 28-29
 Configuring the Trust State on Ports within the QoS Domain 28-29
 Configuring the CoS Value for an Interface 28-31
 Configuring a Trusted Boundary to Ensure Port Security 28-32
 Enabling Pass-Through Mode 28-33
 Configuring the DSCP Trust State on a Port Bordering Another QoS Domain 28-34
Configuring a QoS Policy 28-35
 Classifying Traffic by Using ACLs 28-36
 Classifying Traffic on a Physical-Port Basis by Using Class Maps 28-39
 Classifying Traffic on a Per-Port Per-VLAN Basis by Using Class Maps 28-41
 Classifying, Policing, and Marking Traffic by Using Policy Maps 28-43
 Classifying, Policing, and Marking Traffic by Using Aggregate Policers 28-49
Configuring DSCP Maps 28-51
 Configuring the CoS-to-DSCP Map 28-52
 Configuring the IP-Precedence-to-DSCP Map 28-52
 Configuring the Policed-DSCP Map 28-53
 Configuring the DSCP-to-CoS Map 28-54
 Configuring the DSCP-to-DSCP-Mutation Map 28-55
Configuring Egress Queues on Gigabit-Capable Ethernet Ports 28-57
 Mapping CoS Values to Select Egress Queues 28-57
 Configuring the Egress Queue Size Ratios 28-58
 Configuring Tail-Drop Threshold Percentages 28-59
 Configuring WRED Drop Thresholds Percentages 28-61
 Configuring the Egress Expedite Queue 28-62
 Allocating Bandwidth among Egress Queues 28-63
Configuring Egress Queues on 10/100 Ethernet Ports 28-64
Mapping CoS Values to Select Egress Queues 28-64
Configuring the Minimum-Reserve Levels 28-65
Configuring the Egress Expedite Queue 28-66
Allocating Bandwidth among Egress Queues 28-67
Displaying Standard QoS Information 28-69
Standard QoS Configuration Examples 28-69
QoS Configuration for the Existing Wiring Closet 28-70
QoS Configuration for the Intelligent Wiring Closet 28-71
QoS Configuration for the Distribution Layer 28-72

CHAPTER 29
Configuring EtherChannels 29-1
Understanding EtherChannels 29-1
Understanding Port-Channel Interfaces 29-2
Understanding the Port Aggregation Protocol and Link Aggregation Protocol 29-3
PAgP and LACP Modes 29-4
Physical Learners and Aggregate-Port Learners 29-5
PAgP and LACP Interaction with Other Features 29-6
Understanding Load Balancing and Forwarding Methods 29-6
Configuring EtherChannels 29-7
Default EtherChannel Configuration 29-8
EtherChannel Configuration Guidelines 29-8
Configuring Layer 2 EtherChannels 29-9
Configuring Layer 3 EtherChannels 29-11
Creating Port-Channel Logical Interfaces 29-11
Configuring the Physical Interfaces 29-12
Configuring EtherChannel Load Balancing 29-14
Configuring the PAgP Learn Method and Priority 29-15
Configuring the LACP Port Priority 29-16
Configuring Hot Standby Ports 29-16
Configuring the LACP System Priority 29-17
Displaying EtherChannel, PAgP, and LACP Status 29-18

CHAPTER 30
Configuring IP Unicast Routing 30-1
Understanding Routing 30-2
Steps for Configuring Routing 30-3
Configuring IP Addressing on Layer 3 Interfaces 30-4
Default Addressing Configuration 30-4
Assigning IP Addresses to Network Interfaces 30-5
Use of Subnet Zero 30-6
Classless Routing 30-7
Configuring Address Resolution Methods 30-8
 Define a Static ARP Cache 30-9
 Set ARP Encapsulation 30-10
 Enable Proxy ARP 30-10
Routing Assistance When IP Routing is Disabled 30-11
 Proxy ARP 30-11
 Default Gateway 30-11
ICMP Router Discovery Protocol (IRDP) 30-12
Configuring Broadcast Packet Handling 30-13
 Enabling Directed Broadcast-to-Physical Broadcast Translation 30-13
 Forwarding UDP Broadcast Packets and Protocols 30-14
 Establishing an IP Broadcast Address 30-15
 Flooding IP Broadcasts 30-16
Monitoring and Maintaining IP Addressing 30-17
Enabling IP Unicast Routing 30-18
Configuring RIP 30-19
 Default RIP Configuration 30-19
 Configuring Basic RIP Parameters 30-20
 Configuring RIP Authentication 30-22
 Configuring Summary Addresses and Split Horizon 30-22
Configuring IGRP 30-24
 Default IGRP Configuration 30-25
 Understanding Load Balancing and Traffic Distribution Control 30-25
 Configuring Basic IGRP Parameters 30-26
 Configuring Split Horizon 30-28
Configuring OSPF 30-29
 Default OSPF Configuration 30-30
 Configuring Basic OSPF Parameters 30-31
 Configuring OSPF Interfaces 30-32
 Configuring OSPF Area Parameters 30-33
 Configuring Other OSPF Parameters 30-34
 Changing LSA Group Pacing 30-36
 Configuring a Loopback Interface 30-36
 Monitoring OSPF 30-37
Configuring EIGRP 30-38
 Default EIGRP Configuration 30-39
 Configuring Basic EIGRP Parameters 30-40
Configuring EIGRP Interfaces 30-41
Configuring EIGRP Route Authentication 30-42
Monitoring and Maintaining EIGRP 30-43

Configuring BGP 30-44
Default BGP Configuration 30-46
Enabling BGP Routing 30-48
Managing Routing Policy Changes 30-50
Configuring BGP Decision Attributes 30-51
Configuring BGP Filtering with Route Maps 30-53
Configuring BGP Filtering by Neighbor 30-54
Configuring Prefix Lists for BGP Filtering 30-55
Configuring BGP Community Filtering 30-56
Configuring BGP Neighbors and Peer Groups 30-58
Configuring Aggregate Addresses 30-60
Configuring a Routing Domain Confederation 30-60
Configuring BGP Route Reflectors 30-61
Configuring Route Dampening 30-62
Monitoring and Maintaining BGP 30-63

Configuring Multi-VRF CE 30-65
Understanding Multi-VRF CE 30-65
Default Multi-VRF CE Configuration 30-67
Multi-VRF CE Configuration Guidelines 30-68
Configuring VRFs 30-69
Configuring a VPN Routing Session 30-70
Configuring BGP PE to CE Routing Sessions 30-70
Multi-VRF CE Configuration Example 30-71
Displaying Multi-VRF CE Status 30-75

Configuring Protocol-Independent Features 30-75
Configuring Cisco Express Forwarding 30-75
Configuring the Number of Equal-Cost Routing Paths 30-76
Configuring Static Unicast Routes 30-77
Specifying Default Routes and Networks 30-78
Using Route Maps to Redistribute Routing Information 30-79
Configuring Policy-Based Routing 30-82
PBR Configuration Guidelines 30-83
Enabling PBR 30-84
Filtering Routing Information 30-85
Setting Passive Interfaces 30-85
Controlling Advertising and Processing in Routing Updates 30-86
Filtering Sources of Routing Information 30-87
Managing Authentication Keys 30-88
Monitoring and Maintaining the IP Network 30-89

CHAPTER 31
Configuring HSRP 31-1
Understanding HSRP 31-1
Configuring HSRP 31-3
Default HSRP Configuration 31-4
Enabling HSRP 31-4
Configuring HSRP Group Attributes 31-6
Configuring HSRP Priority 31-6
Configuring HSRP Authentication and Timers 31-8
Configuring HSRP Groups and Clustering 31-9
Displaying HSRP Configurations 31-10

CHAPTER 32
Configuring Web Cache Services By Using WCCP 32-1
Understanding WCCP 32-2
WCCP Message Exchange 32-3
WCCP Negotiation 32-3
MD5 Security 32-4
Packet Redirection 32-4
Unsupported WCCPv2 Features 32-4
Configuring WCCP 32-5
Default WCCP Configuration 32-5
WCCP Configuration Guidelines 32-5
Enabling the Web Cache Service, Setting the Password, and Redirecting Traffic Received From a Client 32-6
Monitoring and Maintaining WCCP 32-9

CHAPTER 33
Configuring IP Multicast Routing 33-1
Cisco Implementation of IP Multicast Routing 33-2
Understanding IGM P 33-3
IGMP Version 1 33-3
IGMP Version 2 33-4
Understanding PIM 33-5
PIM Versions 33-5
PIM Modes 33-5
Auto-RP 33-8
Bootstrap Router 33-8
Multicast Forwarding and Reverse Path Check 33-9
Neighbor Discovery 33-10
Understanding DVM RP 33-11
DVM RP Neighbor Discovery 33-11
DVM RP Route Table 33-11
DVM RP Source Distribution Tree 33-11
Understanding CGMP 33-11
Joining a Group with CGMP 33-12
Leaving a Group with CGMP 33-13
Configuring IP Multicast Routing 33-13
Default Multicast Routing Configuration 33-13
Multicast Routing Configuration Guidelines 33-14
PIM v1 and PIM v2 Interoperability 33-14
Auto-RP and BSR Configuration Guidelines 33-15
Configuring Basic Multicast Routing 33-15
Configuring a Rendezvous Point 33-17
Manually Assigning an RP to Multicast Groups 33-17
Configuring Auto-RP 33-18
Configuring PIM v2 BSR 33-22
Using Auto-RP and a BSR 33-27
Monitoring the RP Mapping Information 33-27
Troubleshooting PIM v1 and PIM v2 Interoperability Problems 33-28
Configuring Advanced PIM Features 33-28
Understanding PIM Shared Tree and Source Tree 33-28
Delaying the Use of PIM Shortest-Path Tree 33-29
Modifying the PIM Router-Query Message Interval 33-30
Configuring Optional IGMP Features 33-31
Default IGMP Configuration 33-31
Changing the IGMP Version 33-32
Changing the IGMP Query Timeout for IGMPv2 33-32
Changing the Maximum Query Response Time for IGMPv2 33-33
Configuring the Multilayer Switch as a Member of a Group 33-34
Controlling Access to IP Multicast Groups 33-35
Modifying the IGMP Host-Query Message Interval 33-36
Configuring the Multilayer Switch as a Statically Connected Member 33-36
Configuring Optional Multicast Routing Features 33-37
Enabling CGMP Server Support 33-38
Configuring sdr Listener Support 33-39
Enabling sdr Listener Support 33-39
Limiting How Long an sdr Cache Entry Exists 33-39
Configuring the TTL Threshold 33-40
Configuring an IP M ulticast Boundary 33-42
Configuring Basic DVM RP Interoperability Features 33-43
Configuring DVM RP Interoperability 33-44
Controlling Unicast Route Advertisements 33-44
Configuring a DVM RP Tunnel 33-46
Advertising Network 0.0.0.0 to DVM RP Neighbors 33-48
Responding to mrinfo Requests 33-49
Configuring Advanced DVM RP Interoperability Features 33-50
Enabling DVM RP Unicast Routing 33-50
Rejecting a DVM RP Nonpruning Neighbor 33-51
Controlling Route Exchanges 33-53
Limiting the Number of DVM RP Routes Advertised 33-53
Changing the DVM RP Route Threshold 33-54
Configuring a DVM RP Summary Address 33-54
Disabling DVM RP Autosummarization 33-56
Adding a M etric Offset to the DVM RP Route 33-56
M onitoring and M aintaining IP M ulticast Routing 33-57
Clearing Caches, Tables, and Databases 33-58
Displaying System and Network Statistics 33-58
M onitoring IP M ulticast Routing 33-59

CHAPTER 34

Configuring MSDP 34-1
Understanding MSDP 34-1
MSDP Operation 34-2
MSDP Benefits 34-3
Configuring MSDP 34-4
Default MSDP Configuration 34-4
Configuring a Default MSDP Peer 34-4
Caching Source-Active State 34-6
Requesting Source Information from an MSDP Peer 34-8
Controlling Source Information that Your Switch Originates 34-8
Redistributing Sources 34-9
Filtering Source-Active Request Messages 34-11
Controlling Source Information that Your Switch Forwards 34-12
Using a Filter 34-12
Using TTL to Limit the Multicast Data Sent in SA Messages 34-14
Controlling Source Information that Your Switch Receives 34-14
CHAPTER 35

Configuring Fallback Bridging

Understanding Fallback Bridging

Configuring Fallback Bridging

- **Default Fallback Bridging Configuration**
- **Fallback Bridging Configuration Guidelines**
- **Creating a Bridge Group**
- **Preventing the Forwarding of Dynamically Learned Stations**
- **Configuring the Bridge Table Aging Time**
- **Filtering Frames by a Specific MAC Address**
- **Adjusting Spanning-Tree Parameters**
 - Changing the Switch Priority
 - Changing the Interface Priority
 - Assigning a Path Cost
 - Adjusting BPDU Intervals
 - Disabling the Spanning Tree on an Interface

Monitoring and Maintaining Fallback Bridging

CHAPTER 36

Troubleshooting

Using Recovery Procedures

- **Recovering from Corrupted Software**
- **Recovering from a Lost or Forgotten Password**
 - Password Recovery with Password Recovery Enabled
 - Procedure with Password Recovery Disabled
- **Recovering from a Command Switch Failure**
 - Replacing a Failed Command Switch with a Cluster Member
 - Replacing a Failed Command Switch with Another Switch
- **Recovering from Lost Member Connectivity**

Preventing Autonegotiation Mismatches

GBIC Module Security and Identification

Diagnosing Connectivity Problems

Using Ping

- **Understanding Ping**
- **Executing Ping**
Using IP Traceroute 36-12
 Understanding IP Traceroute 36-13
 Executing IP Traceroute 36-13
Using Layer 2 Traceroute 36-14
 Understanding Layer 2 Traceroute 36-15
 Switches Supporting Layer 2 Traceroute 36-15
 Usage Guidelines 36-15
 Displaying the Physical Path 36-16
Using Debug Commands 36-16
 Enabling Debugging on a Specific Feature 36-17
 Enabling All-System Diagnostics 36-17
 Redirecting Debug and Error Message Output 36-18
 Using the debug autoqos Command 36-18
Using the show forward Command 36-19
Using the crashinfo File 36-20

APPENDIX A

Supported MIBs A-1
 MIB List A-1
 Using FTP to Access the MIB Files A-3

APPENDIX B

Working with the IOS File System, Configuration Files, and Software Images B-1
 Working with the Flash File System B-1
 Displaying Available File Systems B-2
 Setting the Default File System B-3
 Displaying Information about Files on a File System B-3
 Changing Directories and Displaying the Working Directory B-3
 Creating and Removing Directories B-4
 Copying Files B-4
 Deleting Files B-5
 Creating, Displaying, and Extracting tar Files B-6
 Creating a tar File B-6
 Displaying the Contents of a tar File B-6
 Extracting a tar File B-7
 Displaying the Contents of a File B-8
 Working with Configuration Files B-8
 Guidelines for Creating and Using Configuration Files B-9
 Configuration File Types and Location B-9
 Creating a Configuration File By Using a Text Editor B-10
 Copying Configuration Files By Using TFTP B-10
Preparing to Download or Upload a Configuration File By Using TFTP B-10
Downloading the Configuration File By Using TFTP B-11
Uploading the Configuration File By Using TFTP B-12

Copying Configuration Files By Using FTP B-12
Preparing to Download or Upload a Configuration File By Using FTP B-13
Downloading a Configuration File By Using FTP B-13
Uploading a Configuration File By Using FTP B-15

Copying Configuration Files By Using RCP B-16
Preparing to Download or Upload a Configuration File By Using RCP B-16
Downloading a Configuration File By Using RCP B-17
Uploading a Configuration File By Using RCP B-18

Clearing Configuration Information B-19
Clearing the Startup Configuration File B-19
Deleting a Stored Configuration File B-19

Working with Software Images B-19
Image Location on the Switch B-20

tar File Format of Images on a Server or Cisco.com B-20

Copying Image Files By Using TFTP B-21
Preparing to Download or Upload an Image File By Using TFTP B-21
Downloading an Image File By Using TFTP B-22
Uploading an Image File By Using TFTP B-24

Copying Image Files By Using FTP B-24
Preparing to Download or Upload an Image File By Using FTP B-25
Downloading an Image File By Using FTP B-26
Uploading an Image File By Using FTP B-28

Copying Image Files By Using RCP B-29
Preparing to Download or Upload an Image File By Using RCP B-29
Downloading an Image File By Using RCP B-30
Uploading an Image File By Using RCP B-32

Unsupported CLI Commands in Release 12.1(13)EA1 C-1

Access Control Lists C-1
Unsupported Privileged EXEC Commands C-1

ARP Commands C-1
Unsupported Global Configuration Commands C-1
Unsupported Interface Configuration Commands C-1

FallBack Bridging C-2
Unsupported Privileged EXEC Commands C-2
Unsupported Global Configuration Commands C-2
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsupported Interface Commands</td>
<td>C-2</td>
</tr>
<tr>
<td>HSRP</td>
<td>C-3</td>
</tr>
<tr>
<td>Unsupported Global Commands</td>
<td>C-3</td>
</tr>
<tr>
<td>Unsupported Interface Commands</td>
<td>C-3</td>
</tr>
<tr>
<td>Interface Commands</td>
<td>C-4</td>
</tr>
<tr>
<td>IP Multicast Routing</td>
<td>C-4</td>
</tr>
<tr>
<td>Unsupported Privileged Commands</td>
<td>C-4</td>
</tr>
<tr>
<td>Unsupported Global Commands</td>
<td>C-4</td>
</tr>
<tr>
<td>Unsupported Interface Commands</td>
<td>C-5</td>
</tr>
<tr>
<td>IP Unicast Routing</td>
<td>C-5</td>
</tr>
<tr>
<td>Unsupported Privileged Commands</td>
<td>C-5</td>
</tr>
<tr>
<td>Unsupported Global Commands</td>
<td>C-6</td>
</tr>
<tr>
<td>Unsupported Interface Commands</td>
<td>C-6</td>
</tr>
<tr>
<td>Unsupported BGP Commands</td>
<td>C-6</td>
</tr>
<tr>
<td>Unsupported VPN Commands</td>
<td>C-7</td>
</tr>
<tr>
<td>Unsupported Route Map Commands</td>
<td>C-7</td>
</tr>
<tr>
<td>MSDP</td>
<td>C-7</td>
</tr>
<tr>
<td>Unsupported Privileged Commands</td>
<td>C-7</td>
</tr>
<tr>
<td>Unsupported Global Commands</td>
<td>C-8</td>
</tr>
<tr>
<td>RADIUS</td>
<td>C-8</td>
</tr>
<tr>
<td>Unsupported Global Commands</td>
<td>C-8</td>
</tr>
<tr>
<td>SNMP</td>
<td>C-8</td>
</tr>
<tr>
<td>Unsupported Global Commands</td>
<td>C-8</td>
</tr>
<tr>
<td>Spanning Tree</td>
<td>C-8</td>
</tr>
<tr>
<td>Unsupported Global Commands</td>
<td>C-8</td>
</tr>
<tr>
<td>VLAN</td>
<td>C-8</td>
</tr>
<tr>
<td>Unsupported User Commands</td>
<td>C-8</td>
</tr>
</tbody>
</table>
Preface

Audience

This guide is for the networking professional managing the Catalyst 3550 switch, hereafter referred to as the switch or the multilayer switch. Before using this guide, you should have experience working with the Cisco IOS and be familiar with the concepts and terminology of Ethernet and local area networking.

Purpose

This guide provides the information you need to configure Layer 2 and Layer 3 software features on your switch. The Catalyst 3550 switch is supported by either the standard multilayer software image (SMI), which provides Layer 2+ features and basic Layer 3 routing, or the enhanced multilayer software image (EMI), which provides Layer 2+ features, full Layer 3 routing, and advanced services. All Catalyst 3550 Gigabit Ethernet switches are shipped with the EMI pre-installed. Catalyst 3550 Fast Ethernet switches are shipped with either the SMI or the EMI pre-installed. After initial deployment, you can order the Enhanced Multilayer Software Image Upgrade kit to upgrade Catalyst 3550 Fast Ethernet switches from the SMI to the EMI.

This guide provides procedures for using the commands that have been created or changed for use with the Catalyst 3550 switch. It does not provide detailed information about these commands. For detailed information about these commands, refer to the Catalyst 3550 Multilayer Switch Command Reference for this release. For information about the standard IOS Release 12.1 commands, refer to the IOS documentation set available from the Cisco.com home page at Service and Support > Technical Documents. On the Cisco Product Documentation home page, select Release 12.1 from the Cisco IOS Software drop-down list.

This guide also includes an overview of the Cluster Management Suite (CMS) web-based, switch management interface, which helps you create and manage clusters of switches. This guide does not provide field-level descriptions of the CMS windows nor does it provide the procedures for configuring switches and switch clusters from CMS. For all CMS window descriptions and procedures, refer to the CMS online help, which is integrated with the software image.

This guide does not describe system messages you might encounter or how to install your switch. For more information, refer to the Catalyst 3550 Multilayer Switch System Message Guide for this release and to the Catalyst 3550 Multilayer Switch Hardware Installation Guide.
Conventions

This publication uses these conventions to convey instructions and information:

Command descriptions use these conventions:

- Commands and keywords are in **boldface** text.
- Arguments for which you supply values are in *italic*.
- Square brackets ([]) mean optional elements.
- Braces ({ }) group required choices, and vertical bars (|) separate the alternative elements.
- Braces and vertical bars within square brackets ([{ | }]) mean a required choice within an optional element.

Interactive examples use these conventions:

- Terminal sessions and system displays are in `screen` font.
- Information you enter is in **boldface screen** font.
- Nonprinting characters, such as passwords or tabs, are in angle brackets `< >`.

Notes, cautions, and timesavers use these conventions and symbols:

<table>
<thead>
<tr>
<th>Note</th>
<th>Means reader take note. Notes contain helpful suggestions or references to materials not contained in this manual.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caution</td>
<td>Means reader be careful. In this situation, you might do something that could result equipment damage or loss of data.</td>
</tr>
<tr>
<td>Timesaver</td>
<td>Means the following will help you solve a problem. The tips information might not be troubleshooting or even an action, but could be useful information.</td>
</tr>
</tbody>
</table>

Related Publications

These documents provide complete information about the switch and are available from this Cisco.com site:

You can order printed copies of documents with a DOC-xxxxxx= number from the Cisco.com sites and from the telephone numbers listed in the “Ordering Documentation” section on page xxxv.

- Release Notes for the Catalyst 3550 Multilayer Switch (not orderable but available on Cisco.com)

| Note | Switch requirements and procedures for initial configurations and software upgrades tend to change and therefore appear only in the release notes. Before installing, configuring, or upgrading the switch, refer to the release notes on Cisco.com for the latest information. |
• Catalyst 3550 Multilayer Switch Software Configuration Guide (order number DOC-7811194=)
• Catalyst 3550 Multilayer Switch Command Reference (order number DOC-7811195=)
• Catalyst 3550 Multilayer Switch System Message Guide (order number DOC-7811196=)
• Cluster Management Suite (CMS) online help (available only from the switch CMS software)
• Catalyst 3550 Multilayer Switch Hardware Installation Guide (order number DOC-7811358=)
• 1000BASE-T Gigabit Interface Converter Installation Note (not orderable but is available on
Cisco.com)
• Catalyst GigaStack Gigabit Interface Converter Hardware Installation Guide
(order number DOC-786460=)

Obtaining Documentation

Cisco provides several ways to obtain documentation, technical assistance, and other technical
resources. These sections explain how to obtain technical information from Cisco Systems.

Cisco.com

You can access the most current Cisco documentation on the World Wide Web at this URL:
http://www.cisco.com/univercd/home/home.htm
You can access the Cisco website at this URL:
http://www.cisco.com
International Cisco web sites can be accessed from this URL:

Documentation CD-ROM

Cisco documentation and additional literature are available in a Cisco Documentation CD-ROM
package, which may have shipped with your product. The Documentation CD-ROM is updated monthly
and may be more current than printed documentation. The CD-ROM package is available as a single unit
or through an annual subscription.
Registered Cisco.com users can order the Documentation CD-ROM (product number
DOC-CONDOCCD=) through the online Subscription Store:
http://www.cisco.com/go/subscription

Ordering Documentation

You can find instructions for ordering documentation at this URL:
You can order Cisco documentation in these ways:
• Registered Cisco.com users (Cisco direct customers) can order Cisco product documentation from
the Networking Products MarketPlace:

- Registered Cisco.com users can order the Documentation CD-ROM (Customer Order Number DOC-CONDOCCD=) through the online Subscription Store:
 http://www.cisco.com/go/subscription
- Nonregistered Cisco.com users can order documentation through a local account representative by calling Cisco Systems Corporate Headquarters (California, U.S.A.) at 408 526-7208 or, elsewhere in North America, by calling 800 553-NETS (6387).

Documentation Feedback

You can submit comments electronically on Cisco.com. On the Cisco Documentation home page, click **Feedback** at the top of the page.

You can email your comments to bug-doc@cisco.com.

You can submit your comments by mail by using the response card behind the front cover of your document or by writing to the following address:

Cisco Systems
Attn: Customer Document Ordering
170 West Tasman Drive
San Jose, CA 95134-9883

We appreciate your comments.

Obtaining Technical Assistance

Cisco provides Cisco.com, which includes the Cisco Technical Assistance Center (TAC) Website, as a starting point for all technical assistance. Customers and partners can obtain online documentation, troubleshooting tips, and sample configurations from the Cisco TAC website. Cisco.com registered users have complete access to the technical support resources on the Cisco TAC website, including TAC tools and utilities.

Cisco.com

Cisco.com offers a suite of interactive, networked services that let you access Cisco information, networking solutions, services, programs, and resources at any time, from anywhere in the world.

Cisco.com provides a broad range of features and services to help you with these tasks:

- Streamline business processes and improve productivity
- Resolve technical issues with online support
- Download and test software packages
- Order Cisco learning materials and merchandise
- Register for online skill assessment, training, and certification programs

To obtain customized information and service, you can self-register on Cisco.com at this URL:

http://www.cisco.com
Technical Assistance Center

The Cisco TAC is available to all customers who need technical assistance with a Cisco product, technology, or solution. Two levels of support are available: the Cisco TAC website and the Cisco TAC Escalation Center. The avenue of support that you choose depends on the priority of the problem and the conditions stated in service contracts, when applicable.

We categorize Cisco TAC inquiries according to urgency:

- **Priority level 4 (P4)** — You need information or assistance concerning Cisco product capabilities, product installation, or basic product configuration.
- **Priority level 3 (P3)** — Your network performance is degraded. Network functionality is noticeably impaired, but most business operations continue.
- **Priority level 2 (P2)** — Your production network is severely degraded, affecting significant aspects of business operations. No workaround is available.
- **Priority level 1 (P1)** — Your production network is down, and a critical impact to business operations will occur if service is not restored quickly. No workaround is available.

Cisco TAC Website

You can use the Cisco TAC website to resolve P3 and P4 issues yourself, saving both cost and time. The site provides around-the-clock access to online tools, knowledge bases, and software. To access the Cisco TAC website, go to this URL:

http://www.cisco.com/tac

All customers, partners, and resellers who have a valid Cisco service contract have complete access to the technical support resources on the Cisco TAC website. Some services on the Cisco TAC website require a Cisco.com login ID and password. If you have a valid service contract but do not have a login ID or password, go to this URL to register:

If you are a Cisco.com registered user, and you cannot resolve your technical issues by using the Cisco TAC website, you can open a case online at this URL:

If you have Internet access, we recommend that you open P3 and P4 cases through the Cisco TAC website so that you can describe the situation in your own words and attach any necessary files.

Cisco TAC Escalation Center

The Cisco TAC Escalation Center addresses priority level 1 or priority level 2 issues. These classifications are assigned when severe network degradation significantly impacts business operations. When you contact the TAC Escalation Center with a P1 or P2 problem, a Cisco TAC engineer automatically opens a case.

To obtain a directory of toll-free Cisco TAC telephone numbers for your country, go to this URL:

Before calling, please check with your network operations center to determine the level of Cisco support services to which your company is entitled: for example, SMARTnet, SMARTnet Onsite, or Network Supported Accounts (NSA). When you call the center, please have available your service agreement number and your product serial number.
Obtaining Additional Publications and Information

Information about Cisco products, technologies, and network solutions is available from various online and printed sources.

- The Cisco Product Catalog describes the networking products offered by Cisco Systems as well as ordering and customer support services. Access the Cisco Product Catalog at this URL:

- Cisco Press publishes a wide range of networking publications. Cisco suggests these titles for new and experienced users: Internetworking Terms and Acronyms Dictionary, Internetworking Technology Handbook, Internetworking Troubleshooting Guide, and the Internetworking Design Guide. For current Cisco Press titles and other information, go to Cisco Press online at this URL:

 http://www.ciscopress.com

- Packet magazine is the Cisco monthly periodical that provides industry professionals with the latest information about the field of networking. You can access Packet magazine at this URL:

- iQ Magazine is the Cisco monthly periodical that provides business leaders and decision makers with the latest information about the networking industry. You can access iQ Magazine at this URL:

- Internet Protocol Journal is a quarterly journal published by Cisco Systems for engineering professionals involved in the design, development, and operation of public and private internets and intranets. You can access the Internet Protocol Journal at this URL:

- Training—Cisco offers world-class networking training, with current offerings in network training listed at this URL:

Overview

This chapter provides these topics about the Catalyst 3550 multilayer switch software:

- Features, page 1-1
- Management Options, page 1-7
- Network Configuration Examples, page 1-8
- Where to Go Next, page 1-18

Features

The Catalyst 3550 software supports the hardware listed in the release notes. This section describes the features supported in this release:

Note

All Catalyst 3550 Gigabit Ethernet switches ship with the enhanced multilayer software image (EMI), which provides Layer 2+ features, full Layer 3 routing, and advanced services. Catalyst 3550 Fast Ethernet switches can be shipped with either the standard multilayer software image (SMI) or EMI installed. The SMI software image provides Layer 2+ features and basic Layer 3 routing. You can order the Enhanced Multilayer Software Image Upgrade kit to upgrade Catalyst 3550 Fast Ethernet switches from the SMI to the EMI.

Ease of Use and Ease of Deployment

- Cluster Management Suite (CMS) software for simplifying switch and switch cluster management through a web browser, such as Netscape Communicator or Microsoft Internet Explorer, from anywhere in your intranet
- Switch clustering technology used with CMS, for
 - Unified configuration, monitoring, authentication, and software upgrade of multiple switches (refer to the release notes for a list of eligible cluster members).
 - Automatic discovery of candidate switches and creation of clusters of up to 16 switches that can be managed through a single IP address.
 - Extended discovery of cluster candidates that are not directly connected to the command switch.

See the “Advantages of Using CMS and Clustering Switches” section on page 1-7. For the CMS, cluster hardware, software, and browser requirements, refer to the release notes.
Performance

- Autosensing of port speed and autonegotiation of duplex mode on all switch ports for optimizing bandwidth
- IEEE 802.3X flow control on all Ethernet ports
- EtherChannel for enhanced fault tolerance and for providing up to 8 Gbps (Gigabit EtherChannel) or 800 Mbps (Fast EtherChannel) full duplex of bandwidth between switches, routers, and servers
- Port Aggregation Protocol (PAgP) and Link Aggregation Control Protocol (LACP) for automatic creation of EtherChannel links
- Per-port storm control for preventing broadcast, multicast, and unicast storms
- Port blocking on forwarding unknown unicast and multicast traffic
- Cisco Group Management Protocol (CGMP) server support and Internet Group Management Protocol (IGMP) snooping for IGMP versions 1 and 2:
 - (For CGMP devices) CGMP for limiting multicast traffic to specified end stations and reducing overall network traffic
 - (For IGMP devices) IGMP snooping for limiting flooding of multicast traffic
- Multicast VLAN registration (MVR) to continuously send multicast streams in a multicast VLAN while isolating the streams from subscriber VLANs for bandwidth and security reasons
- IGMP filtering for controlling the set of multicast groups to which hosts on a switch port can belong
- System Database Management (SDM) templates for allocating system resources to maximize support for user-selected features
- Web Cache Communication Protocol (WCCP) for redirecting traffic to local cache engines, for enabling content requests to be fulfilled locally, and for localizing web-traffic patterns in the network (requires the enhanced multilayer software image)

Manageability

- Cisco Intelligence Engine 2100 (IE2100) Series Cisco Networking Services (CNS) embedded agents for automating switch management, configuration storage and delivery.
- Dynamic Host Configuration Protocol (DHCP) for automating configuration of switch information (such as IP address, default gateway, host name, and Domain Name System [DNS] and Trivial File Transfer Protocol [TFTP] server names)
- DHCP relay agent information (option 82) for subscriber identification and IP address management
- Directed unicast requests to a DNS server for identifying a switch through its IP address and its corresponding host name and to a TFTP server for administering software upgrades from a TFTP server
- Address Resolution Protocol (ARP) for identifying a switch through its IP address and its corresponding Media Access Control (MAC) address
- Cisco Discovery Protocol (CDP) versions 1 and 2 for network topology discovery and mapping between the switch and other Cisco devices on the network
- Network Time Protocol (NTP) for providing a consistent timestamp to all switches from an external source
- Cisco IOS File System (IFS) for providing a single interface to all file systems that the switch uses
- In-band management access through CMS
- In-band management access through up to 16 simultaneous Telnet connections for multiple command-line interface (CLI)-based sessions over the network
• In-band management access for up to five simultaneous, encrypted Secure Shell (SSH) connections for multiple CLI-based sessions over the network
• In-band management access through Simple Network Management Protocol (SNMP) versions 1, 2c, and 3 get and set requests
• Out-of-band management access through the switch console port to a directly attached terminal or to a remote terminal through a serial connection or a modem

Note
For additional descriptions of the management interfaces, see the “Management Options” section on page 1-7.

Redundancy
• Hot Standby Router Protocol (HSRP) for command switch and Layer 3 router redundancy
• UniDirectional Link Detection (UDLD) and aggressive UDLD on all Ethernet ports for detecting and disabling unidirectional links on fiber-optic interfaces caused by incorrect fiber-optic wiring or port faults
• IEEE 802.1D Spanning Tree Protocol (STP) for redundant backbone connections and loop-free networks. STP has these features:
 – Per-VLAN Spanning Tree (PVST) for balancing load across VLANs
 – Per-VLAN Rapid Spanning Tree (PVRST) for balancing load across VLANs
 – UplinkFast, cross-stack UplinkFast, and BackboneFast for fast convergence after a spanning-tree topology change and for achieving load balancing between redundant uplinks, including Gigabit uplinks and cross-stack Gigabit uplinks
• IEEE 802.1S Multiple Spanning Tree Protocol (MSTP) for grouping VLANs into a spanning-tree instance, and providing for multiple forwarding paths for data traffic and load balancing
• IEEE 802.1W Rapid Spanning Tree Protocol (RSTP) for rapid convergence of the spanning tree by immediately transitioning root and designated ports to the forwarding state
• Optional spanning-tree features available in PVST, PVRST, and MSTP mode:
 – Port Fast for eliminating the forwarding delay by enabling a port to immediately transition from the blocking state to the forwarding state
 – BPDU guard for shutting down Port Fast-enabled ports that receive BPDU
 – BPDU filtering for preventing a Port Fast-enabled port from sending or receiving BPDU
 – Root guard for preventing switches outside the network core from becoming the spanning-tree root
 – Loop guard for preventing alternate or root ports from becoming designated ports because of a failure that leads to a unidirectional link

Note
The switch supports up to 128 spanning-tree instances.

VLAN Support
• Support for up to 1005 VLANs for assigning users to VLANs associated with appropriate network resources, traffic patterns, and bandwidth
• Support for VLAN IDs in the full 1 to 4094 range allowed by the IEEE 802.1Q standard
• VLAN Query Protocol (VQP) for dynamic VLAN membership
• Inter-Switch Link (ISL) and IEEE 802.1Q trunking encapsulation on all ports for network moves, adds, and changes; management and control of broadcast and multicast traffic; and network security by establishing VLAN groups for high-security users and network resources
• Dynamic Trunking Protocol (DTP) for negotiating trunking on a link between two devices and for negotiating the type of trunking encapsulation (802.1Q or ISL) to be used
• VLAN Trunking Protocol (VTP) and VTP pruning for reducing network traffic by restricting flooded traffic to links destined for stations receiving the traffic
• Voice VLAN for creating subnets for voice traffic from Cisco IP Phones

Security
• Password-protected access (read-only and read-write access) to management interfaces (CMS and CLI) for protection against unauthorized configuration changes
• Multilevel security for a choice of security level, notification, and resulting actions
• Static MAC addressing for ensuring security
• Protected port option for restricting the forwarding of traffic to designated ports on the same switch
• Port security option for limiting and identifying MAC addresses of the stations allowed to access the port
• Port security aging to set the aging time for secure addresses on a port
• Bridge protocol data unit (BPDU) guard for shutting down a Port Fast-configured port when an invalid configuration occurs
• Standard and extended IP access control lists (ACLs) for defining security policies in both directions on routed interfaces (router ACLs) and inbound on Layer 2 interfaces (port ACLs)
• Extended MAC access control lists for defining security policies in the inbound direction on Layer 2 interfaces
• VLAN ACLs (VLAN maps) for providing intra-VLAN security by filtering traffic based on information in the MAC, IP, and TCP/User Datagram Protocol (UDP) headers
• Source and destination MAC-based ACLs for filtering non-IP traffic
• IEEE 802.1X port-based authentication to prevent unauthorized devices (clients) from gaining access to the network
• 802.1X with per-user access control lists for providing different levels of network access and service to an 802.1X-authenticated user
• 802.1X with VLAN assignment for restricting 802.1X-authenticated users to a specified VLAN
• 802.1X with port security for controlling access to 802.1X multiple-host ports
• 802.1X with voice VLAN to permit an IP phone access to the voice VLAN irrespective of the authorized or unauthorized state of the port
• Terminal Access Controller Access Control System Plus (TACACS+), a proprietary feature for managing network security through a TACACS server
• Kerberos security system to authenticate requests for network resources by using a trusted third party
• Remote Authentication Dial-In User Service (RADIUS), which provides detailed accounting information and flexible administrative control over authentication and authorization processes
• 802.1Q tunneling to allow customers with users at remote sites across a service provider network to keep VLANs segregated from other customers and Layer 2 protocol tunneling to ensure that the customer's network has complete STP, CDP, and VTP information about all users
Chapter 1 Overview

Features

Quality of Service (QoS) and Class of Service (CoS)
• Automatic QoS (auto-QoS) to simplify the deployment of existing QoS features by classifying traffic and configuring egress queues (voice over IP only)
• Classification
 – Classification on a physical interface or on a per-port per-VLAN basis
 – IP type-of-service/Differentiated Services Code Point (IP TOS/DSCP) and 802.1P CoS marking priorities on a per-port basis for protecting the performance of mission-critical applications
 – IP TOS/DSCP and 802.1P CoS marking based on flow-based packet classification (classification based on information in the MAC, IP, and TCP/UDP headers) for high-performance quality of service at the network edge, allowing for differentiated service levels for different types of network traffic and for prioritizing mission-critical traffic in the network
 – Trusted port states (CoS, DSCP, and IP precedence) within a QoS domain and with a port bordering another QoS domain
 – Trusted boundary for detecting the presence of a Cisco IP phone, trusting the CoS value received, and ensuring port security
• Policing
 – Policing on a physical interface or on a per-port per-VLAN basis
 – Traffic-policing policies on the switch port for managing how much of the port bandwidth should be allocated to a specific traffic flow
 – Aggregate policing for policing traffic flows in aggregate to restrict specific applications or traffic flows to metered, predefined rates
 – Up to 128 policers on ingress Gigabit-capable Ethernet ports
 – Up to eight policers on ingress 10/100 ports
 – Up to eight policers per egress port (aggregate policers only)
• Out-of-Profile
 – Out-of-profile markdown for packets that exceed bandwidth utilization limits
• Egress Policing and Scheduling of Egress Queues
 – Four egress queues on all switch ports. These queues can either be configured with the Weighted Round Robin (WRR) scheduling algorithm or configured with one queue as a strict priority queue and the other three queues for WRR. The strict priority queue must be empty before the other three queues are serviced. You can use the strict priority queue for mission-critical and time-sensitive traffic.
 – Tail drop and Weight Random Early Detection (WRED) techniques for avoiding congestion on Gigabit Ethernet ports; tail drop for congestion avoidance on Fast Ethernet ports

Layer 3 Support (Some features and protocols require the enhanced multilayer software image.)
• Hot Standby Router Protocol (HSRP) for Layer 3 router redundancy
• IP routing protocols for load balancing and for constructing scalable, routed backbones:
 – Routing Information Protocol (RIP) versions 1 and 2
 – Open Shortest Path First (OSPF)
 – Interior Gateway Routing Protocol (IGRP) and Enhanced IGRP (EIGRP)
 – Border Gateway Protocol (BGP) Version 4
Features

- IP routing between VLANs (inter-VLAN routing) for full Layer 3 routing between two or more VLANs, allowing each VLAN to maintain its own autonomous data-link domain
- Multiple VPN routing/forwarding (multi-VRF) instances in customer edge (CE) devices to allow service providers to support multiple virtual private networks (VPNs) and overlap IP addresses between VPNs.
- Policy-based routing (PBR) for configuring defined policies for traffic flows
- Fallback bridging for forwarding non-IP traffic between two or more VLANs
- Static IP routing for manually building a routing table of network path information
- Equal-cost routing for load balancing and redundancy
- Internet Control Message Protocol (ICMP) and ICMP Router Discovery Protocol (IRDP) for using router advertisement and router solicitation messages to discover the addresses of routers on directly attached subnets
- Protocol-Independent Multicast (PIM) for multicast routing within the network, allowing for devices in the network to receive the multicast feed requested and for switches not participating in the multicast to be pruned. Includes support for PIM sparse mode (PIM-SM), PIM dense mode (PIM-DM), and PIM sparse-dense mode.
- Distance Vector Multicast Routing Protocol (DVMRP) tunnelling for interconnecting two multicast-enabled networks across non-multicast networks
- DHCP relay for forwarding UDP broadcasts, including IP address requests, from DHCP clients

Monitoring

- Switch LEDs that provide port- and switch-level status
- Switched Port Analyzer (SPAN) and Remote SPAN (RSPAN) for traffic monitoring on any port or VLAN
- SPAN and RSPAN support of Intrusion Detection Systems (IDSs) to monitor, repel, and report network security violations
- Four groups (history, statistics, alarms, and events) of embedded remote monitoring (RMON) agents for network monitoring and traffic analysis
- Syslog facility for logging system messages about authentication or authorization errors, resource issues, and time-out events
- MAC address notification for tracking users on a network by storing the MAC addresses that the switch has learned or removed
- Layer 2 traceroute to identify the physical path that a packet takes from a source device to a destination device

Inline Power Support for the Catalyst 3550-24PWR Switch

- Ability to provide inline power to Cisco IP Phones and Cisco Aironet Access Points from all 24 10/100 Ethernet ports
- Autodetection and control of inline phone power on a per-port basis on all 10/100 ports
- Fan-fault and over-temperature detection through Cluster Management Suite (CMS)
Management Options

The Catalyst 3550 switch is designed for plug-and-play operation: you need to configure only basic IP information for the switch and connect it to the other devices in your network. If you have specific network needs, you can configure and monitor the switch—on an individual basis or as part of a switch cluster—through its various management interfaces.

Management Interface Options

You can configure and monitor individual switches and switch clusters by using these interfaces:

- CMS—CMS is a graphical user interface that can be launched from anywhere in your network through a web browser such as Netscape Communicator or Microsoft Internet Explorer. CMS is already installed on the switch. Using CMS, you can configure and monitor a standalone switch, a specific cluster member, or an entire switch cluster. You can also display network topologies to gather link information and to display switch images to modify switch and port settings.

 For more information about CMS, see Chapter 3, “Getting Started with CMS.”

- CLI—The switch IOS CLI software is enhanced to support desktop- and multilayer-switching features. You can configure and monitor the switch and switch cluster members from the CLI. You can access the CLI either by connecting your management station directly to the switch console port or by using Telnet from a remote management station.

 For more information about the CLI, see Chapter 2, “Using the Command-Line Interface.”

- IE2100—Cisco Intelligence Engine 2100 Series Configuration Registrar is a network management device that works with embedded CNS Agents in the switch software. You can automate initial configurations and configuration updates by generating switch-specific configuration changes, sending them to the switch, executing the configuration change, and logging the results.

 For more information about IE2100, see Chapter 5, “Configuring IE2100 CNS Agents.”

- SNMP—SNMP provides a means to monitor and control the switch and switch cluster members. You can manage switch configuration settings, performance, security, and collect statistics by using SNMP management applications such as CiscoWorks2000 LAN Management Suite (LMS) and HP OpenView.

 You can manage the switch from an SNMP-compatible management station that is running platforms such as HP OpenView or SunNet Manager. The switch supports a comprehensive set of MIB extensions and four RMON groups.

 For more information about using SNMP, see Chapter 26, “Configuring SNMP.”

Advantages of Using CMS and Clustering Switches

Using CMS and switch clusters can simplify and minimize your configuration and monitoring tasks. You can use Cisco switch clustering technology to manage up to 16 interconnected, supported Catalyst switches through one IP address. This can conserve IP addresses if you have a limited number of them. CMS is the easiest interface to use and makes switch and switch cluster management accessible to authorized users from any PC on your network.
By using switch clusters and CMS, you can

- Manage and monitor interconnected Catalyst switches (refer to the release notes for a list of supported switches), regardless of their geographic proximity and interconnection media, including Ethernet, Fast Ethernet, Fast EtherChannel, Cisco GigaStack Gigabit Interface Converter (GBIC), Gigabit Ethernet, and Gigabit EtherChannel connections.
- Accomplish multiple configuration tasks from a single CMS window without needing to remember CLI commands to accomplish specific tasks.
- Apply actions from CMS to multiple ports and multiple switches at the same time. Here are some examples of configuring and managing multiple ports and switches:
 - Port configuration such as speed and duplex settings
 - Port and console port security settings
 - NTP, STP, VLAN, and QoS configurations
 - Inventory and statistic reporting and link- and switch-level monitoring and troubleshooting
 - Group software upgrades
- View a topology of interconnected devices to identify existing switch clusters and eligible switches that can join a cluster. You can also use the topology to quickly identify link information between switches.
- Monitor real-time status of a switch or multiple switches from the LEDs on the front-panel images. The system, redundant power system (RPS), and port LED colors on the images are similar to those used on the physical LEDs.
- Use an interactive mode that takes you step-by-step through configuring complex features such as VLANs, ACLs, and QoS.
- Use a wizard that prompts you to provide only the minimum required information to configure complex features such as QoS priorities for video traffic, priority levels for data applications, and security.

For more information about CMS, see Chapter 3, “Getting Started with CMS.” For more information about switch clusters, see Chapter 6, “Clustering Switches.”

Network Configuration Examples

This section provides network configuration concepts and includes examples of using the switch to create dedicated network segments and interconnecting the segments through Fast Ethernet and Gigabit Ethernet connections.

- “Design Concepts for Using the Switch” section on page 1-9
- “Small to Medium-Sized Network Using Mixed Switches” section on page 1-12
- “Large Network Using Only Catalyst 3550 Switches” section on page 1-14
- “Multidwelling Network Using Catalyst 3550 Switches” section on page 1-15
- “Long-Distance, High-Bandwidth Transport Configuration” section on page 1-17
Design Concepts for Using the Switch

As your network users compete for network bandwidth, it takes longer to send and receive data. When you configure your network, consider the bandwidth required by your network users and the relative priority of the network applications they use.

Table 1-1 describes what can cause network performance to degrade and how you can configure your network to increase the bandwidth available to your network users.

Table 1-1 Increasing Network Performance

<table>
<thead>
<tr>
<th>Network Demands</th>
<th>Suggested Design Methods</th>
</tr>
</thead>
</table>
| Too many users on a single network segment and a growing number of users accessing the Internet | • Create smaller network segments so that fewer users share the bandwidth, and use VLANs and IP subnets to place the network resources in the same logical network as the users who access those resources most.
 • Use full-duplex operation between the switch and its connected workstations. |
| • Increased power of new PCs, workstations, and servers | • Connect global resources—such as servers and routers to which the network users require equal access—directly to the high-speed switch ports so that they have their own high-speed segment.
 • Use the EtherChannel feature between the switch and its connected servers and routers. |
| • High bandwidth demand from networked applications (such as e-mail with large attached files) and from bandwidth-intensive applications (such as multimedia) | |

Bandwidth alone is not the only consideration when designing your network. As your network traffic profiles evolve, consider providing network services that can support applications for voice and data integration, multimedia integration, application prioritization, and security. Table 1-2 describes some network demands and how you can meet those demands.

Table 1-2 Providing Network Services

<table>
<thead>
<tr>
<th>Network Demands</th>
<th>Suggested Design Methods</th>
</tr>
</thead>
</table>
| Efficient bandwidth usage for multimedia applications and guaranteed bandwidth for critical applications | • Use IGMP snooping to efficiently forward multimedia and multicast traffic.
 • Use other QoS mechanisms such as packet classification, marking, scheduling, and congestion avoidance to classify traffic with the appropriate priority level, thereby providing maximum flexibility and support for mission-critical, unicast, and multicast and multimedia applications.
 • Use optional IP multicast routing to design networks better suited for multicast traffic.
 • Use MVR to continuously send multicast streams in a multicast VLAN, but to isolate the streams from subscriber VLANs for bandwidth and security reasons. |
| High demand on network redundancy to provide always on mission-critical applications | • Use HSRP for router redundancy.
 • Use VLAN trunks, cross-stack UplinkFast, and BackboneFast for traffic-load balancing on the uplink ports so that the uplink port with a lower relative port cost is selected to carry the VLAN traffic. |
Figure 1-1 shows three configuration examples of using Catalyst switches to create the following:

- **Cost-effective wiring closet**—A cost-effective way to connect many users to the wiring closet is to connect a Catalyst switch cluster of up to nine Catalyst 3550 XL switches (or with a mix of Catalyst 3550, Catalyst 2950, Catalyst 3500 XL, and Catalyst 2900 XL switches) through GigaStack GBIC connections. To preserve switch connectivity if one switch in the stack fails, connect the bottom switch to the top switch to create a GigaStack loopback, and enable cross-stack UplinkFast on the cross-stack Gigabit uplinks.

 You can have redundant uplink connections, using Gigabit GBIC modules, from the GigaStack cluster to a Gigabit backbone switch such as the Catalyst 3550-12T or Catalyst 3550-12G switch. You can also create backup paths by using Fast Ethernet, Gigabit, or EtherChannel links. If one of the redundant connections fails, the other can serve as a backup path. You can configure the Catalyst 3550-12T or Catalyst 3550-12G switch as a switch cluster manager to manage stack members through a single IP address. The Catalyst 3550-12T or Catalyst 3550-12G switch can be connected to a Gigabit server through a 1000BASE-T connection.

- **High-performance workgroup**—For high-speed access to network resources, you can use Catalyst 3550 switches in the access layer to provide Gigabit Ethernet to the desktop. To prevent congestion, use QoS DSCP marking priorities on these switches. For high-speed IP forwarding at the distribution layer, connect the Catalyst 3550 switches in the access layer to a Gigabit multilayer switch (such as the Catalyst 3550 multilayer switch) in the backbone.

 Each switch in this configuration provides users with a dedicated 1-Gbps connection to network resources in the backbone. Compare this with the switches in a GigaStack configuration, where the 1-Gbps connection is shared among the switches in the stack. Using these Gigabit GBIC modules also provides flexibility in media and distance options:

 - 1000BASE-T GBIC: copper connections of up to 328 feet (100 m)
 - 1000BASE-SX GBIC: fiber-optic connections of up to 1804 feet (550 m)
 - 1000BASE-LX/LH GBIC: fiber-optic connections of up to 32,808 feet (6 miles or 10 km)
 - 1000BASE-ZX GBIC: fiber-optic connections of up to 328,084 feet (62 miles or 100 km)
- Redundant Gigabit backbone—Using HSRP, you can create backup paths between two Catalyst 3550 multilayer switches to enhance network reliability and load balancing for different VLANs and subnets. Using HSRP also provides faster network convergence if any network failure occurs. You can connect the Catalyst switches, again in a star configuration, to two Catalyst 3550 multilayer backbone switches. If one of the backbone switches fails, the second backbone switch preserves connectivity between the switches and network resources.

Figure 1-1 Example Configurations

- Cost-Effective Wiring Closet
- High-Performance Workgroup
- Redundant Gigabit Backbone
Small to Medium-Sized Network Using Mixed Switches

Figure 1-2 shows a configuration for a network of up to 500 employees. This network uses Catalyst 3550 multilayer switches to aggregate up to ten wiring closets through high-speed uplinks. For network reliability and load balancing, this network includes two routers and two Catalyst 3550 multilayer switches, all with HSRP enabled. This ensures connectivity to the Internet, WAN, and mission-critical network resources if one of the routers or Catalyst 3550 multilayer switches fails.

The wiring closets have a mix of switches such as the Catalyst 3550, Catalyst 3500 XL, Catalyst 2950, Catalyst 2900 XL, Catalyst 2820, and Catalyst 1900 switches. These switches are connected to workstations, Cisco IP Phones, and local servers. You can cluster these switches into multiple clusters, as shown, or into a single cluster. You can manage a cluster through the IP address of its primary and secondary command switches, regardless of the geographic location of the cluster members.

This network uses VLANs to segment the network logically into well-defined broadcast groups and for security management. Data and multimedia traffic are configured on the same VLAN. Voice traffic from the Cisco IP Phones are configured on separate VVIDs. You can have up to four VVIDs per wiring closet. If data, multimedia, and voice traffic are assigned to the same VLAN, only one VLAN can be configured per wiring closet. For any switch port connected to Cisco IP Phones, 802.1P/Q QoS gives voice traffic forwarding-priority over data traffic.

Cisco IP Phones are connected—using standard straight-through, twisted-pair cable with RJ-45 connectors—to the 10/100 inline-power ports on the Catalyst 3550-24PWR switches and to the 10/100 ports on the Catalyst 3550 switches. These multiservice switch ports automatically detect any IP phones that are connected. Cisco CallManager controls call processing, routing, and IP phone features and configuration. Users with workstations running Cisco SoftPhone software can place, receive, and control calls from their PCs. Using Cisco IP Phones, Cisco CallManager software, and Cisco SoftPhone software integrates telephony and IP networks, and the IP network supports both voice and data.

Each 10/100 inline-power port on the Catalyst 3550-24PWR switches provides 15.4 W per port. The IP phone can receive redundant power when it is also connected to an AC power source. IP phones not connected to the Catalyst 3550-24PWR switches receive power from an AC power source.

When an end station in one VLAN needs to communicate with an end station in another VLAN, a router or multilayer switch routes the traffic to the appropriate destination VLAN. In this network, the Catalyst 3550 multilayer switches provide inter-VLAN routing. VLAN access control lists (VLAN maps) on the Catalyst 3550 switches provide intra-VLAN security and prevent unauthorized users from accessing critical pieces of the network.

In addition to inter-VLAN routing, the Catalyst 3550 multilayer switches provide QoS mechanisms such as DSCP priorities to prioritize the different types of network traffic and to deliver high-priority traffic in a predictable manner. If congestion occurs, QoS drops low-priority traffic to allow delivery of high-priority traffic.

With the Catalyst 3550 multilayer switches providing inter-VLAN routing and other network services, the routers focus on firewall services, Network Address Translation (NAT) services, voice-over-IP (VoIP) gateway services, and WAN and Internet access.
Figure 1-2 Catalyst 3550 Switches in a Collapsed Backbone Configuration

- Internet
- Cisco 2600 or 3600 routers
- Catalyst 3550 multilayer switches
- Gigabit servers
- Call Manager
- Cisco Access point
- Cisco IP Phones
- Catalyst GigaStack cluster
- Catalyst 3550-24PWR
- Workstations running Cisco SoftPhone software
- Cisco 2600 or 3600 routers
- Cisco IP Phones
- Catalyst GigaStack cluster
- Catalyst 3550-24PWR
- Cisco Access point
Large Network Using Only Catalyst 3550 Switches

Switches in the wiring closet have traditionally been Layer 2-only devices, but as network traffic profiles evolve, switches in the wiring closet are increasingly employing multilayer services such as multicast management and traffic classification. Figure 1-3 shows a configuration for a network exclusively using Catalyst 3550 multilayer switches in the wiring closets and a Catalyst 6000 switch in the backbone to aggregate up to ten wiring closets.

In the wiring closet, each Catalyst 3550 switch has IGMP snooping enabled to efficiently forward multimedia and multicast traffic. QoS ACLs that either drop or mark nonconforming traffic based on bandwidth limits are also configured on each switch. VLAN maps provide intra-VLAN security and prevent unauthorized users from accessing critical pieces of the network. QoS features can limit bandwidth on a per-port or per-user basis. The switch ports are configured as either trusted or untrusted. You can configure a trusted port to trust the CoS value, the DSCP value, or the IP precedence. If you configure the port as untrusted, you can use an ACL to mark the frame in accordance with the network policy.

Within each wiring closet is a Catalyst 3550 multilayer switch for inter-VLAN routing. These switches provide proxy ARP services to determine IP and MAC address mapping, thereby removing this task from the routers and lessening this type of traffic on the WAN links. These switches also have redundant uplink connections to the backbone switches, with each uplink port configured as a trusted routed uplink to provide faster convergence in case of an uplink failure.

The routers and Catalyst 6000 multilayer backbone switches have HSRP enabled for load balancing and redundant connectivity to guarantee mission-critical traffic.

The Catalyst 6000 switch provides the workgroups with Gigabit access to core resources. The server farm includes a call-processing server running Cisco CallManager software. Cisco CallManager controls call processing, routing, and IP phone features and configuration.
Multidwelling Network Using Catalyst 3550 Switches

A growing segment of residential and commercial customers are requiring high-speed access to Ethernet metropolitan-area networks (MANs). Figure 1-4 shows a configuration for a Gigabit Ethernet MAN ring using Catalyst 3550 multilayer switches as aggregation switches in the mini-point-of-presence (POP) location. These switches are connected through 1000BASE-X GBIC ports.

The resident switches can be Catalyst 3550 switches, providing customers with high-speed connections to the MAN. Catalyst 2912-LRE or 2924-LRE XL Layer 2-only switches also can be used as residential switches for customers requiring connectivity through existing phone lines. The Catalyst 2912-LRE or 2924-LRE XL switches can then connect to another residential switch or to an aggregation switch. For more information about the LRE switches, refer to the Catalyst 2900 Series XL Hardware Installation Guide.
All ports on the residential Catalyst 3550 switches (and Catalyst 2912-LRE XL or 2924-LRE XL switches if they are included) are configured as 802.1Q trunks with protected port and STP root guard features enabled. The protected port feature provides security and isolation between ports on the switch, ensuring that subscribers cannot view packets destined for other subscribers. STP root guard prevents unauthorized devices from becoming the STP root switch. All ports have IGMP snooping or CGMP enabled for multicast traffic management. ACLs on the uplink ports to the aggregating Catalyst 3550 multilayer switches provide security and bandwidth management.

The aggregating switches and routers provide services such as those described in the previous examples, “Small to Medium-Sized Network Using Mixed Switches” section on page 1-12 and “Large Network Using Only Catalyst 3550 Switches” section on page 1-14.
Long-Distance, High-Bandwidth Transport Configuration

Figure 1-5 shows a configuration for transporting 8 Gigabits of data over a single fiber-optic cable. The Catalyst switches have Coarse Wave Division Multiplexer (CWDM) fiber-optic GBIC modules installed. Depending on the CWDM GBIC module, data is sent at wavelengths from 1470 nm to 1610 nm. The higher the wavelength, the farther the transmission can travel. A common wavelength used for long-distance transmissions is 1550 nm.

The CWDM GBIC modules connect to CWDM optical add/drop multiplexer (OADM) modules over distances of up to 393,701 feet (74.5 miles or 120 km). The CWDM OADM modules combine (or multiplex) the different CWDM wavelengths, allowing them to travel simultaneously on the same fiber-optic cable. The CWDM OADM modules on the receiving end separate (or demultiplex) the different wavelengths.

Using CWDM technology with the switches translates to farther data transmission and an increased bandwidth capacity (up to 8 Gbps) on a single fiber-optic cable.

For more information about the CWDM GBIC modules and CWDM OADM modules, refer to the Installation Note for the CWDM Passive Optical System.

Figure 1-5 Long-Distance, High-Bandwidth Transport Configuration
Where to Go Next

Before configuring the switch, review these sections for start up information:

- Chapter 2, “Using the Command-Line Interface”
- Chapter 3, “Getting Started with CMS”
- Chapter 4, “Assigning the Switch IP Address and Default Gateway”
- Chapter 5, “Configuring IE2100 CNS Agents”
Using the Command-Line Interface

This chapter describes the IOS command-line interface (CLI) that you can use to configure your Catalyst 3550 switches. It contains these sections:

- IOS Command Modes, page 2-1
- Getting Help, page 2-3
- Abbreviating Commands, page 2-4
- Using no and default Forms of Commands, page 2-4
- Understanding CLI Messages, page 2-5
- Using Command History, page 2-5
- Using Editing Features, page 2-6
- Searching and Filtering Output of show and more Commands, page 2-9
- Accessing the CLI, page 2-9

IOS Command Modes

The Cisco IOS user interface is divided into many different modes. The commands available to you depend on which mode you are currently in. Enter a question mark (?) at the system prompt to obtain a list of commands available for each command mode.

When you start a session on the switch, you begin in user mode, often called user EXEC mode. Only a limited subset of the commands are available in user EXEC mode. For example, most of the user EXEC commands are one-time commands, such as `show` commands, which show the current configuration status, and `clear` commands, which clear counters or interfaces. The user EXEC commands are not saved when the switch reboots.

To have access to all commands, you must enter privileged EXEC mode. Normally, you must enter a password to enter privileged EXEC mode. From this mode, you can enter any privileged EXEC command or enter global configuration mode.

Using the configuration modes (global, interface, and line), you can make changes to the running configuration. If you save the configuration, these commands are stored and used when the switch reboots. To access the various configuration modes, you must start at global configuration mode. From global configuration mode, you can enter interface configuration mode and line configuration mode.
Table 2-1 describes the main command modes, how to access each one, the prompt you see in that mode, and how to exit the mode. The examples in the table use the host name `Switch`.

Table 2-1 Command Mode Summary

<table>
<thead>
<tr>
<th>Mode</th>
<th>Access Method</th>
<th>Prompt</th>
<th>Exit Method</th>
<th>About This Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>User EXEC</td>
<td>Begin a session with your switch.</td>
<td>Switch></td>
<td>Enter <code>logout</code> or <code>quit</code>.</td>
<td>Use this mode to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Change terminal settings.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Perform basic tests.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Display system information.</td>
</tr>
<tr>
<td>Privileged EXEC</td>
<td>While in user EXEC mode, enter the <code>enable</code> command.</td>
<td>Switch#</td>
<td>Enter <code>disable</code> to exit.</td>
<td>Use this mode to verify commands that you have entered. Use a password to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>protect access to this mode.</td>
</tr>
<tr>
<td>Global configuration</td>
<td>While in privileged EXEC mode, enter the <code>configure</code> command.</td>
<td>Switch(config)#</td>
<td>To exit to privileged EXEC</td>
<td>Use this mode to configure parameters that apply to the entire switch.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mode, enter <code>exit</code> or <code>end</code>, or press <code>Ctrl-Z</code>.</td>
<td></td>
</tr>
<tr>
<td>Config-vlan</td>
<td>While in global configuration mode, enter the <code>vlan vlan-id</code> command.</td>
<td>Switch(config-vlan)#</td>
<td>To exit to global configuration mode, enter <code>exit</code> command. To return to privileged EXEC mode, press <code>Ctrl-Z</code> or enter <code>end</code>.</td>
<td>Use this mode to configure VLAN parameters. When VTP mode is transparent, you can create extended-range VLANs (VLAN IDs greater than 1005) and save configurations in the switch startup configuration file.</td>
</tr>
<tr>
<td>VLAN configuration</td>
<td>While in privileged EXEC mode, enter the <code>vlan database</code> command.</td>
<td>Switch(vlan)#</td>
<td>To exit to privileged EXEC</td>
<td>Use this mode to configure VLAN parameters for VLANs 1 to 1005 in the VLAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mode, enter <code>exit</code>.</td>
<td>database.</td>
</tr>
</tbody>
</table>
Table 2-1 Command Mode Summary (continued)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Access Method</th>
<th>Prompt</th>
<th>Exit Method</th>
<th>About This Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface configuration</td>
<td>While in global configuration mode, enter the interface command (with a specific interface).</td>
<td>Switch(config-if)#</td>
<td>To exit to global configuration mode, enter <code>exit</code>.</td>
<td>Use this mode to configure parameters for the Ethernet interfaces.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>To return to privileged EXEC mode, press Ctrl-Z or enter <code>end</code>.</td>
<td>To configure multiple interfaces with the same parameters, see the “Configuring a Range of Interfaces” section on page 10-8.</td>
</tr>
<tr>
<td>Line configuration</td>
<td>While in global configuration mode, specify a line with the line vty or line console command.</td>
<td>Switch(config-line)#</td>
<td>To exit to global configuration mode, enter <code>exit</code>.</td>
<td>Use this mode to configure parameters for the terminal line.</td>
</tr>
</tbody>
</table>

Getting Help

You can enter a question mark (?) at the system prompt to display a list of commands available for each command mode. You can also obtain a list of associated keywords and arguments for any command, as shown in Table 2-2.

Table 2-2 Help Summary

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>help</td>
<td>Obtain a brief description of the help system in any command mode.</td>
</tr>
<tr>
<td>abbreviated-command-entry?</td>
<td>Obtain a list of commands that begin with a particular character string.</td>
</tr>
<tr>
<td></td>
<td>For example:</td>
</tr>
<tr>
<td></td>
<td>Switch# <code>di?</code></td>
</tr>
<tr>
<td></td>
<td>dir disable disconnect</td>
</tr>
<tr>
<td>abbreviated-command-entry<Tab></td>
<td>Complete a partial command name.</td>
</tr>
<tr>
<td></td>
<td>For example:</td>
</tr>
<tr>
<td></td>
<td>Switch# <code>sh conf<tab></code></td>
</tr>
<tr>
<td></td>
<td>Switch# show configuration</td>
</tr>
<tr>
<td>?</td>
<td>List all commands available for a particular command mode.</td>
</tr>
<tr>
<td></td>
<td>For example:</td>
</tr>
<tr>
<td></td>
<td>Switch> <code>?</code></td>
</tr>
</tbody>
</table>
Abbreviating Commands

You have to enter only enough characters for the switch to recognize the command as unique. This example shows how to enter the `show configuration` privileged EXEC command:

```
Switch# show conf
```

Using no and default Forms of Commands

Almost every configuration command also has a `no` form. In general, use the `no` form to disable a feature or function or reverse the action of a command. For example, the `no shutdown` interface configuration command reverses the shutdown of an interface. Use the command without the keyword `no` to re-enable a disabled feature or to enable a feature that is disabled by default.

Configuration commands can also have a `default` form. The `default` form of a command returns the command setting to its default. Most commands are disabled by default, so the `default` form is the same as the `no` form. However, some commands are enabled by default and have variables set to certain default values. In these cases, the `default` command enables the command and sets variables to their default values.
Understanding CLI Messages

Table 2-3 lists some error messages that you might encounter while using the CLI to configure your switch.

Table 2-3 Common CLI Error Messages

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Meaning</th>
<th>How to Get Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Ambiguous command: "show con"</td>
<td>You did not enter enough characters for your switch to recognize the command.</td>
<td>Re-enter the command followed by a question mark (?) with a space between the command and the question mark. The possible keywords that you can enter with the command are displayed.</td>
</tr>
<tr>
<td>% Incomplete command.</td>
<td>You did not enter all the keywords or values required by this command.</td>
<td>Re-enter the command followed by a question mark (?) with a space between the command and the question mark. The possible keywords that you can enter with the command are displayed.</td>
</tr>
<tr>
<td>% Invalid input detected at ``` marker.</td>
<td>You entered the command incorrectly. The caret (^) marks the point of the error.</td>
<td>Enter a question mark (?) to display all the commands that are available in this command mode. The possible keywords that you can enter with the command are displayed.</td>
</tr>
</tbody>
</table>

Using Command History

The IOS provides a history or record of commands that you have entered. This feature is particularly useful for recalling long or complex commands or entries, including access lists. You can customize the command history feature to suit your needs as described in these sections:

- Changing the Command History Buffer Size, page 2-5
- Recalling Commands, page 2-6
- Disabling the Command History Feature, page 2-6

Changing the Command History Buffer Size

By default, the switch records ten command lines in its history buffer. Beginning in privileged EXEC mode, enter this command to change the number of command lines that the switch records during the current terminal session:

Switch# terminal history [size number-of-lines]

The range is from 0 to 256.

Beginning in line configuration mode, enter this command to configure the number of command lines the switch records for all sessions on a particular line:

Switch(config-line)# history [size number-of-lines]

The range is from 0 to 256.
Recalling Commands

To recall commands from the history buffer, perform one of the actions listed in Table 2-4:

Table 2-4 Recalling Commands

<table>
<thead>
<tr>
<th>Action</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Press Ctrl-P or the up arrow key.</td>
<td>Recall commands in the history buffer, beginning with the most recent command. Repeat the key sequence to recall successively older commands.</td>
</tr>
<tr>
<td>Press Ctrl-N or the down arrow key.</td>
<td>Return to more recent commands in the history buffer after recalling commands with Ctrl-P or the up arrow key. Repeat the key sequence to recall successively more recent commands.</td>
</tr>
<tr>
<td>show history</td>
<td>While in privileged EXEC mode, list the last several commands that you just entered. The number of commands that are displayed is determined by the setting of the terminal history global configuration command and history line configuration command.</td>
</tr>
</tbody>
</table>

1. The arrow keys function only on ANSI-compatible terminals such as VT100s.

Disabling the Command History Feature

The command history feature is automatically enabled.

To disable the feature during the current terminal session, enter the **terminal no history** privileged EXEC command.

To disable command history for the line, enter the **no history** line configuration command.

Using Editing Features

This section describes the editing features that can help you manipulate the command line. It contains these sections:

- Enabling and Disabling Editing Features, page 2-7
- Editing Commands through Keystrokes, page 2-7
- Editing Command Lines that Wrap, page 2-8
Enabling and Disabling Editing Features

Although enhanced editing mode is automatically enabled, you can disable it. To re-enable the enhanced editing mode for the current terminal session, enter this command in privileged EXEC mode:

```
Switch# terminal editing
```

To reconfigure a specific line to have enhanced editing mode, enter this command in line configuration mode:

```
Switch(config-line)# editing
```

To globally disable enhanced editing mode, enter this command in line configuration mode:

```
Switch(config-line)# no editing
```

Editing Commands through Keystrokes

Table 2-5 shows the keystrokes that you need to edit command lines.

<table>
<thead>
<tr>
<th>Capability</th>
<th>Keystroke</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move around the command line to make changes or corrections.</td>
<td>Press Ctrl-B, or press the left arrow key.</td>
<td>Move the cursor back one character.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-F, or press the right arrow key.</td>
<td>Move the cursor forward one character.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-A.</td>
<td>Move the cursor to the beginning of the command line.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-E.</td>
<td>Move the cursor to the end of the command line.</td>
</tr>
<tr>
<td></td>
<td>Press Esc B.</td>
<td>Move the cursor back one word.</td>
</tr>
<tr>
<td></td>
<td>Press Esc F.</td>
<td>Move the cursor forward one word.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-T.</td>
<td>Transpose the character to the left of the cursor with the character located at the cursor.</td>
</tr>
<tr>
<td>Recall commands from the buffer and paste them in the command line. The switch provides a buffer with the last ten items that you deleted.</td>
<td>Press Ctrl-Y.</td>
<td>Recall the most recent entry in the buffer.</td>
</tr>
<tr>
<td></td>
<td>Press Esc Y.</td>
<td>Recall the next buffer entry.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The buffer contains only the last 10 items that you have deleted or cut. If you press Esc Y more than ten times, you cycle to the first buffer entry.</td>
</tr>
</tbody>
</table>
Table 2-5 Editing Commands through Keystrokes (continued)

<table>
<thead>
<tr>
<th>Capability</th>
<th>Keystroke1</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete entries if you make a mistake or change your mind.</td>
<td>Press the Delete or Backspace key.</td>
<td>Erase the character to the left of the cursor.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-D.</td>
<td>Delete the character at the cursor.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-K.</td>
<td>Delete all characters from the cursor to the end of the command line.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-U or Ctrl-X.</td>
<td>Delete all characters from the cursor to the beginning of the command line.</td>
</tr>
<tr>
<td></td>
<td>Press Ctrl-W.</td>
<td>Delete the word to the left of the cursor.</td>
</tr>
<tr>
<td></td>
<td>Press Esc D.</td>
<td>Delete from the cursor to the end of the word.</td>
</tr>
<tr>
<td>Capitalize or lowercase words or capitalize a set of letters.</td>
<td>Press Esc C.</td>
<td>Capitalize at the cursor.</td>
</tr>
<tr>
<td></td>
<td>Press Esc L.</td>
<td>Change the word at the cursor to lowercase.</td>
</tr>
<tr>
<td></td>
<td>Press Esc U.</td>
<td>Capitalize letters from the cursor to the end of the word.</td>
</tr>
<tr>
<td>Designate a particular keystroke as an executable command, perhaps as a shortcut.</td>
<td>Press Ctrl-V or Esc Q.</td>
<td></td>
</tr>
<tr>
<td>Scroll down a line or screen on displays that are longer than the terminal screen can display.</td>
<td>Press the Return key.</td>
<td>Scroll down one line.</td>
</tr>
<tr>
<td></td>
<td>Press the Space bar.</td>
<td>Scroll down one screen.</td>
</tr>
<tr>
<td>Redisplay the current command line if the switch suddenly sends a message to your screen.</td>
<td>Press Ctrl-L or Ctrl-R.</td>
<td>Redisplay the current command line.</td>
</tr>
</tbody>
</table>

1. The arrow keys function only on ANSI-compatible terminals such as VT100s.

Editing Command Lines that Wrap

You can use a wraparound feature for commands that extend beyond a single line on the screen. When the cursor reaches the right margin, the command line shifts ten spaces to the left. You cannot see the first ten characters of the line, but you can scroll back and check the syntax at the beginning of the command.

To scroll back to the beginning of the command entry, press Ctrl-B or the left arrow key repeatedly. You can also press Ctrl-A to immediately move to the beginning of the line.

Note The arrow keys function only on ANSI-compatible terminals such as VT100s.
In this example, the `access-list` global configuration command entry extends beyond one line. When the cursor first reaches the end of the line, the line is shifted ten spaces to the left and redisplayed. The dollar sign ($) shows that the line has been scrolled to the left. Each time the cursor reaches the end of the line, the line is again shifted ten spaces to the left.

```text
Switch(config)# access-list 101 permit tcp 131.108.2.5 255.255.255.0 131.108.1
Switch(config)# $ 101 permit tcp 131.108.2.5 255.255.255.0 131.108.1.20 255.255.255.0
Switch(config)# $ tcp 131.108.2.5 255.255.255.0 131.108.1.20 255.255.255.0 eq
Switch(config)# $108.2.5 255.255.255.0 131.108.1.20 255.255.255.0 eq 45
```

After you complete the entry, press Ctrl-A to check the complete syntax before pressing the Return key to execute the command. The dollar sign ($) appears at the end of the line to show that the line has been scrolled to the right:

```text
Switch(config)# access-list 101 permit tcp 131.108.2.5 255.255.255.0 131.108.1$
```

The software assumes you have a terminal screen that is 80 columns wide. If you have a width other than that, use the `terminal width` privileged EXEC command to set the width of your terminal.

Use line wrapping with the command history feature to recall and modify previous complex command entries. For information about recalling previous command entries, see the “Editing Commands through Keystrokes” section on page 2-7.

Searching and Filtering Output of show and more Commands

You can search and filter the output for `show` and `more` commands. This is useful when you need to sort through large amounts of output or if you want to exclude output that you do not need to see.

To use this functionality, enter a `show` or `more` command followed by the pipe (`|`) character, one of the keywords `begin`, `include`, or `exclude`, and an expression that you want to search for or filter out:

```
command | (begin | include | exclude) regular-expression
```

Expressions are case sensitive. For example, if you enter `| exclude output`, the lines that contain `output` are not displayed, but the lines that contain `Output` are displayed.

This example shows how to include in the output display only lines where the expression `protocol` appears:

```
Switch# show interfaces | include protocol
Vlan1 is up, line protocol is up
Vlan10 is up, line protocol is down
GigabitEthernet0/1 is up, line protocol is down
GigabitEthernet0/2 is up, line protocol is up
```

Accessing the CLI

Before you can access the CLI, you need to connect a terminal or PC to the switch console port and power on the switch as described in the hardware installation guide that shipped with your switch. Then, to understand the boot process and the options available for assigning IP information, see Chapter 4, “Assigning the Switch IP Address and Default Gateway.”

If your switch is already configured, you can access the CLI through a local console connection or through a remote Telnet session, but your switch must first be configured for this type of access. For more information, see the “Setting a Telnet Password for a Terminal Line” section on page 8-6.
You can establish a connection with the switch by either

- Connecting the switch console port to a management station or dial-up modem. For information about connecting to the console port, refer to the switch hardware installation guide.
- Using any Telnet TCP/IP or encrypted Secure Shell (SSH) package from a remote management station. The switch must have network connectivity with the Telnet or SSH client, and the switch must have an enable secret password configured.

For information about configuring the switch for Telnet access, see the “Setting a Telnet Password for a Terminal Line” section on page 8-6. The switch supports up to 16 simultaneous Telnet sessions. Changes made by one Telnet user are reflected in all other Telnet sessions.

For information about configuring the switch for SSH, see the “Configuring the Switch for Secure Shell” section on page 8-37. The switch supports up to five simultaneous secure SSH sessions.

After you connect through the console port, through a Telnet session, or through an SSH session, the user EXEC prompt appears on the management station.

Accessing the CLI from a Browser

This procedure assumes you have met the software requirements (including browser and Java plug-in configurations) and have assigned IP information and a Telnet password to the switch or command switch, as described in the release notes.

To access the CLI from a web browser, follow these steps:

Step 1
Start one of the supported browsers.

Step 2
In the **URL** field, enter the IP address of the command switch.

Step 3
When the Cisco Systems Access page appears, click **Telnet** to start a Telnet session.

You can also access the CLI by clicking **Monitor the router- HTML access to the command line interface** from the Cisco Systems Access page. For information about the Cisco Systems Access page, see the “Accessing CMS” section in the release notes.

Step 4
Enter the switch password.

The user EXEC prompt appears on the management station.

Note
Copies of the CMS pages that you display are saved in your browser memory cache until you exit the browser session. A password is not required to redisplay these pages, including the Cisco Systems Access page. You can access the CLI by clicking **Web Console - HTML access to the command line interface** from a cached copy of the Cisco Systems Access page. To prevent unauthorized access to CMS and the CLI, exit your browser to end the browser session.
Getting Started with CMS

This chapter provides these topics about the Cluster Management Suite (CMS) software:

- Features, page 3-2
- Front Panel View, page 3-3
- Topology View, page 3-10
- Menus and Toolbar, page 3-13
- Interaction Modes, page 3-24
- CMS Window Components, page 3-26
- Accessing CMS, page 3-29
- Saving Your Configuration, page 3-31
- Restoring Your Configuration, page 3-32
- CMS Preferences, page 3-32
- Using Different Versions of CMS, page 3-32
- Where to Go Next, page 3-33

This chapter describes CMS on the Catalyst 3550 switches. Refer to the appropriate switch documentation for descriptions of the web-based management software used on other Catalyst switches.

Note
For system requirements and for browser and Java plug-in configuration procedures, refer to the release notes.

Note
For a list of CMS features new to this release, select Help > What’s New from the CMS menu bar.
Features

CMS provides these features for managing switch clusters and individual switches from Web browsers such as Netscape Communicator or Microsoft Internet Explorer:

- Two views of your network, as shown in Figure 3-1, that can be displayed at the same time:
 - A Front Panel view that displays the front-panel image of a specific set of switches in a cluster. From this view, you can select multiple ports or multiple switches and configure them with the same settings.
 - A Topology view that displays a network map that uses icons representing switch clusters, the command switch, cluster members, cluster candidates, neighboring devices that are not eligible to join a cluster, and link types. From this view, you can select multiple switches and configure them to run with the same settings. You can also display link information in the form of link reports and link graphs.

 This view is available only when CMS is launched from a command switch.

Figure 3-1 CMS Front Panel and Topology Views
• Menus and a toolbar, as shown in Figure 3-2, to access configuration and management options:
 - The menu bar provides the complete list of options for managing a single switch and switch clusters.
 - The toolbar provides buttons for commonly used switch and cluster configuration options and information windows such as legends and online help.
 - The port popup menu, in the Front Panel view, provides options specific for configuring and monitoring switch ports.
 - The device popup menu, in either the Front Panel or the Topology view, provides switch and cluster configuration and monitoring options.
 - The candidate, member, and link popup menus provide options for configuring and monitoring devices and links in the Topology view.

Figure 3-2 CMS Menus and Toolbar

• Tools to simplify configuration tasks:
 - Interactive modes—guide mode and expert mode—that control the presentation of some complex configuration options.
 - Wizards that require minimal information from you to configure some complex features.
 - Comprehensive online help that gives high-level concepts and procedures for performing CMS tasks.

• Two levels of access to the configuration options: read-write access for users allowed to change switch settings and read-only access for users allowed to only view switch settings.

• Consistent set of GUI components (such as tabs, buttons, drop-down lists, and tables) for a uniform approach to viewing and setting configuration parameters.

Front Panel View

When CMS is launched from a command switch, the Front Panel view displays the front-panel image of the command switch, as shown in Figure 3-3. You can select switches to be displayed by checking the boxes in the cluster tree view (left panel of CMS). The switches that are displayed in the tree view can be re-arranged by dragging and dropping them.
CMS from a standalone switch or from a noncommand switch is referred to as Device Manager (also referred to as Switch Manager). Device Manager is for configuring an individual switch. When you select Device Manager for a specific switch in the cluster, you launch a separate CMS session. The Device Manager interface can vary between the Catalyst switch platforms.

When CMS is launched from a standalone or noncommand member switch, the Front Panel view displays only the front panel of the specific switch, as shown in Figure 3-4.
Cluster Tree

Figure 3-3 shows the cluster tree that appears in the left frame of the Front Panel view and shows the name of the cluster and a list of its members. Figure 3-5 shows the device icons that you can drag and drop to rearrange them in the cluster tree. The colors of the devices in the cluster tree show the status of the devices, as listed in Table 3-1.

If you want to configure switch or cluster settings on one or more switches, select the appropriate front-panel images.

- To select a front-panel image, click either the cluster-tree icon or the corresponding front-panel image. The front-panel image is then highlighted with a yellow outline.
- To select multiple front-panel images, press the Ctrl key, and left-click the cluster-tree icons or the front-panel images. To deselect an icon or image, press the Ctrl key, and left-click the icon or image.

If the cluster has many switches, you might need to scroll down the window to display the rest of the front-panel images. Instead of scrolling, you can click an icon in the cluster tree, and CMS then scrolls and displays the corresponding front-panel image.

Table 3-1 Cluster Tree Icon Colors

<table>
<thead>
<tr>
<th>Color</th>
<th>Device Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Switch is operating normally.</td>
</tr>
<tr>
<td>Yellow</td>
<td>The internal fan of the switch is not operating, or the switch is receiving power from an RPS.</td>
</tr>
<tr>
<td>Red</td>
<td>Switch is not powered on or has lost power, or the command switch is unable to communicate with the member switch.</td>
</tr>
</tbody>
</table>
Front-Panel Images

You can manage the switch from a remote station by using the front-panel images. The front-panel images are updated based on the network polling interval that you set from CMS > Preferences. This section includes descriptions of the LED images. Similar descriptions of the switch LEDs are provided in the switch hardware installation guide.

Note

The Preferences window is available if your switch access level is read-only. For more information about the read-only access mode, see the “Access Modes in CMS” section on page 3-30.

Figure 3-6 shows the port icons as they appear in the front-panel images. To select a port, click the port on the Front Panel view. The port is then highlighted with a yellow outline. To select multiple ports, you can:

- Press the left mouse button, drag the pointer over the group of ports that you want to select, and then release the mouse button.
- Press the Ctrl key, and click the ports that you want to select.
- Right-click a port, and select Select All Ports from the port popup menu.

Figure 3-6 Port Icons

Table 3-2 lists the colors representing the wavelengths on the Coarse Wave Division Multiplexer (CWDM) Gigabit Interface Converter (GBIC) modules. For port status LED information, see the “Port Modes and LEDs” section on page 3-8.

Table 3-2 Port Icon Colors for the CWDM GBIC Module Ports

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1470 nanometers (nm)</td>
<td>Gray</td>
</tr>
<tr>
<td>1490 nm</td>
<td>Violet</td>
</tr>
<tr>
<td>1510 nm</td>
<td>Blue</td>
</tr>
<tr>
<td>1530 nm</td>
<td>Green</td>
</tr>
</tbody>
</table>
Table 3-2 Port Icon Colors for the CWDM GBIC Module Ports (continued)

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1550 nm</td>
<td>Yellow</td>
</tr>
<tr>
<td>1570 nm</td>
<td>Orange</td>
</tr>
<tr>
<td>1590 nm</td>
<td>Red</td>
</tr>
<tr>
<td>1610 nm</td>
<td>Brown</td>
</tr>
</tbody>
</table>

Redundant Power System LED

The Redundant Power System (RPS) LED shows the RPS status, as listed in Table 3-3 and Table 3-4. Certain switches in the switch cluster use a specific RPS model:

- Cisco RPS 300 (model PWR300-AC-RPS-N1)—Catalyst 2900 LRE XL, Catalyst 2950, Catalyst 2950 LRE, Catalyst 3524-PWR XL, and Catalyst 3550 switches

 Note The Cisco RPS 300 does not support the Catalyst 3550-24PWR switch.

- Cisco RPS 600 (model PWR600-AC-RPS)—Catalyst 2900 XL and Catalyst 3500 XL switches, except the Catalyst 2900 LRE XL and Catalyst 3524-PWR XL switches

- Cisco RPS 675 (model PWR675-AC-RPS-N1=)—Catalyst 2950, Catalyst 2950 LRE, and Catalyst 3550 switches

 Note The Cisco RPS 675 does not support the Catalyst 3550-24-DC switch.

Refer to the appropriate switch hardware documentation for RPS descriptions specific for the switch.

Table 3-3 Cisco RPS 300 and Cisco RPS 675 LED

<table>
<thead>
<tr>
<th>Color</th>
<th>RPS Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black (off)</td>
<td>RPS is off or is not installed.</td>
</tr>
<tr>
<td>Green</td>
<td>RPS is connected and operational.</td>
</tr>
<tr>
<td>Blinking green</td>
<td>RPS is providing power to another switch in the stack.</td>
</tr>
<tr>
<td>Amber</td>
<td>The RPS could be in standby mode.</td>
</tr>
<tr>
<td></td>
<td>To put the RPS in Active mode, press the Standby/Active button on the RPS, and the LED should turn green. If it does not, one of these conditions could exist:</td>
</tr>
<tr>
<td></td>
<td>• One of the RPS power supplies could be down. Contact Cisco Systems.</td>
</tr>
<tr>
<td></td>
<td>• The RPS fan could have failed. Contact Cisco Systems.</td>
</tr>
<tr>
<td>Blinking amber</td>
<td>Internal power supply of the switch is down, and redundancy is lost. The switch is operating on the RPS.</td>
</tr>
</tbody>
</table>
Port Modes and LEDs

Table 3-5 and Table 3-6 list the port modes that determine the type of information displayed through the port LEDs. When you change port modes, the meanings of the port LED colors also change.

Note: The bandwidth utilization mode (UTIL LED) does not appear on the front-panel images. Select Reports > Bandwidth Graphs to display the total bandwidth in use by the switch. Refer to the switch hardware installation guide for information about using the UTIL LED.

To select or change a mode, click the Mode button until the desired mode LED is green.

Table 3-5 Port Modes

<table>
<thead>
<tr>
<th>Mode LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT</td>
<td>Link status of the ports. Default mode.</td>
</tr>
<tr>
<td>DUPLX</td>
<td>Duplex setting on the ports. The default setting on the 10/100 and 10/100/1000 ports is auto.</td>
</tr>
<tr>
<td>SPEED</td>
<td>Speed setting on the ports. The default setting on the 10/100 and 10/100/1000 ports is auto.</td>
</tr>
</tbody>
</table>

Table 3-6 Port LEDs

<table>
<thead>
<tr>
<th>Port Mode</th>
<th>Port LED Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT</td>
<td>Cyan (off)</td>
<td>No link.</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>Link present.</td>
</tr>
<tr>
<td></td>
<td>Amber</td>
<td>Link fault. Error frames can affect connectivity, and errors such as excessive collisions, CRC errors, and alignment and jabber errors are monitored for a link-fault indication. Port is not forwarding. Port was disabled by management, by an address violation, or by Spanning Tree Protocol (STP). Note: After a port is reconfigured, the port LED can remain amber for up to 30 seconds as STP checks the switch for possible loops.</td>
</tr>
<tr>
<td>Brown</td>
<td>No link. Port is administratively shut down.</td>
<td></td>
</tr>
</tbody>
</table>
VLAN Membership Modes

Table 3-7 lists the colors that outline the ports (Front Panel view) when you click **Highlight VLAN Port Membership Modes** on the Configure VLANs tab on the VLAN window. The colors show the VLAN membership mode of each port. The VLAN membership mode determines the kind of traffic the port carries and the number of VLANs to which it can belong. For more information about these modes, see the “VLAN Port Membership Modes” section on page 11-3.

Note

This feature is not supported on the Catalyst 1900 and Catalyst 2820 switches.

Table 3-7 VLAN Membership Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static access</td>
<td>Light green</td>
</tr>
<tr>
<td>Dynamic access</td>
<td>Pink</td>
</tr>
<tr>
<td>ISL trunk</td>
<td>Orange</td>
</tr>
<tr>
<td>802.1Q trunk</td>
<td>Peach</td>
</tr>
<tr>
<td>Negotiate trunk</td>
<td>White</td>
</tr>
</tbody>
</table>

Table 3-6 Port LEDs (continued)

<table>
<thead>
<tr>
<th>Port Mode</th>
<th>Port LED Color</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUPLX</td>
<td>Cyan (off)</td>
<td>Port is operating in half-duplex mode.</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>Port is operating in full-duplex mode.</td>
</tr>
<tr>
<td>SPEED</td>
<td>Cyan (off)</td>
<td>Port is operating at 10 Mbps (10/100 ports) or no link (10/100/1000 ports and GBIC module ports).</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>Port is operating at 100 Mbps (10/100 ports) or 1000 Mbps (GBIC module ports).</td>
</tr>
<tr>
<td></td>
<td>Blinking green</td>
<td>Port is operating at 1000 Mbps (10/100/1000 ports).</td>
</tr>
<tr>
<td>LINE PWR^1</td>
<td>Cyan (off)</td>
<td>Inline power is off.</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>Inline power is on.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the Cisco IP Phone is receiving power from an AC power source, the port LED is off even if the IP phone is connected to the switch port. The LED turns green only when the switch port is providing power.</td>
</tr>
</tbody>
</table>

1. Available only on Catalyst 3550-24-PWR switches
Topology View

The Topology view displays how the devices within a switch cluster are connected and how the switch cluster is connected to other clusters and devices. From this view, you can add and remove cluster members. This view provides two levels of detail of the network topology:

- **Expand Cluster:** When you right-click a cluster icon and select Expand Cluster, the Topology view displays the switch cluster in detail, as shown in Figure 3-7. This view shows the command switch and member switches in a cluster. It also shows candidate switches that can join the cluster. This view does not display the details of any neighboring switch clusters.

- **Collapse Cluster:** When you right-click a command-switch icon and select Collapse Cluster, the cluster is collapsed and represented by a single icon, as shown in Figure 3-8. The view shows how the cluster is connected to other clusters, candidate switches, and devices that are not eligible to join the cluster (such as routers, access points, IP phones, and so on).

Note
The Topology view displays only the switch cluster and network neighborhood of the specific command or member switch that you access. To display a different switch cluster, you need to access the command switch or member switch of that cluster.

You can arrange the device icons in either view. To move a device icon, click and drag the icon. To select multiple device icons, you can either:

- Press the left mouse button, drag the pointer over the group of device icons that you want to select, and then release the mouse button.

- Press the Ctrl key, and click the device icons that you want to select.

After selecting the icons, drag the icons to any area in the view.

Figure 3-7 Expand Cluster View

[Image of the Expand Cluster View showing cluster members and other devices connected to cluster1.]

Right-click a device icon to display a device popup menu.
The Topology view and the cluster tree use the same set of device icons to represent clusters, command and standby command switches, and member switches. They also use the same labels to identify the command switch (CMD) and the standby command switch (STBY).

The Topology view uses additional icons to represent these types of neighboring devices:

- Customer premises equipment (CPE) devices that are connected to Long-Reach Ethernet (LRE) switches
- Devices that are not eligible to join the cluster, such as Cisco IP Phones, Cisco access points, and Cisco Discovery Protocol (CDP)-capable hubs and routers

Note

The System Switch Processor (SSP) card in the Cisco Integrated Communications System (ICS) 7750 appears as a Layer 2 switch. SSP cards are not eligible to join switch clusters.

- Devices that are identified as unknown devices, such as some Cisco devices and third-party devices

Tip

Neighboring devices are only displayed if they are connected to cluster members. To display neighboring devices in the Topology view, either add the switch to which they are connected to a cluster, or enable that switch as a command switch.

Note

Candidate switches are distinguished by the color of their device label. Device labels and their colors are described in the “Colors in the Topology View” section on page 3-12.
To select a device, click the icon. The icon is then highlighted. To select multiple devices, you can either:
- Press the left mouse button, drag the pointer over the group of icons that you want to select, and then release the mouse button.
- Press the Ctrl key, and click the icons that you want to select.

The Topology view also uses a set of link icons to show the link type and status between two devices. To select a link, click the link that you want to select. To select multiple links, press the Ctrl key, and click the links that you want to select.

Device and Link Labels

The Topology view displays device and link information by using these labels:
- Cluster and switch names
- Switch MAC and IP addresses
- Link type between the devices
- Link speed and IDs of the interfaces on both ends of the link

When using these labels, keep these considerations in mind:
- The IP address displays only in the labels for the command switch and member switches.
- The label of a neighboring cluster icon only displays the IP address of the command-switch IP address.
- The link speeds displayed are the actual link speeds except on the LRE links, which display the administratively assigned speed settings.

You can change the label settings from the Topology Options window by selecting View > Topology Options.

Colors in the Topology View

The colors of the Topology view icons show the status of the devices and links, as listed in Table 3-8, Table 3-9, and Table 3-10.

<table>
<thead>
<tr>
<th>Icon Color</th>
<th>Color Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green 1</td>
<td>The device is operating.</td>
</tr>
<tr>
<td>Yellow 1</td>
<td>The internal fan of the switch is not operating, or the switch is receiving power from an RPS.</td>
</tr>
<tr>
<td>Red 1</td>
<td>The device is not operating.</td>
</tr>
</tbody>
</table>

1. Available only on the cluster members.
Menus and Toolbar

The configuration and monitoring options for configuring switches and switch clusters are available from menus and a toolbar.

Menu Bar

The menu bar, as shown in Figure 3-2, provides the complete list of options for managing a single switch and switch cluster.

Table 3-9 Single Link Icon Colors

<table>
<thead>
<tr>
<th>Link Color</th>
<th>Color Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Active link</td>
</tr>
<tr>
<td>Red</td>
<td>Down or blocked link</td>
</tr>
</tbody>
</table>

Table 3-10 Multiple Link Icon Colors

<table>
<thead>
<tr>
<th>Link Color</th>
<th>Color Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both green</td>
<td>All links are active.</td>
</tr>
<tr>
<td>One green; one red</td>
<td>At least one link is active, and at least one other link is down or blocked.</td>
</tr>
<tr>
<td>Both red</td>
<td>All links are down or blocked.</td>
</tr>
</tbody>
</table>

Table 3-11 Device Label Colors

<table>
<thead>
<tr>
<th>Label Color</th>
<th>Color Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>A cluster member, either a member switch or the command switch</td>
</tr>
<tr>
<td>Cyan</td>
<td>A candidate switch that is eligible to join the cluster</td>
</tr>
<tr>
<td>Yellow</td>
<td>An unknown device or a device that is not eligible to join the cluster</td>
</tr>
</tbody>
</table>

Topology Display Options

You can set the type of information displayed in the Topology view by changing the settings in the Topology Options window. To display this window, select View > Topology Options. From this window, you can select:

- Device icons (including IP Phones, CPEs, Neighbors, Access Points, and Candidates) that you want displayed in or filtered from the Topology View window
- Interface IDs and Actual Speed values that you want displayed in the Link window
- Host Names, IP addresses, and MAC address labels that you want displayed in the Node window

Menus and Toolbar

The configuration and monitoring options for configuring switches and switch clusters are available from menus and a toolbar.

Menu Bar

The menu bar, as shown in Figure 3-2, provides the complete list of options for managing a single switch and switch cluster.
The menu-bar options on a Catalyst 3550 switch change depending on whether the switch is running the standard multilayer software image (SMI) or the enhanced multilayer image (EMI). The footnotes in Table 3-11 list the options available if the switch is running the EMI.

Options displayed from the menu bar can vary:

- The option for enabling a command switch is only available from a CMS session launched from a command-capable switch.
- Cluster management tasks, such as upgrading the software of groups of switches, are available only from a CMS session launched from a command switch.
- If you launch CMS from a specific switch, the menu bar displays the features supported only by that switch.
- If you launch CMS from a command switch, the menu bar displays the features supported on the switches in the cluster, with these exceptions:
 - If the command switch is a Layer 3 switch, such as a Catalyst 3550 switch, the menu bar displays the features of all Layer 3 and Layer 2 switches in the cluster.
 - If the command switch is a Layer 2 switch, such as a Catalyst 2950 or Catalyst 3500 XL switch, the menu bar displays the features of all Layer 2 switches in the cluster. The menu bar does not display Layer 3 features even if the cluster has Catalyst 3550 Layer 3 member switches.
- We strongly recommend that the highest-end, command-capable switch in the cluster be the command switch:
 - If your switch cluster has a Catalyst 3550 switch, that switch should be the command switch.
 - If your switch cluster has Catalyst 2900 XL, Catalyst 2950, Catalyst 2955, and Catalyst 3500 XL switches, the Catalyst 2950 or Catalyst 2955 switch should be the command switch.
 - If your switch cluster has Catalyst 1900, Catalyst 2820, Catalyst 2900 XL, and Catalyst 3500 XL switches, either the Catalyst 2900 XL or Catalyst 3500 XL switch should be the command switch.
- Standby command switches must meet these requirements:
 - When the command switch is a Catalyst 3550 switch, all standby command switches must be Catalyst 3550 switches.
 - When the command switch is a Catalyst 2955 switch running Release 12.1(12c)EA1 or later, all standby command switches must be Catalyst 2950 switches running Release 12.1(12c)EA1 or later.
 - When the command switch is a Catalyst 2950 switch running Release 12.1(9)EA1 or later, all standby command switches must be Catalyst 2950 switches running Release 12.1(9)EA1 or later.
 - When the command switch is a Catalyst 2950 switch running Release 12.1(6)EA2 or later, all standby command switches must be Catalyst 2950 switches running Release 12.1(6)EA2 or later.
 - When the command switch is running Release 12.0(5)WC2 or earlier, the standby command switches can be these switches: Catalyst 2900 XL, Catalyst 2950, and Catalyst 3500 XL switches.

We strongly recommend that the command switch and standby command switches are of the same switch platform and that both are running the same level of software (SMI or EMI). In the event of a failover, the standby command switch must support the same configuration and services that are running on the command switch.

Refer to the release notes for the Catalyst switches that can be part of a switch cluster.
Unless noted otherwise, the menu-bar options in the list that follows are available from a Catalyst 3550 command switch when the cluster contains only Catalyst 3550 member switches. The menu bar of the command switch displays all menu-bar options available from the cluster, including options from member switches from other cluster-capable switch platforms.

Note
Access modes affect the availability of features from CMS. Some CMS features are not available in read-only mode. For more information about how access modes affect CMS, see the “Access Modes in CMS” section on page 3-30.

These are the menu bar options:

- **CMS**
 - **Page Setup**—Set default document printer properties to be used when printing from CMS.
 - **Print Preview**—View the way the CMS window or help file will appear when printed.
 - **Print**—Print a CMS window or help file.
 - **Guide Mode/Expert Mode**—Select which interaction mode to use when you select a configuration option (not available in read-only mode).
 - **Preferences**—Set CMS display properties, such as polling intervals, the default views to open at startup, and the color of administratively shutdown ports. Some options from this menu are not available in read-only mode.

- **Administration**
 - **IP Addresses**—Configure IP information for a switch. Some options from this menu are not available in read-only mode.
 - **SNMP**—Enable and disable Simple Network Management Protocol (SNMP), enter community strings, and configure end stations as trap managers. Some options from this menu are not available in read-only mode.
 - **System Time**—Configure the system time or configure the Network Time Protocol (NTP). Some options from this menu are not available in read-only mode.
 - **HTTP Port**—Configure the Hypertext Transfer Protocol (HTTP) port number. Some options from this menu are not available in read-only mode.
 - **Users and Passwords**—Configure usernames and passwords for privilege levels 0 to 15.
 - **Console Baud Rate**—Change the baud rate for the switch console port. Some options from this menu are not available in read-only mode.
 - **MAC Addresses**—Enter dynamic, secure, and static addresses in a switch address table. You can also define the forwarding behavior of static addresses. Some options from this menu are not available in read-only mode.
 - **ARP**—Display the device Address Resolution Protocol (ARP) table, and configure the ARP cache timeout setting. Some options from this menu are not available in read-only mode.
 - **Save Configuration**—Save the configuration for the cluster or switch to Flash memory (not available in read-only mode).
 - **Restore Configuration**—Restore the configuration file to one or more switches in the cluster.
 - **Software Upgrade**—Upgrade the software for the cluster or a switch (not available in read-only mode).
 - **LRE Software Upgrade**—Upgrade the software on one or more LRE CPE devices.
- **System Reload**—Reboot the switch with the latest installed software (not available in read-only mode).
- **Event Notification**—Create notification IDs that generate e-mail notifications when system events occur.

- **Cluster**
 - **Cluster Manager**—Launch a CMS session from the member switch (available only from a Device Manager session on a cluster member).
 - **Create Cluster**—Designate a command switch, and name a cluster (not available in read-only mode). This option is available only from a Device Manager session on a command-capable switch that is not a cluster member.
 - **Delete Cluster**—Delete a cluster (not available in read-only mode). This option is available only from a cluster management session.
 - **Add to Cluster**—Add a candidate to a cluster (not available in read-only mode). This option is available only from a cluster management session.
 - **Remove from Cluster**—Remove a member from the cluster (not available in read-only mode). This option is available only from a cluster management session.
 - **Standby Command Switches**—Create a Hot Standby Router Protocol (HSRP) standby group to provide command-switch redundancy. Some options from this menu are not available in read-only mode. This option is available only from a cluster management session.
 - **Hop Count**—Enter the number of hops away that a command switch looks for members and for candidate switches. Some options from this menu are not available in read-only mode. This option is available only from a cluster management session.

- **Device**
 - **Device Manager**—Launch Device Manager for a specific switch. This option is available only from a cluster management session (Catalyst 1900 and Catalyst 2820 member switches only).
 - **Host Name**—Change the host name of a switch (not available in read-only mode).
 - **STP**—Display and configure STP parameters for a switch. Some options from this menu are not available in read-only mode.
 - **IGMP Snooping**—Enable and disable Internet Group Management Protocol (IGMP) snooping and IGMP Immediate-Leave processing on the switch. Join or leave multicast groups, and configure multicast routers. Some options from this menu are not available in read-only mode.
 - **802.1X**—Configure 802.1X authentication of devices as they are attached to LAN ports in a point-to-point infrastructure (not available in read-only mode).
 - **ACL** (guide mode available in read-write mode)—Create and maintain access control lists (ACLs), and attach ACLs to specific ports. Some options from this menu are not available in read-only mode.
 - **Security Wizard**—Filter certain traffic, such as HTTP traffic, to certain networks or devices. Restrict access to servers, networks, or application data from certain networks or devices (not available in read-only mode).
 - **QoS**—Display submenu options to configure, enable, and disable quality of service (QoS) parameters for Trust settings, Queues, Maps, Classes (guide mode available), and Policies (guide mode available). Some options from this menu are not available in read-only mode.
 - **IP Routing** (guide mode available in read-write mode)—Display submenu options to configure or modify these parameters: Enable/Disable and Protocols. Some options from this menu are not available in read-only mode. This option is available only from a switch running the EMI.
- **Inter-VLAN Routing Wizard**—Enable a Catalyst 3550 switch to become a router of IP traffic between different VLANs.

- **IP Multicast Wizard**—Provide minimum information to configure IP multicast routing on a device so that it can forward multicast packets as a part of a multicast tree (not available in read-only mode). This option is available only from a switch running the EMI.

- **Router Redundancy** (guide mode available in read-write mode)—Add a switch to or remove a switch from an HSRP group. Some options from this menu are not available in read-only mode. This option is available only from a switch running the EMI.

- **Fallback Bridging**—Create a fallback bridging group, modify a group, delete a group, or view its details. Some options from this menu are not available in read-only mode. This option is available only from a switch running the EMI.

- **AVVID Wizards**—Configure a port to send or receive voice traffic by using the Voice Wizard. Optimize multiple video servers for sending video traffic by using the Video Wizard. Provide a higher priority to specific applications by using the Data Wizard.

 Note
 AVVID Wizards are not available in read-only mode.

- **Port**
 - **Port Settings**—Display and configure port parameters on a switch. Some options from this menu are not available in read-only mode.
 - **Port Search**—Search for a port through its description.
 - **Port Security**—Enable port security on a port (not available in read-only mode).
 - **EtherChannels**—Group ports into logical units for high-speed links between switches. Some options from this menu are not available in read-only mode.
 - **SPAN**—Enable Switched Port Analyzer (SPAN) port monitoring. Some options from this menu are not available in read-only mode.
 - **Protected Port**—Configure a port to prevent it from receiving bridged traffic from another port on the same switch. Some options from this menu are not available in read-only mode.
 - **Flooding Control**—Block the normal flooding of unicast and multicast packets and enable the switch to block packet storms. Some options from this menu are not available in read-only mode.

- **VLAN**
 - **VLAN** (guide mode available in read-write mode)—Display VLAN membership, assign ports to VLANs, and configure Inter-Switch Link (ISL) and 802.1Q trunks. Display and configure the VLAN Trunking Protocol (VTP) for interswitch VLAN membership. Some options from this menu are not available in read-only mode.
 - **Management VLAN**—Change the management VLAN on the switch. Some options from this menu are not available in read-only mode.
 - **VMPS**—Configure the VLAN Membership Policy Server (VMPS). Some options from this menu are not available in read-only mode.
 - **VLAN Maps**—Configure VLAN maps. Some options from this menu are not available in read-only mode.
 - **Voice VLAN**—Configure a port to use a voice VLAN for voice traffic, separating it from the VLANs for data traffic. Some options from this menu are not available in read-only mode.
• Reports
 - **Inventory**—Display the device type, software version, IP address, and other information about a switch.
 - **Port Statistics**—Display port statistics.
 - **Bandwidth Graphs**—Display graphs that plot the total bandwidth in use by the switch.
 - **Link Graphs**—Display a graph showing the bandwidth being used for the selected link.
 - **Link Reports**—Display the link report for two connected devices. If one device is an unknown device or a candidate, only the cluster-member side of the link appears.
 - **QoS Reports**—Display QoS reports of incoming or outgoing traffic for specific device interfaces.
 - **QoS Graphs**—Display QoS graphs of incoming or outgoing traffic for specific device interfaces.
 - **ACL Reports**—Display a report about ACL statistics.
 - **Router Reports**—Display reports with an excerpt from the routing table on the switch and the attributes of the HSRP group in which the switch participates. This option is available only from a switch running the EMI.
 - **Multicast**—Display submenu options to run a Statistics or IGMP report.
 - **Fallback Bridging**—Display a report of all fallback bridging groups and their attributes. This option is available only from a switch running the EMI.
 - **System Messages**—Display the most recent system messages (IOS messages and switch-specific messages) sent by the switch software.

 This option is available on the Catalyst 2950, Catalyst 2955, and Catalyst 3550 switches. It is not available from the Catalyst 2900 XL and Catalyst 3500 XL switches. You can display the system messages of the Catalyst 2900 XL and Catalyst 3500 XL switches when they are in a cluster where the command switch is a Catalyst 2950 switch running Release 12.1(6)EA2 or later, Catalyst 2955 switch running Release 12.1(12c)EA1 or later, or a Catalyst 3550 switch running Release 12.1(8)EA1 or later.

 For more information about system messages, refer to the switch system message guide for that release.

• Tools
 - **Ping and Trace**—Perform a ping, Layer 2 traceroute, or Layer 3 traceroute operation on or to a specific address.

 Note
 If you perform a Layer 3 traceroute operation, information about Layer 2 devices in the path is not displayed.

• View
 - **Refresh**—Update the views with the latest status.
 - **Front Panel**—Display the Front Panel view.
 - **Topology**—Display the Topology view. This option is available only from a cluster management session.
 - **Topology Options**—Select the information to be displayed in the Topology view.
- **Automatic Topology Layout**—Request CMS to rearrange the topology layout. This option is available only from a cluster management session.

- **Save Topology Layout**—Save the presentation of the cluster icons that you arranged in the Topology view to Flash memory (not available in read-only mode). This option is available only from a cluster-management session.

- **Window**—List the open windows in your CMS session.

- **Help**
 - **Overview**—Obtain an overview of the CMS interface.
 - **What’s New**—Obtain a description of the new CMS features.
 - **Help For Active Window**—Display the help for the active open window. You can also click **Help** from the active window.
 - **Contents**—List all of the available online help topics.
 - **Legend**—Display the legend that describes the icons, labels, and links.
 - **About**—Display the CMS version number.

Toolbar

The toolbar buttons display commonly-used switch and cluster configuration options and information windows such as legends and online help. Hover the cursor over an icon to display the feature. Table 3-12 lists the toolbar options from left to right on the toolbar.

Table 3-12 Toolbar Buttons

<table>
<thead>
<tr>
<th>Toolbar Option</th>
<th>Icon</th>
<th>Keyboard Shortcut</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print</td>
<td></td>
<td>Ctrl-P</td>
<td>Print a CMS window or help file.</td>
</tr>
<tr>
<td>Preferences¹</td>
<td></td>
<td>Ctrl-R</td>
<td>Set CMS display properties, such as polling intervals, the views to open at CMS startup, and the color of administratively shutdown ports.</td>
</tr>
<tr>
<td>Save Configuration²</td>
<td></td>
<td>Ctrl-S</td>
<td>Save the configuration of the cluster of a switch to Flash memory.</td>
</tr>
<tr>
<td>Software Upgrade²</td>
<td></td>
<td>Ctrl-U</td>
<td>Upgrade the software for the cluster or a switch.</td>
</tr>
<tr>
<td>Port Settings¹</td>
<td></td>
<td>—</td>
<td>Display and configure port parameters on a switch.</td>
</tr>
<tr>
<td>VLAN¹</td>
<td></td>
<td>Ctrl-V</td>
<td>Display VLAN membership, assign ports to VLANs, and change the administration mode.</td>
</tr>
<tr>
<td>Inventory</td>
<td></td>
<td>Ctrl-T</td>
<td>Display the device type, the software version, the IP address, and other information about a switch.</td>
</tr>
<tr>
<td>Refresh</td>
<td></td>
<td>—</td>
<td>Update the views with the latest status.</td>
</tr>
<tr>
<td>Front Panel</td>
<td></td>
<td>—</td>
<td>Display the Front Panel view.</td>
</tr>
</tbody>
</table>
Chapter 3 Getting Started with CMS

Menus and Toolbar

Front Panel View Popup Menus

These popup menus are available in the Front Panel view:

Device Popup Menu

You can display all switch and cluster configuration windows from the menu bar, or you can display commonly-used configuration windows from the device popup menu, as listed in Table 3-13. To display the device popup menu, click the switch icon from the cluster tree or the front-panel image itself, and right-click.

Table 3-13 Device Popup Menu

<table>
<thead>
<tr>
<th>Popup Menu Option</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Manager¹</td>
<td>Launch Device Manager for the switch.</td>
</tr>
<tr>
<td>Host Name²</td>
<td>Change the name of the switch.</td>
</tr>
<tr>
<td>Delete Cluster²³⁴</td>
<td>Delete a cluster.</td>
</tr>
<tr>
<td>Remove from Cluster²⁴</td>
<td>Remove a member from the cluster.</td>
</tr>
<tr>
<td>Bandwidth Graphs</td>
<td>Display graphs that plot the total bandwidth in use.</td>
</tr>
<tr>
<td>Properties</td>
<td>Display information about the device and port on either end of the link and the state of the link.</td>
</tr>
</tbody>
</table>

1. Available from a cluster member switch but not from the command switch.
2. Not available in read-only mode. For more information about the read-only mode, see the “Access Modes in CMS” section on page 3-30.
3. Available only from the command switch.
4. Available only from a cluster-management session.
Port Popup Menu

You can display all port configuration windows from the Port menu on the menu bar, or you can display commonly-used port configuration windows from the port popup menu, as listed in Table 3-14. To display the port popup menu, click a specific port image, and right-click.

Table 3-14 Port Popup Menu

<table>
<thead>
<tr>
<th>Popup Menu Option</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Settings</td>
<td>Display and configure port settings.</td>
</tr>
<tr>
<td>VLAN</td>
<td>Define the VLAN mode for a port or ports and add ports to VLANs. Not available for the Catalyst 1900 and Catalyst 2820 switches.</td>
</tr>
<tr>
<td>Port Security</td>
<td>Enable port security on a port.</td>
</tr>
<tr>
<td>Link Graphs</td>
<td>Display a graph showing the bandwidth used by the selected link.</td>
</tr>
<tr>
<td>Select All Ports</td>
<td>Select all ports on the switch for global configuration.</td>
</tr>
</tbody>
</table>

1. Some options from this menu are not available in read-only mode.
2. Available on switches that support the Port Security feature.
3. This feature is not available in read-only mode.
4. Available only when there is an active link on the port (that is, the port LED is green when in port status mode).

Topology View Popup Menus

These popup menus are available in the Topology view.

Link Popup Menu

Table 3-15 lists the reports and graphs that you can display for a specific link in the Topology view. To display the link popup menu, click the link icon, and right-click.

Table 3-15 Link Popup Menu

<table>
<thead>
<tr>
<th>Link Popup Menu</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link Report</td>
<td>Display the link report for two connected devices. If one device is an unknown device or a candidate, only the cluster member side of the link displays.</td>
</tr>
<tr>
<td>Link Graph</td>
<td>Display a graph showing the current bandwidth used by the selected link. You can change the graph polling interval by selecting CMS > Preferences.</td>
</tr>
<tr>
<td>Properties</td>
<td>Display information about the device and port on either end of the link and the state of the link.</td>
</tr>
</tbody>
</table>

The Link Report and Link Graph options are not available if at both ends of the link are one of these:

- Candidate switches
- Catalyst 1900 and Catalyst 2820 switches
- Devices that are not eligible to join the cluster

If multiple links are configured between two devices, when you click the link icon and right-click, the Logical Link Content window appears, as shown in Figure 3-9. Click the link icon in this window, and right-click to display the link popup menu specific for that link.
Device Popup Menus

Table 3-16 through Table 3-21 list the popup menus for specific devices:

- Cluster (Table 3-16)
- Command switch (Table 3-17)
- Member or standby command switch (Table 3-18)
- Candidate switch with an IP address (Table 3-19)
- Candidate switch without an IP address (Table 3-20)
- Neighboring devices (Table 3-21)

The Device Manager option in these popup menus is available in read-only mode on Catalyst 2900 XL and Catalyst 3500 XL switches running Release 12.0(5)WC2 and later. It is also available on Catalyst 2950 switches running Release 12.1(6)EA2 or later, Catalyst 2955 switches running Release 12.1(12c)EA1 or later, and on Catalyst 3550 switch running Release 12.1(8)EA1 or later. It is not available on the Catalyst 1900 and Catalyst 2820 switches.

To display a device popup menu, click an icon, and right-click.

Table 3-16 Cluster Icon Popup Menu

<table>
<thead>
<tr>
<th>Popup Menu Option</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expand cluster</td>
<td>View a cluster-specific topology view.</td>
</tr>
<tr>
<td>Properties</td>
<td>Display information about the device.</td>
</tr>
</tbody>
</table>
Table 3-17 Command-Switch Icon Popup Menu

<table>
<thead>
<tr>
<th>Popup Menu Option</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collapse cluster</td>
<td>View the neighborhood outside a specific cluster.</td>
</tr>
<tr>
<td>Host Name</td>
<td>Change the host name of a switch.</td>
</tr>
<tr>
<td>Bandwidth Graphs</td>
<td>Display graphs that plot the total bandwidth in use by the switch.</td>
</tr>
<tr>
<td>Properties</td>
<td>Display information about the device.</td>
</tr>
</tbody>
</table>

Table 3-18 Member or Standby Command-Switch Icon Popup Menu

<table>
<thead>
<tr>
<th>Popup Menu Option</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remove from Cluster</td>
<td>Remove a member from the cluster.</td>
</tr>
<tr>
<td>Host Name</td>
<td>Change the host name of a switch.</td>
</tr>
<tr>
<td>Device Manager</td>
<td>Launch Device Manager for a switch.</td>
</tr>
<tr>
<td>Bandwidth Graphs</td>
<td>Display graphs that plot the total bandwidth in use by the switch.</td>
</tr>
<tr>
<td>Properties</td>
<td>Display information about the device.</td>
</tr>
</tbody>
</table>

Table 3-19 Candidate-Switch Icon Popup Menu (When the Candidate Switch Has an IP Address)

<table>
<thead>
<tr>
<th>Popup Menu Option</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add to Cluster</td>
<td>Add a candidate to a cluster.</td>
</tr>
<tr>
<td>Device Manager</td>
<td>Launch Device Manager for a switch.</td>
</tr>
<tr>
<td>Properties</td>
<td>Display information about the device.</td>
</tr>
</tbody>
</table>

Table 3-20 Candidate-Switch Icon Popup Menu (When the Candidate Switch Does Not Have an IP Address)

<table>
<thead>
<tr>
<th>Popup Menu Option</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add to Cluster</td>
<td>Add a candidate to a cluster.</td>
</tr>
<tr>
<td>Properties</td>
<td>Display information about the device.</td>
</tr>
</tbody>
</table>

Table 3-21 Neighboring-Device Icon Popup Menu

<table>
<thead>
<tr>
<th>Popup Menu Option</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Manager</td>
<td>Access the web management interface of the device.</td>
</tr>
<tr>
<td>Note</td>
<td>This option is available on Cisco access points, but not on Cisco IP Phones, hubs, routers and on unknown devices such as some Cisco devices and third-party devices.</td>
</tr>
<tr>
<td>Disqualification Code</td>
<td>Display the reason why the device could not join the cluster.</td>
</tr>
<tr>
<td>Properties</td>
<td>Display information about the device.</td>
</tr>
</tbody>
</table>
Interaction Modes

You can change the interaction mode of CMS to either guide or expert mode. Guide mode steps you through each feature option and provides information about the parameter. Expert mode displays a configuration window in which you configure the feature options.

Note

You cannot switch modes for an open CMS window (for example, from Guide Mode to Expert Mode). For the mode change to take effect on any other open CMS window, you need to close that window and then re-open it after you select the new mode.

Guide Mode

Guide mode is for users who want a step-by-step approach for completing a specific configuration task. This mode is not available for all features. A menu-bar option that has a person icon means that guide mode is available for that option.

When you click Guide Mode and then select a menu-bar option that supports it, CMS displays a specific parameter of the feature with information about the parameter field. To configure the feature, you provide the information that CMS requests in each step until you click Finish in the last step. Clicking Cancel at any time closes and ends the configuration task without applying any changes.

If Expert Mode is selected and you want to use Guide Mode instead, you must click Guide Mode before selecting an option from the menu bar, tool bar, or popup menu. If you change the interaction mode after selecting a configuration option, the mode change does not take effect until you select another configuration option.

Note

Guide mode is not available if your switch access level is read-only. For more information about the read-only access mode, see the “Access Modes in CMS” section on page 3-30.

Expert Mode

Expert mode is for users who prefer to display all the parameter fields of a feature in a single CMS window. Information about the parameter fields is available by clicking the Help button.
Wizards

Wizards simplify some configuration tasks on the switch. Similar to the guide mode, wizards provide a step-by-step approach for completing a specific configuration task. Unlike guide mode, a wizard does not prompt you to provide information for all of the feature options. Instead, it prompts you to provide minimal information and then uses the default settings of the remaining options to set up default configurations.

Wizards are not available for all features. A menu-bar option that has wizard means that selecting that option launches the wizard for that feature.

Note
Wizards are not available if your switch access level is read-only. For more information about the read-only access mode, see the “Access Modes in CMS” section on page 3-30.

Tool Tips

CMS displays a popup message when you move your mouse over these devices:

- A yellow device icon in the cluster tree or in Topology view—A popup displays a fault message, such as that the RPS is faulty or that the switch is unavailable because you are in read-only mode.
- A red device icon in the cluster tree or in Topology view—A popup displays a message that the switch is down.

If you move your mouse over a table column heading, a popup displays the full heading.

Online Help

CMS provides comprehensive online help to assist you in understanding and performing configuration and monitoring tasks from the CMS windows, as shown in Figure 3-10. Online help includes these features:

- Feature help, available from the menu bar by selecting Help > Contents, provides background information and concepts on the features.
- Dialog-specific help, available from Help on the CMS windows, provides procedures for performing tasks.
- Index of help topics.
- Glossary of terms used in the online help.

You can send us feedback about the information provided in the online help. Click Feedback to display an online form. After completing the form, click Submit to send your comments to Cisco Systems Inc. We appreciate and value your comments.
CMS Window Components

CMS windows consistently present configuration information. Figure 3-11 shows the components of a typical CMS window.
Figure 3-11 CMS Window Components

Host Name List

To display or change the configuration of a cluster member, you need to select the specific switch from the Host Name drop-down list. The list appears in the configuration window of each feature and lists only the cluster members that support that feature. For example, the Host Name list on the VLAN window does not include Catalyst 1900 and Catalyst 2820 switches even though they are part of the cluster. Similarly, the Host Name list on the LRE Profiles window only lists the LRE switches in the cluster.
Tabs, Lists, and Tables

Some CMS windows have tabs that present different sets of information. Tabs are arranged like folder headings across the top of the window. Click the tab to display its information.

Listed information can often be changed by selecting an item from a list. To change the information, select one or more items, and click Modify. Changing multiple items is limited to those items that apply to at least one of the selections.

Some CMS windows present information in a table format. You can edit the information in these tables.

Note

You can resize the width of the columns to display the column headings, or you can hold your cursor over the heading to display a popup description of the column.

Filter Editor

When you click Filter in a CMS window that contains a table, the Filter Editor window appears. The column names in the table become the field names in this window. You can enter selection criteria in these field names to filter out table rows that you do not want displayed. For procedures on using the Filter Editor, refer to the online help.

Buttons

These are the most common buttons that you use to change the information in a CMS window:

- OK—Save any changes and close the window. If you made no changes, the window closes. If CMS detects errors in your entry, the window remains open. For more information about error detection, see the “Red Border Around a Field” section on page 3-29.
- Apply—Save any changes made in the window and leave the window open. If you made no changes, the Apply button is disabled.
- Refresh—Update the CMS window with the latest status of the device. Unsaved changes are lost.
- Cancel—Do not save any changes made in the window and close the window.
- Help—Display procedures on performing tasks from the window.
- Modify—Display the secondary window for changing information on the selected item or items. You usually select an item from a list or table and click Modify.

Green Border Around a Field or Cell

A green border around a field or table cell means that you made an unsaved change to the field or table cell. Previous information in that field or table cell is displayed in the window status bar. When you save the changes or if you cancel the change, the green border disappears.
Red Border Around a Field

A red border around a field means that you entered invalid data in the field. An error message also displays in the window status bar. When you enter valid data in the field, a green border replaces the red border until you either save or cancel the change.

If there is an error in communicating with the switch or if you make an error while performing an action, a message notifies you about the error.

Accessing CMS

This section assumes the following:

- You know the IP address and password of the command switch or a specific switch. This information is either:
 - Assigned to the switch by following the setup program, as described in the release notes.
 - Changed on the switch by following the information in the “Assigning Switch Information” section on page 4-2 and “Preventing Unauthorized Access to Your Switch” section on page 8-1. Considerations for assigning IP addresses and passwords to a command switch and cluster members are described in the “IP Addresses” section on page 6-16 and the “Passwords” section on page 6-16.
- You know your access privilege level to the switch.
- You have referred to the release notes for system requirements and have followed the procedures for installing the required Java plug-ins and configuring your browser.

Caution

Copies of the CMS pages you display are saved in your browser memory cache until you exit the browser session. A password is not required to redisplay these pages, including the Cisco Systems Access page. You can access the command-line interface (CLI) by clicking Monitor the router - HTML access to the command line interface from a cached copy of the Cisco Systems Access page. To prevent unauthorized access to CMS and the CLI, exit your browser to end the browser session.

Note

If you have configured the Terminal Access Controller Access Control System Plus (TACACS+) or Remote Authentication Dial-In User Service (RADIUS) feature on the switch, you can still access the switch through CMS. For information about how inconsistent authentication configurations in switch clusters can affect access through CMS, see the “TACACS+ and RADIUS” section on page 6-17.
To access CMS, follow these steps:

Step 1 Enter the switch IP address and your privilege level in the browser Location field (Netscape Communicator) or Address field (Microsoft Internet Explorer). For example:

```
http://10.1.126.45:184/level/14/
```

where 10.1.126.45 is the switch IP address, 184 is the HTTP port, and level/14 is the privilege level. You do not need to enter the HTTP port if the switch is using HTTP port 80 (the default) or enter the privilege level if you have read-write access to the switch (privilege level is 15). For information about the HTTP port, see the “HTTP Access to CMS” section on page 3-31. For information about privilege levels, see the “Access Modes in CMS” section on page 3-30.

Step 2 When prompted for a username and password, enter only the switch enable password. CMS prompts you a second time for a username and password. Enter only the enable password again.

If you configure a local username and password, make sure you enable it by using the `ip http authentication` global configuration command. Enter your username and password when prompted.

Step 3 Click Web Console.

If you access CMS from a standalone or member switch, Device Manager appears. If you access CMS from a command switch, you can display the Front Panel and Topology views.

Access Modes in CMS

CMS provides two levels of access to the configuration options: read-write access and read-only access. Privilege levels 0 to 15 are supported.

- Privilege level 15 provides you with read-write access to CMS.
- Privilege levels 1 to 14 provide you with read-only access to CMS. Any options in the CMS windows, menu bar, toolbar, and popup menus that change the switch or cluster configuration are not shown in read-only mode.
- Privilege level 0 denies access to CMS.

If you do not include a privilege level when you access CMS, the switch verifies if you have privilege-level 15. If you do not, you are denied access to CMS. If you do have privilege-level 15, you are granted read-write access. Therefore, you do not need to include the privilege level if it is 15. Entering zero denies access to CMS. For more information about privilege levels, see the “Preventing Unauthorized Access to Your Switch” section on page 8-1.

If your cluster has these member switches running earlier software releases and if you have read-only access to these member switches, some configuration windows for those switches display incomplete information:

- Catalyst 2900 XL or Catalyst 3500 XL member switches running Release 12.0(5)WC2 or earlier
- Catalyst 2950 member switches running Release 12.0(5)WC2 or earlier
- Catalyst 3550 member switches running Release 12.1(6)EA1 or earlier

For more information about this limitation, refer to the release notes.
These switches do not support read-only mode on CMS:
- Catalyst 1900 and Catalyst 2820
- Catalyst 2900 XL switches with 4-MB CPU DRAM

In read-only mode, these switches appear as unavailable devices and cannot be configured from CMS.

HTTP Access to CMS

CMS uses Hypertext Transfer Protocol (HTTP), which is an in-band form of communication with the switch through any one of its Ethernet ports and that allows switch management from a standard web browser. The default HTTP port is 80.

If you change the HTTP port, you must include the new port number when you enter the IP address in the browser Location or Address field (for example, http://10.1.126.45:184 where 184 is the new HTTP port number).

Do not disable or otherwise misconfigure the port through which your management station is communicating with the switch. You might want to write down the port number to which you are connected. Changes to the switch IP information should be done with care.

For information about connecting to a switch port, refer to the switch hardware installation guide.

Saving Your Configuration

Note
The Save Configuration option is not available if your switch access level is read-only. For more information about the read-only access mode, see the “Access Modes in CMS” section on page 3-30.

Tip
As you make cluster configuration changes (except for changes to the Topology view and in the Preferences window), make sure that you periodically save the configuration from the command switch. The configuration is saved on the command and member switches.

The front-panel images and CMS windows always display the running configuration of the switch. When you make a configuration change to a switch or switch cluster, the change becomes part of the running configuration. The change does not automatically become part of the configuration file, which is the startup configuration used each time the switch restarts. If you do not save your changes, they are lost when the switch restarts.

Note
Catalyst 1900 and Catalyst 2820 switches automatically save configuration changes to Flash memory as they occur.
Restoring Your Configuration

After you save a switch configuration, you can restore the configuration to one or more switches for these reasons:

- You made an incorrect change to the current running configuration and want to reload a saved configuration.
- You need to reload a switch after a switch failure or power failure.
- You want to copy the configuration of a switch to other switches.

For CMS procedures for restoring a switch configuration, refer to the online help.

CMS Preferences

When you exit from CMS, your CMS preferences are saved to your PC in a file called .cms_properties. You can copy this file to other PCs. The file is stored in a default configuration directory, such as C:\Documents and Settings\username. If you cannot locate the CMS preferences file, select Start > Search > For Files or Folders..., and search for .cms_properties.

Note

In previous CMS versions, the preferences were saved in Flash memory when you exited from CMS.

Using Different Versions of CMS

When managing switch clusters through CMS, remember that clusters can have a mix of switch models using different IOS releases and that CMS in earlier IOS releases and on different switch platforms might look and function differently from CMS in this IOS release.

When you select Device > Device Manager for a cluster member, a new browser session is launched, and the CMS version for that switch is displayed.

Here are examples of how CMS can differ between IOS releases and switch platforms:

- On Catalyst switches running Release 12.0(5)WC2 or earlier or Release 12.1(6)EA1 or earlier, the CMS versions in those software releases might appear similar but are not the same as this release. For example, the Topology view in this release is not the same as the Topology view or Cluster View in those earlier software releases.
- CMS on the Catalyst 1900 and Catalyst 2820 switches is referred to as Switch Manager. Cluster management options are not available on these switches. This is the earliest version of CMS.

Refer to the documentation specific to the switch and its IOS release for descriptions of the CMS version you are using.
Where to Go Next

Before configuring the switch, refer to these places for start-up information:

- Switch release notes on Cisco.com:
 - CMS software requirements
 - Procedures for running the setup program
 - Procedures for browser configuration
 - Procedures for accessing CMS
- Chapter 4, “Assigning the Switch IP Address and Default Gateway”
- Chapter 7, “Administering the Switch”

The rest of this guide provides information about and CLI procedures for the software features supported in this release. For CMS procedures and window descriptions, refer to the online help.
Assigning the Switch IP Address and Default Gateway

This chapter describes how to create the initial switch configuration (for example, assign the switch IP address and default gateway information) by using a variety of automatic and manual methods. It also describes how to modify the switch startup configuration.

Note

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter consists of these sections:

- Understanding the Boot Process, page 4-1
- Assigning Switch Information, page 4-2
- Checking and Saving the Running Configuration, page 4-10
- Modifying the Startup Configuration, page 4-12
- Scheduling a Reload of the Software Image, page 4-17

Understanding the Boot Process

Before you can assign switch information (IP address, subnet mask, default gateway, secret and Telnet passwords, and so forth), you need to install and power on the switch as described in the hardware installation guide that shipped with your Catalyst 3550 switch.

The normal boot process involves the operation of the boot loader software, which performs these activities:

- Performs low-level CPU initialization. It initializes the CPU registers, which control where physical memory is mapped, its quantity, its speed, and so forth.
- Performs power-on self-test (POST) for the CPU subsystem. It tests the CPU DRAM and the portion of the Flash device that makes up the Flash file system.
- Initializes the Flash file system on the system board.
- Loads a default operating system software image into memory and boots the switch.
The boot loader provides access to the Flash file system before the operating system is loaded. Normally, the boot loader is used only to load, uncompress, and launch the operating system. After the boot loader gives the operating system control of the CPU, the boot loader is not active until the next system reset or power-on.

The boot loader also provides trap-door access into the system if the operating system has problems serious enough that it cannot be used. The trap-door mechanism provides enough access to the system so that if it is necessary, you can format the Flash file system, reinstall the operating system software image by using the XMODEM Protocol, recover from a lost or forgotten password, and finally restart the operating system. For more information, see the “Recovering from Corrupted Software” section on page 36-2 and the “Recovering from a Lost or Forgotten Password” section on page 36-2.

Note

On Catalyst 3550 Fast Ethernet switches only, you can disable password recovery. For more information, see the “Disabling Password Recovery” section on page 8-5.

Before you can assign switch information, make sure you have connected a PC or terminal to the console port, and configured the PC or terminal-emulation software baud rate and character format to match those of the switch console port. For more information, refer to the hardware installation guide that shipped with your switch.

Assigning Switch Information

You can assign IP information through the switch setup program, through a Dynamic Host Configuration Protocol (DHCP) server, or manually.

Use the switch setup program if you are a new user and want to be prompted for specific IP information. With this program, you can also configure a host name and an enable secret password. It gives you the option of assigning a Telnet password (to provide security during remote management) and configuring your switch as a command or member switch of a cluster or as a standalone switch. For more information about the setup program, refer to the release notes on Cisco.com.

Use a DHCP server for centralized control and automatic assignment of IP information once the server is configured.

Note

If you are using DHCP, do not respond to any of the questions in the setup program until the switch receives the dynamically-assigned IP address and reads the configuration file.

Use the manual method of configuration if you are an experienced user familiar with the switch configuration steps; otherwise, use the setup program described earlier.

This section contains this configuration information:

- Default Switch Information, page 4-3
- Understanding DHCP-Based Autoconfiguration, page 4-3
- Manually Assigning IP Information, page 4-10
Default Switch Information

Table 4-1 shows the default switch information.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address and subnet mask</td>
<td>No IP address or subnet mask are defined.</td>
</tr>
<tr>
<td>Default gateway</td>
<td>No default gateway is defined.</td>
</tr>
<tr>
<td>Enable secret password</td>
<td>No password is defined.</td>
</tr>
<tr>
<td>Host name</td>
<td>The factory-assigned default host name is Switch.</td>
</tr>
<tr>
<td>Telnet password</td>
<td>No password is defined.</td>
</tr>
<tr>
<td>Cluster command switch functionality</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Cluster name</td>
<td>No cluster name is defined.</td>
</tr>
</tbody>
</table>

Understanding DHCP-Based Autoconfiguration

The DHCP provides configuration information to Internet hosts and internetworking devices. This protocol consists of two components: one for delivering configuration parameters from a DHCP server to a device and a mechanism for allocating network addresses to devices. DHCP is built on a client-server model, in which designated DHCP servers allocate network addresses and deliver configuration parameters to dynamically configured devices.

During DHCP-based autoconfiguration, your switch (DHCP client) is automatically configured at startup with IP address information and a configuration file.

With DHCP-based autoconfiguration, no DHCP client-side configuration is needed on your switch. However, you need to configure the DHCP server for various lease options associated with IP addresses. If you are using DHCP to relay the configuration file location on the network, you might also need to configure a Trivial File Transfer Protocol (TFTP) server and a Domain Name System (DNS) server.

The DHCP server can be on the same LAN or on a different LAN than the switch. If the DHCP server is running on a different LAN, you should configure a DHCP relay. A relay device forwards broadcast traffic between two directly connected LANs. A router does not forward broadcast packets, but it forwards packets based on the destination IP address in the received packet.

DHCP-based autoconfiguration replaces the BOOTP client functionality on your switch.
DHCP Client Request Process

When you boot your switch, the switch automatically requests configuration information from a DHCP server only if a configuration file is not present on the switch.

DHCP autoconfiguration does not occur under these conditions:

- When a configuration file is present and the service config global configuration command is disabled on the switch.
- When a configuration file is present and the service config global configuration command is enabled on the switch. In this case, the switch broadcasts TFTP requests for the configuration file.

Figure 4-1 shows the sequence of messages that are exchanged between the DHCP client and the DHCP server.

Figure 4-1 DHCP Client and Server Message Exchange

The client, Switch A, broadcasts a DHCPDISCOVER message to locate a DHCP server. The DHCP server offers configuration parameters (such as an IP address, subnet mask, gateway IP address, DNS IP address, a lease for the IP address, and so forth) to the client in a DHCPOFFER unicast message.

In a DHCPREQUEST broadcast message, the client returns a formal request for the offered configuration information to the DHCP server. The formal request is broadcast so that all other DHCP servers that received the DHCPDISCOVER broadcast message from the client can reclaim the IP addresses that they offered to the client.

The DHCP server confirms that the IP address has been allocated to the client by returning a DHCPACK unicast message to the client. With this message, the client and server are bound, and the client uses configuration information received from the server. The amount of information the switch receives depends on how you configure the DHCP server. For more information, see the “Configuring the DHCP Server” section on page 4-5.

If the configuration parameters sent to the client in the DHCPOFFER unicast message are invalid (a configuration error exists), the client returns a DHCPDECLINE broadcast message to the DHCP server.

The DHCP server sends the client a DHCPNAK denial broadcast message, which means that the offered configuration parameters have not been assigned, that an error has occurred during the negotiation of the parameters, or that the client has been slow in responding to the DHCPOFFER message (the DHCP server assigned the parameters to another client).

A DHCP client might receive offers from multiple DHCP or BOOTP servers and can accept any of the offers; however, the client usually accepts the first offer it receives. The offer from the DHCP server is not a guarantee that the IP address is allocated to the client; however, the server usually reserves the address until the client has had a chance to formally request the address. If the switch accepts replies from a BOOTP server and configures itself, the switch broadcasts, instead of unicasts, TFTP requests to obtain the switch configuration file.
Configuring the DHCP Server

You should configure the DHCP server with reserved leases that are bound to each switch by the switch hardware address.

If you want the switch to receive IP address information, you must configure the DHCP server with these lease options:

- IP address of the client (required)
- Subnet mask of the client (required)
- DNS server IP address (optional)
- Router IP address (default gateway address to be used by the switch) (required)

If you want the switch to receive the configuration file from a TFTP server, you must configure the DHCP server with these lease options:

- TFTP server name (required)
- Boot filename (the name of the configuration file that the client needs) (recommended)
- Host name (optional)

Depending on the settings of the DHCP server, the switch can receive IP address information, the configuration file, or both.

If you do not configure the DHCP server with the lease options described earlier, it replies to client requests with only those parameters that are configured. If the IP address and subnet mask are not in the reply, the switch is not configured. If the router IP address or TFTP server name are not found, the switch might send broadcast, instead of unicast, TFTP requests. Unavailability of other lease options does not affect autoconfiguration.

The DHCP server can be on the same LAN or on a different LAN than the switch. If the DHCP server is running on a different LAN, you should configure a DHCP relay. For more information, see the “Configuring the Relay Device” section on page 4-6. If your DHCP server is a Cisco device, refer to the “IP Addressing and Services” section in the Cisco IOS IP and IP Routing Configuration Guide for Release 12.1.

Configuring the TFTP Server

Based on the DHCP server configuration, the switch attempts to download one or more configuration files from the TFTP server. If you configured the DHCP server to respond to the switch with all the options required for IP connectivity to the TFTP server, and if you configured the DHCP server with a TFTP server name, address, and configuration filename, the switch attempts to download the specified configuration file from the specified TFTP server.

If you did not specify the configuration filename, the TFTP server, or if the configuration file could not be downloaded, the switch attempts to download a configuration file by using various combinations of filenames and TFTP server addresses. The files include the specified configuration filename (if any) and these files: network-config, cisconet.cfg, hostname.config, or hostname.cfg, where hostname is the switch’s current hostname. The TFTP server addresses used include the specified TFTP server address (if any) and the broadcast address (255.255.255.255).
Assigning Switch Information

For the switch to successfully download a configuration file, the TFTP server must contain one or more configuration files in its base directory. The files can include these files:

- The configuration file named in the DHCP reply (the actual switch configuration file).
- The network-config or the cisconet.cfg file (known as the default configuration files).
- The router-config or the ciscort.cfg file (These files contain commands common to all switches. Normally, if the DHCP and TFTP servers are properly configured, these files are not accessed.)

If you specify the TFTP server name in the DHCP server-lease database, you must also configure the TFTP server name-to-IP-address mapping in the DNS-server database.

If the TFTP server to be used is on a different LAN from the switch, or if it is to be accessed by the switch through the broadcast address (which occurs if the DHCP server response does not contain all the required information described earlier), a relay must be configured to forward the TFTP packets to the TFTP server. For more information, see the “Configuring the Relay Device” section on page 4-6. The preferred solution is to configure the DHCP server with all the required information.

Configuring the DNS

The DHCP server uses the DNS server to resolve the TFTP server name to an IP address. You must configure the TFTP server name-to-IP address map on the DNS server. The TFTP server contains the configuration files for the switch.

You can configure the IP addresses of the DNS servers in the lease database of the DHCP server from where the DHCP replies will retrieve them. You can enter up to two DNS server IP addresses in the lease database.

The DNS server can be on the same or on a different LAN as the switch. If it is on a different LAN, the switch must be able to access it through a router.

Configuring the Relay Device

You must configure a relay device when a switch sends broadcast packets that need to be responded to by a host on a different LAN. Examples of broadcast packets that the switch might send are DHCP, DNS, and in some cases, TFTP packets. You must configure this relay device to forward received broadcast packets on an interface to the destination host.

If the relay device is a Cisco router, enable IP routing (ip routing global configuration command), and configure helper addresses by using the ip helper-address interface configuration command.

For example, in Figure 4-2, configure the router interfaces as follows:

On interface 10.0.0.2:

```
router(config-if)# ip helper-address 20.0.0.2
router(config-if)# ip helper-address 20.0.0.3
router(config-if)# ip helper-address 20.0.0.4
```

On interface 20.0.0.1

```
router(config-if)# ip helper-address 10.0.0.1
```

Note

If the Catalyst 3550 multilayer switch is acting as the relay device, configure the interface as a routed port. For more information, see the “Routed Ports” section on page 10-4 and the “Configuring Layer 3 Interfaces” section on page 10-18.
Obtaining Configuration Files

Depending on the availability of the IP address and the configuration filename in the DHCP reserved lease, the switch obtains its configuration information in these ways:

- The IP address and the configuration filename is reserved for the switch and provided in the DHCP reply (one-file read method).
 The switch receives its IP address, subnet mask, TFTP server address, and the configuration filename from the DHCP server. The switch sends a unicast message to the TFTP server to retrieve the named configuration file from the base directory of the server, and upon receipt, completes its boot-up process.

- The IP address and the configuration filename is reserved for the switch, but the TFTP server address is not provided in the DHCP reply (one-file read method).
 The switch receives its IP address, subnet mask, and the configuration filename from the DHCP server. The switch sends a broadcast message to a TFTP server to retrieve the named configuration file from the base directory of the server, and upon receipt, completes its boot-up process.

- Only the IP address is reserved for the switch and provided in the DHCP reply. The configuration filename is not provided (two-file read method).
 The switch receives its IP address, subnet mask, and the TFTP server address from the DHCP server. The switch sends a unicast message to the TFTP server to retrieve the network-confg or cisconet.cfg default configuration file. (If the network-confg file cannot be read, the switch reads the cisconet.cfg file.)
 The default configuration file contains the host names-to-IP-address mapping for the switch. The switch fills its host table with the information in the file and obtains its host name. If the host name is not found in the file, the switch uses the host name in the DHCP reply. If the host name is not specified in the DHCP reply, the switch uses the default Switch as its host name.
 After obtaining its host name from the default configuration file or the DHCP reply, the switch reads the configuration file that has the same name as its host name (hostname-confg or hostname.cfg, depending on whether network-confg or cisconet.cfg was read earlier) from the TFTP server. If the cisconet.cfg file is read, the filename of the host is truncated to eight characters.
 If the switch cannot read the network-confg, cisconet.cfg, or the hostname file, it reads the router-confg file. If the switch cannot read the router-confg file, it reads the ciscortr.cfg file.
The switch broadcasts TFTP server requests if the TFTP server is not obtained from the DHCP replies, if all attempts to read the configuration file through unicast transmissions fail, or if the TFTP server name cannot be resolved to an IP address.

Example Configuration

Figure 4-3 shows a sample network for retrieving IP information by using DHCP-based autoconfiguration.

Table 4-2 shows the configuration of the reserved leases on the DHCP server.

<table>
<thead>
<tr>
<th></th>
<th>Switch-1</th>
<th>Switch-2</th>
<th>Switch-3</th>
<th>Switch-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binding key</td>
<td>00e0.9f1e.2001</td>
<td>00e0.9f1e.2002</td>
<td>00e0.9f1e.2003</td>
<td>00e0.9f1e.2004</td>
</tr>
<tr>
<td>(hardware address)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP address</td>
<td>10.0.0.21</td>
<td>10.0.0.22</td>
<td>10.0.0.23</td>
<td>10.0.0.24</td>
</tr>
<tr>
<td>Subnet mask</td>
<td>255.255.255.0</td>
<td>255.255.255.0</td>
<td>255.255.255.0</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>Router address</td>
<td>10.0.0.10</td>
<td>10.0.0.10</td>
<td>10.0.0.10</td>
<td>10.0.0.10</td>
</tr>
<tr>
<td>DNS server address</td>
<td>10.0.0.2</td>
<td>10.0.0.2</td>
<td>10.0.0.2</td>
<td>10.0.0.2</td>
</tr>
<tr>
<td>TFTP server name</td>
<td>maritsu or 10.0.0.3</td>
<td>maritsu or 10.0.0.3</td>
<td>maritsu or 10.0.0.3</td>
<td>maritsu or 10.0.0.3</td>
</tr>
<tr>
<td>Boot filename</td>
<td>switch1-config</td>
<td>switch2-config</td>
<td>switch3-config</td>
<td>switch4-config</td>
</tr>
<tr>
<td>(configuration file)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Host name (optional)</td>
<td>switch1</td>
<td>switch2</td>
<td>switch3</td>
<td>switch4</td>
</tr>
</tbody>
</table>
DNS Server Configuration

The DNS server maps the TFTP server name maritsu to IP address 10.0.0.3.

TFTP Server Configuration (on UNIX)

The TFTP server base directory is set to /tftpserver/work/. This directory contains the network-confg file used in the two-file read method. This file contains the host name to be assigned to the switch based on its IP address. The base directory also contains a configuration file for each switch (switch1-confg, switch2-confg, and so forth) as shown in this display:

```
prompt> cd /tftpserver/work/
prompt> ls
network-confg
switch1-confg
switch2-confg
switch3-confg
switch4-confg
prompt> cat network-confg
ip host switch1 10.0.0.21
ip host switch2 10.0.0.22
ip host switch3 10.0.0.23
ip host switch4 10.0.0.24
```

DHCP Client Configuration

No configuration file is present on Switch 1 through Switch 4.

Configuration Explanation

In Figure 4-3, Switch 1 reads its configuration file as follows:

- It obtains its IP address 10.0.0.21 from the DHCP server.
- If no configuration filename is given in the DHCP server reply, Switch 1 reads the network-confg file from the base directory of the TFTP server.
- It adds the contents of the network-confg file to its host table.
- It reads its host table by indexing its IP address 10.0.0.21 to its host name (switch1).
- It reads the configuration file that corresponds to its host name; for example, it reads switch1-confg from the TFTP server.

Switches 2 through 4 retrieve their configuration files and IP addresses in the same way.
Manually Assigning IP Information

Beginning in privileged EXEC mode, follow these steps to manually assign IP information to multiple switched virtual interfaces (SVIs) or ports:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface vlan <vlan-id></td>
<td>Enter interface configuration mode, and enter the VLAN to which the IP information is assigned. The range is 1 to 4094.</td>
</tr>
<tr>
<td>Step 3 ip address <ip-address> subnet-mask</td>
<td>Enter the IP address and subnet mask.</td>
</tr>
<tr>
<td>Step 4 exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 5 ip default-gateway <ip-address></td>
<td>Enter the IP address of the next-hop router interface that is directly connected to the switch where a default gateway is being configured. The default gateway receives IP packets with unresolved destination IP addresses from the switch. Once the default gateway is configured, the switch has connectivity to the remote networks with which a host needs to communicate.</td>
</tr>
<tr>
<td>Note</td>
<td>When your switch is configured to route with IP, it does not need to have a default gateway set.</td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 8 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the switch IP address, use the no ip address interface configuration command. If you are removing the address through a Telnet session, your connection to the switch will be lost. To remove the default gateway address, use the no ip default-gateway global configuration command.

For information on setting the switch system name, protecting access to privileged EXEC commands, and setting time and calendar services, see Chapter 7, “Administering the Switch.”

Checking and Saving the Running Configuration

You can check the configuration settings you entered or changes you made by entering this privileged EXEC command:

Switch# show running-config

Building configuration...

Current configuration: 1363 bytes
!
version 12.1
no service pad
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname Switch
!
enable secret 5 1ej9.$DMUvAUn2OAmvqBEzIxE0
interface GigabitEthernet0/1
 no switchport
 ip address 172.20.137.50 255.255.255.0
!
interface GigabitEthernet0/2
!
interface GigabitEthernet0/3
!
interface GigabitEthernet0/4
!
interface GigabitEthernet0/5
!
interface GigabitEthernet0/6
!
interface GigabitEthernet0/7
!
interface GigabitEthernet0/8
!
interface GigabitEthernet0/9
!
interface GigabitEthernet0/10
!
interface GigabitEthernet0/11
!
interface GigabitEthernet0/12
...

interface VLAN1
 ip address 172.20.137.50 255.255.255.0
 no ip directed-broadcast
 ip default-gateway 172.20.137.1
!
snmp-server community private RW
snmp-server community public RO
snmp-server community private@es0 RW
snmp-server community public@es0 RO
snmp-server chassis-id 0x12
!
end

To store the configuration or changes you have made to your startup configuration in Flash memory, enter this privileged EXEC command:

Switch# copy running-config startup-config
Destination filename [startup-config]?
Building configuration...

This command saves the configuration settings that you made. If you fail to do this, your configuration will be lost the next time you reload the system. To display information stored in the NVRAM section of Flash memory, use the show startup-config or more startup-config privileged EXEC command.

For more information about alternative locations to copy the configuration file, see Appendix B, “Working with the IOS File System, Configuration Files, and Software Images.”
Modifying the Startup Configuration

This section describes how to modify the switch startup configuration. It contains this configuration information:

- Default Boot Configuration, page 4-12
- Automatically Downloading a Configuration File, page 4-12
- Booting Manually, page 4-13
- Booting a Specific Software Image, page 4-14
- Controlling Environment Variables, page 4-15

Default Boot Configuration

Table 4-3 shows the default boot configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating system software image</td>
<td>The switch attempts to automatically boot the system using information in the BOOT environment variable. If the variable is not set, the switch attempts to load and execute the first executable image it can by performing a recursive, depth-first search throughout the Flash file system. The IOS image is stored in a directory that has the same name as the image file (excluding the .bin extension). In a depth-first search of a directory, each encountered subdirectory is completely searched before continuing the search in the original directory.</td>
</tr>
<tr>
<td>Configuration file</td>
<td>Configured switches use the config.text file stored on the system board in Flash memory. A new switch has no configuration file.</td>
</tr>
</tbody>
</table>

Automatically Downloading a Configuration File

You can automatically download a configuration file to your switch by using the DHCP-based autoconfiguration feature. For more information, see the “Understanding DHCP-Based Autoconfiguration” section on page 4-3.
Specifying the Filename to Read and Write the System Configuration

By default, the IOS software uses the file config.text to read and write a nonvolatile copy of the system configuration. However, you can specify a different filename, which will be loaded during the next boot cycle.

Beginning in privileged EXEC mode, follow these steps to specify a different configuration filename:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>boot config-file flash:/file-url</td>
<td>Specify the configuration file to load during the next boot cycle. For file-url, specify the path (directory) and the configuration filename. Filenames and directory names are case sensitive.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>show boot</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td></td>
<td>The boot config-file global configuration command changes the setting of the CONFIG_FILE environment variable.</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the no boot config-file global configuration command.

Booting Manually

By default, the switch automatically boots; however, you can configure it to manually boot.

Beginning in privileged EXEC mode, follow these steps to configure the switch to manually boot during the next boot cycle:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>boot manual</td>
<td>Enable the switch to manually boot during the next boot cycle.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Chapter 4 Assigning the Switch IP Address and Default Gateway

Modifying the Startup Configuration

To disable manual booting, use the `no boot manual` global configuration command.

Booting a Specific Software Image

By default, the switch attempts to automatically boot the system using information in the BOOT environment variable. If this variable is not set, the switch attempts to load and execute the first executable image it can by performing a recursive, depth-first search throughout the Flash file system. In a depth-first search of a directory, each encountered subdirectory is completely searched before continuing the search in the original directory. However, you can specify a specific image to boot.

Beginning in privileged EXEC mode, follow these steps to configure the switch to boot a specific image during the next boot cycle:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>boot system filesystem:file-url</code></td>
<td>Configure the switch to boot a specific image in Flash memory during the next boot cycle.</td>
</tr>
<tr>
<td></td>
<td>• For <code>filesystem:</code>, use <code>flash:</code> for the system board Flash device.</td>
</tr>
<tr>
<td></td>
<td>• For <code>file-url</code>, specify the path (directory) and the name of the bootable image.</td>
</tr>
<tr>
<td></td>
<td>Filenames and directory names are case sensitive.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td><code>show boot</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td></td>
<td>The <code>boot system</code> global command changes the setting of the BOOT environment variable.</td>
</tr>
<tr>
<td></td>
<td>During the next boot cycle, the switch attempts to automatically boot the system using information in the BOOT environment variable.</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no boot system` global configuration command.
Controlling Environment Variables

With a normally operating switch, you enter the boot loader mode only through a switch console connection configured for 9600 bps. Unplug the switch power cord and press the switch Mode button while reconnecting the power cord. You can release the Mode button a second or two after the LED above port 1X goes off. Then the boot loader switch: prompt is displayed.

The switch boot loader software provides support for nonvolatile environment variables, which can be used to control how the boot loader, or any other software running on the system, behaves. Boot loader environment variables are similar to environment variables that can be set on UNIX or DOS systems.

Environment variables that have values are stored in the Flash file system in various files as shown in Table 4-4.

Table 4-4 Environment Variables Storage Location

<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Location (file system:filename)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAUD, ENABLE_BREAK, CONFIG_BUFSIZE, CONFIG_FILE, MANUAL_BOOT, PS1</td>
<td>flash:env_vars</td>
</tr>
<tr>
<td>BOOT, BOOTHLP, HELPER, HELPER_CONFIG_FILE</td>
<td>flash:system_env_vars</td>
</tr>
</tbody>
</table>

Each line in these files contains an environment variable name and an equal sign followed by the value of the variable. A variable has no value if it is not listed in this file; it has a value if it is listed in the file even if the value is a null string. A variable that is set to a null string (for example, "") is a variable with a value. Many environment variables are predefined and have default values.

Environment variables store two kinds of data:

- Data that controls code, which does not read the IOS configuration file. For example, the name of a boot loader helper file, which extends or patches the functionality of the boot loader can be stored as an environment variable.
- Data that controls code, which is responsible for reading the IOS configuration file. For example, the name of the IOS configuration file can be stored as an environment variable.

You can change the settings of the environment variables by accessing the boot loader or by using IOS commands. Under normal circumstances, it is not necessary to alter the setting of the environment variables.

Note

For complete syntax and usage information for the boot loader commands and environment variables, refer to the command reference for this release.
Table 4-5 describes the function of the most common environment variables.

Table 4-5 Environment Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Boot Loader Command</th>
<th>IOS Global Configuration Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANUAL_BOOT</td>
<td>set MANUAL_BOOT yes</td>
<td>boot manual</td>
</tr>
<tr>
<td></td>
<td>Determines whether the switch automatically or manually boots.</td>
<td>Enables manually booting the switch during the next boot cycle and changes the setting of the MANUAL_BOOT environment variable.</td>
</tr>
<tr>
<td></td>
<td>Valid values are 1, yes, 0, and no. If it is set to no or 0, the boot loader attempts to automatically boot the system. If it is set to anything else, you must manually boot the switch from the boot loader mode.</td>
<td>The next time you reboot the system, the switch is in boot loader mode. To boot the system, use the boot loader <code>boot flash:filesystem:file-url</code> command, and specify the name of the bootable image.</td>
</tr>
<tr>
<td>BOOT</td>
<td>set BOOT filesystem:file-url ...</td>
<td>boot system filesystem:file-url</td>
</tr>
<tr>
<td></td>
<td>A semicolon-separated list of executable files to try to load and execute when automatically booting. If the BOOT environment variable is not set, the system attempts to load and execute the first executable image it can find by using a recursive, depth-first search through the Flash file system. If the BOOT variable is set but the specified images cannot be loaded, the system attempts to boot the first bootable file that it can find in the Flash file system.</td>
<td>Specifies the IOS image to load during the next boot cycle. This command changes the setting of the BOOT environment variable.</td>
</tr>
<tr>
<td></td>
<td>Changes the filename that IOS uses to read and write a nonvolatile copy of the system configuration.</td>
<td>Specifies the filename that IOS uses to read and write a nonvolatile copy of the system configuration. This command changes the CONFIG_FILE environment variable.</td>
</tr>
<tr>
<td>CONFIG_BUFSIZE</td>
<td>set CONFIG_BUFSIZE size</td>
<td>boot buffersize size</td>
</tr>
<tr>
<td></td>
<td>Changes the buffer size that IOS uses to hold a copy of the configuration file in memory. The configuration file cannot be larger than the buffer size allocation. The range is from 4096 to 524288 bytes.</td>
<td>Specifies the size of the file system-simulated NVRAM in Flash memory. The buffer holds a copy of the configuration file in memory. This command changes the setting of the CONFIG_BUFSIZE environment variable.</td>
</tr>
<tr>
<td></td>
<td>You must reload the switch by using the <code>reload</code> privileged EXEC command for this command to take effect.</td>
<td>You must reload the switch by using the <code>reload</code> privileged EXEC command for this command to take effect.</td>
</tr>
</tbody>
</table>
Scheduling a Reload of the Software Image

You can schedule a reload of the software image to occur on the switch at a later time (for example, late at night or during the weekend when the switch is used less), or you can synchronize a reload network-wide (for example, to perform a software upgrade on all switches in the network).

Note

A scheduled reload must take place within approximately 24 days.

Configuring a Scheduled Reload

To configure your switch to reload the software image at a later time, use one of these commands in privileged EXEC mode:

- `reload in [hh:]mm [text]`
 This command schedules a reload of the software to take affect in the specified minutes or hours and minutes. The reload must take place within approximately 24 days. You can specify the reason for the reload in a string up to 255 characters in length.

- `reload at hh:mm [month day | day month] [text]`
 This command schedules a reload of the software to take place at the specified time (using a 24-hour clock). If you specify the month and day, the reload is scheduled to take place at the specified time and date. If you do not specify the month and day, the reload takes place at the specified time on the current day (if the specified time is later than the current time) or on the next day (if the specified time is earlier than the current time). Specifying 00:00 schedules the reload for midnight.

 Note
 Use the `at` keyword only if the switch system clock has been set (through Network Time Protocol (NTP), the hardware calendar, or manually). The time is relative to the configured time zone on the switch. To schedule reloads across several switches to occur simultaneously, the time on each switch must be synchronized with NTP.

The `reload` command halts the system. If the system is not set to manually boot, it reboots itself. Use the `reload` command after you save the switch configuration information to the startup configuration (`copy running-config startup-config`).

If your switch is configured for manual booting, do not reload it from a virtual terminal. This restriction prevents the switch from entering the boot loader mode and thereby taking it from the remote user’s control.

If you modify your configuration file, the switch prompts you to save the configuration before reloading. During the save operation, the system requests whether you want to proceed with the save if the CONFIG_FILE environment variable points to a startup configuration file that no longer exists. If you proceed in this situation, the system enters setup mode upon reload.

This example shows how to reload the software on the switch on the current day at 7:30 p.m:

Switch# reload at 19:30
Reload scheduled for 19:30:00 UTC Wed Jun 5 1996 (in 2 hours and 25 minutes)
Proceed with reload? [confirm]
This example shows how to reload the software on the switch at a future time:

```
Switch# reload at 02:00 jun 20
Reload scheduled for 02:00:00 UTC Thu Jun 20 1996 (in 344 hours and 53 minutes)
Proceed with reload? [confirm]
```

To cancel a previously scheduled reload, use the `reload cancel` privileged EXEC command.

Displaying Scheduled Reload Information

To display information about a previously scheduled reload or to determine if a reload has been scheduled on the switch, use the `show reload` privileged EXEC command.

It displays reload information including the time the reload is scheduled to occur and the reason for the reload (if it was specified when the reload was scheduled).
Configuring IE2100 CNS Agents

This chapter describes how to configure the Intelligence Engine 2100 (IE2100) Series Cisco Networking Services (CNS) embedded agents on your Catalyst 3550 switch.

For complete syntax and usage information for the commands used in this section, refer to the Cisco Intelligence Engine 2100 Series Configuration Registrar Manual, and select Cisco IOS Software Release 12.2 > New Feature Documentation > 12.2(2)T on Cisco.com.

This chapter consists of these sections:

- Understanding IE2100 Series Configuration Registrar Software, page 5-1
- Understanding CNS Embedded Agents, page 5-5
- Configuring CNS Embedded Agents, page 5-6
- Displaying CNS Configuration, page 5-13

Understanding IE2100 Series Configuration Registrar Software

The IE2100 Series Configuration Registrar is a network management device that acts as a configuration service for automating the deployment and management of network devices and services (see Figure 5-1). Each Configuration Registrar manages a group of Cisco IOS devices (switches and routers) and the services that they deliver, storing their configurations and delivering them as needed. The Configuration Registrar automates initial configurations and configuration updates by generating device-specific configuration changes, sending them to the device, executing the configuration change, and logging the results.

The Configuration Registrar supports standalone and server modes and has these CNS components:

- Configuration service (web server, file manager, and namespace mapping server)
- Event service (event gateway)
- Data service directory (data models and schema)

In standalone mode, the Configuration Registrar supports an embedded CNS Directory Service. In this mode, no external directory or other data store is required. In server mode, the Configuration Registrar supports the use of a user-defined external directory.
These sections contain this conceptual information:

- CNS Configuration Service, page 5-2
- CNS Event Service, page 5-3
- What You Should Know About ConfigID, DeviceID, and Host Name, page 5-3

CNS Configuration Service

The CNS Configuration Service is the core component of the Configuration Registrar. It consists of a configuration server that works with CNS configuration agents located on the switch. The CNS Configuration Service delivers device and service configurations to the switch for initial configuration and mass reconfiguration by logical groups. Switches receive their initial configuration from the CNS Configuration Service when they start up on the network for the first time.

The CNS Configuration Service uses the CNS Event Service to send and receive configuration change events and to send success and failure notifications.

The configuration server is a web server that uses configuration templates and the device-specific configuration information stored in the embedded (standalone mode) or remote (server mode) directory. Configuration templates are text files containing static configuration information in the form of CLI commands. In the templates, variables are specified using lightweight directory access protocol (LDAP) URLs that reference the device-specific configuration information stored in a directory.

The configuration agent can perform a syntax check on received configuration files and publish events to indicate the success or failure of the syntax check. The configuration agent can either apply configurations immediately or delay the application until receipt of a synchronization event from the configuration server.

![Figure 5-1 Configuration Registrar Architectural Overview](image-url)
CNS Event Service

The Configuration Registrar uses the CNS Event Service for receipt and generation of configuration events. The CNS event agent resides on the switch and facilitates the communication between the switch and the event gateway on the Configuration Registrar.

The CNS Event Service is a highly-scalable publish-and-subscribe communication method. The CNS Event Service uses subject-based addressing to send messages to their destinations. Subject-based addressing conventions define a simple, uniform namespace for messages and their destinations.

NameSpace Mapper

The Configuration Registrar includes the NameSpace Mapper (NSM) that provides a lookup service for managing logical groups of devices based on application, device ID or group ID, and event. Cisco IOS devices recognize only event subject-names that match those configured in Cisco IOS software; for example, cisco.cns.config.load. You can use the namespace mapping service to designate events by using any desired naming convention. When you have populated your data store with your subject names, NSM resolves your event subject-name strings to those known by IOS.

For a subscriber, when given a unique device ID and event, the namespace mapping service returns a set of events to which to subscribe. Similarly, for a publisher, when given a unique group ID, device ID, and event, the mapping service returns a set of events on which to publish.

What You Should Know About ConfigID, DeviceID, and Host Name

The Configuration Registrar assumes that a unique identifier is associated with each configured switch. This unique identifier can take on multiple synonyms, where each synonym is unique within a particular namespace. The event service uses namespace content for subject-based addressing of messages.

The Configuration Registrar intersects two namespaces, one for the event bus and the other for the configuration server. Within the scope of the configuration server namespace, the term configID is the unique identifier for a device. Within the scope of the event bus namespace, the term deviceID is the CNS unique identifier for a device.

Because the Configuration Registrar uses both the event bus and the configuration server to provide configurations to devices, you must define both configID and deviceID for each configured switch.

Within the scope of a single instance of the configuration server, no two configured switches can share the same value for configID. Within the scope of a single instance of the event bus, no two configured switches can share the same value for deviceID.

ConfigID

Each configured switch has a unique configID, which serves as the key into the Configuration Registrar directory for the corresponding set of switch CLI attributes. The configID defined on the switch must match the configID for the corresponding switch definition on the Configuration Registrar.

The configID is fixed at boot time and cannot be changed until reboot, even when the switch host name is reconfigured.
DeviceID

Each configured switch participating on the event bus has a unique deviceID, which is analogous to the switch source address so that the switch can be targeted as a specific destination on the bus. All switches configured with the `cns config partial` global configuration command must access the event bus. Therefore, the deviceID, as originated on the switch, must match the deviceID of the corresponding switch definition in the Configuration Registrar.

The origin of the deviceID is defined by the Cisco IOS host name of the switch. However, the deviceID variable and its usage reside within the event gateway, which is adjacent to the switch.

The logical Cisco IOS termination point on the event bus is embedded in the event gateway, which in turn functions as a proxy on behalf of the switch. The event gateway represents the switch and its corresponding deviceID to the event bus.

The switch declares its host name to the event gateway immediately after the successful connection to the event gateway. The event gateway couples the deviceID value to the Cisco IOS host name each time this connection is established. The event gateway caches this deviceID value for the duration of its connection to the switch.

Host Name and DeviceID

The deviceID is fixed at the time of the connection to the event gateway and does not change even when the switch host name is reconfigured.

When changing the switch host name on the switch, the only way to refresh the deviceID is to break the connection between the switch and the event gateway. Enter the `no cns event` global configuration command followed by the `cns event` global configuration command.

When the connection is re-established, the switch sends its modified host name to the event gateway. The event gateway redefines the deviceID to the new value.

Caution

When using the Configuration Registrar user interface, you must first set the deviceID field to the host name value that the switch acquires after—not before—you use the `cns config initial` global configuration command at the switch. Otherwise, subsequent `cns config partial` global configuration command operations malfunction.

Using Host Name, DeviceID, and ConfigID

In standalone mode, when a host name value is set for a switch, the configuration server uses the host name as the deviceID when an event is sent on host name. If the host name has not been set, the event is sent on the `cn=<value>` of the device.

In server mode, the host name is not used. In this mode, the unique deviceID attribute is always used for sending an event on the bus. If this attribute is not set, you cannot update the switch.

These and other associated attributes (tag value pairs) are set when you run Setup on the Configuration Registrar.

Note

For more information about running the setup program on the Configuration Registrar, refer to the *Cisco Intelligence Engine 2100 Series Configuration Registrar Manual*.
Understanding CNS Embedded Agents

The CNS event agent feature allows the switch to publish and subscribe to events on the event bus and works with the CNS configuration agent. The CNS configuration agent feature supports the switch by providing:

- Initial configurations
- Incremental (partial) configurations
- Synchronized configuration updates

Initial Configuration

When the switch first comes up, it attempts to get an IP address by broadcasting a Dynamic Host Configuration Protocol (DHCP) request on the network. Assuming there is no DHCP server on the subnet, the distribution switch acts as a DHCP relay agent and forwards the request to the DHCP server. Upon receiving the request, the DHCP server assigns an IP address to the new switch and includes the Trivial File Transfer Protocol (TFTP) server IP address, the path to the bootstrap configuration file, and the default gateway IP address in a unicast reply to the DHCP relay agent. The DHCP relay agent forwards the reply to the switch.

The switch automatically configures the assigned IP address on interface VLAN 1 (the default) and downloads the bootstrap configuration file from the TFTP server. Upon successful download of the bootstrap configuration file, the switch loads the file in its running configuration.

The embedded CNS agents initiate communication with the IE2100 Configuration Registrar by using the appropriate configID and eventID. The Configuration Registrar maps the configID to a template and downloads the full configuration file to the switch.

Figure 5-2 shows a sample network configuration for retrieving the initial bootstrap configuration file by using DHCP-based autoconfiguration.
Incremental (Partial) Configuration

After the network is running, new services can be added by using the CNS configuration agent. Incremental (partial) configurations can be sent to the switch. The actual configuration can be sent as an event payload by way of the event gateway (push operation) or as a signal event that triggers the switch to initiate a pull operation.

The switch can check the syntax of the configuration before applying it. If the syntax is correct, the switch applies the incremental configuration and publishes an event that signals success to the configuration server. If the switch does not apply the incremental configuration, it publishes an event showing an error status. When the switch has applied the incremental configuration, it can write it to nonvolatile RAM (NVRAM) or wait until signaled to do so.

Synchronized Configuration

When the switch receives a configuration, it can defer application of the configuration upon receipt of a write-signal event. The write-signal event tells the switch not to save the updated configuration into its NVRAM. The switch uses the updated configuration as its running configuration. This ensures that the switch configuration is synchronized with other network activities before saving the configuration in NVRAM for use at the next reboot.

Configuring CNS Embedded Agents

The CNS agents embedded in the switch IOS software allow the switch to be connected and automatically configured as described in the “Enabling Automated CNS Configuration” section on page 5-6. If you want to change the configuration or install a custom configuration, see these sections for instructions:

- Enabling the CNS Event Agent, page 5-8
- Enabling the CNS Configuration Agent, page 5-9

Enabling Automated CNS Configuration

To enable automated CNS configuration of the switch, you must first complete the prerequisites in Table 5-1. When you complete them, power on the switch. At the setup prompt, do nothing: The switch begins the initial configuration as described in the “Initial Configuration” section on page 5-5. When the full configuration file is loaded on your switch, you need to do nothing else.

<table>
<thead>
<tr>
<th>Device</th>
<th>Required Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access switch</td>
<td>Factory default (no configuration file)</td>
</tr>
<tr>
<td>Distribution switch</td>
<td>• IP helper address</td>
</tr>
<tr>
<td></td>
<td>• Enable DHCP relay agent</td>
</tr>
<tr>
<td></td>
<td>• IP routing (if used as default gateway)</td>
</tr>
</tbody>
</table>

Table 5-1 Prerequisites for Enabling Automatic Configuration
Table 5-1 Prerequisites for Enabling Automatic Configuration (continued)

<table>
<thead>
<tr>
<th>Device</th>
<th>Required Configuration</th>
</tr>
</thead>
</table>
| DHCP server | • IP address assignment
| | • TFTP server IP address
| | • Path to bootstrap configuration file on the TFTP server
| | • Default gateway IP address |
| TFTP server | • Create a bootstrap configuration file that includes the CNS configuration commands that enable the switch to communicate with the IE2100 Configuration Registrar.
| | • Configure the switch to use either the switch MAC address or the serial number (instead of the default host name) to generate the configID and eventID.
| | • Configure the CNS event agent to push the configuration file to the switch. |
| IE2100 Configuration Registrar | Create one or more templates for each type of device, and map the configID of the device to the template. |

Note: For more information about running the setup program and creating templates on the Configuration Registrar, refer to the *Cisco Intelligence Engine 2100 Series Configuration Registrar Manual*.
Enabling the CNS Event Agent

You must enable the CNS event agent on the switch before you enable the CNS configuration agent.

Beginning in privileged EXEC mode, follow these steps to enable the CNS event agent on the switch:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>cns event {ip-address</td>
<td>hostname} [port-number] [backup] [init-retry retry-count] [keepalive seconds retry-count] [source ip-address]</td>
</tr>
<tr>
<td>Note</td>
<td>Though visible in the command-line help string, the encrypt and force-fmt1 keywords are not supported.</td>
<td></td>
</tr>
</tbody>
</table>

- For \{ip-address | hostname\}, enter either the IP address or the host name of the event gateway.
- (Optional) For port number, enter the port number for the event gateway. The default port number is 11011.
- (Optional) Enter backup to show that this is the backup gateway. (If omitted, this is the primary gateway.)
- (Optional) For init-retry retry-count, enter the number of initial retries before switching to backup. The default is 3.
- (Optional) For keepalive seconds, enter how often the switch sends keepalive messages. For retry-count, enter the number of unanswered keepalive messages that the switch sends before the connection is terminated. The default for each is 0.
- (Optional) For source ip-address, enter the source IP address of this device.

Step 3	end	Return to privileged EXEC mode.
Step 4	show cns event connections	Verify information about the event agent.
Step 5	show running-config	Verify your entries.
Step 6	copy running-config startup-config	(Optional) Save your entries in the configuration file.
To disable the CNS event agent, use the `no cns event {ip-address | hostname}` global configuration command.

This example shows how to enable the CNS event agent, set the IP address gateway to 10.180.1.27, set 120 seconds as the keepalive interval, and set 10 as the retry count.

```
Switch(config)# cns event 10.180.1.27 keepalive 120 10
```

Enabling the CNS Configuration Agent

After enabling the CNS event agent, start the CNS configuration agent on the switch. You can enable the configuration agent with these commands:

- the `cns config initial` global configuration command enables the configuration agent and initiates an initial configuration on the switch.
- the `cns config partial` global configuration command enables the configuration agent and initiates a partial configuration on the switch. You can then remotely send incremental configurations to the switch from the Configuration Registrar.

Enabling an Initial Configuration

Beginning in privileged EXEC mode, follow these steps to enable the CNS configuration agent and initiate an initial configuration on the switch:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>cns config connect-intf interface-prefix [ping-interval seconds] [retries num]</td>
<td>Enter the connect-interface-config submode, and specify the interface for connecting to the Configuration Registrar.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enter the <code>interface-prefix</code> for the connecting interface. You must specify the interface type but need not specify the interface number.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) For <code>ping-interval seconds</code>, enter the interval between successive ping attempts. The range is 1 to 30 seconds. The default is 10 seconds.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) For <code>retries num</code>, enter the number of ping retries. The range is 1 to 30. The default is 5.</td>
</tr>
</tbody>
</table>
Configuring CNS Embedded Agents

Step 3

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>config-cli</td>
<td>Enter config-cli to connect to the Configuration Registrar through the interface defined in cns config connect-intf. Enter line-cli to connect to the Registrar through modem dialup lines.</td>
</tr>
<tr>
<td>line-cli</td>
<td>Enter config-cli to connect to the Configuration Registrar through the interface defined in cns config connect-intf. Enter line-cli to connect to the Registrar through modem dialup lines.</td>
</tr>
</tbody>
</table>

Note
The config-cli interface configuration command accepts the special directive character & that acts as a placeholder for the interface name. When the configuration is applied, the & is replaced with the interface name. For example, to connect through FastEthernet0/0, the command `config-cli ip route 0.0.0.0 0.0.0.0 &` generates the command `ip route 0.0.0.0 0.0.0.0 FastEthernet0/0`.

Step 4

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
</tbody>
</table>

Step 5

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>hostname name</td>
<td>Enter the host name for the switch.</td>
</tr>
</tbody>
</table>

Step 6

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip route network-number</td>
<td>Establish a static route to the Configuration Registrar whose IP address is network-number.</td>
</tr>
</tbody>
</table>

Step 7

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>cns id interface num { dns-reverse</td>
<td>ipaddress</td>
</tr>
</tbody>
</table>

- For `interface num`, enter the type of interface—for example, Ethernet, Group-Async, Loopback, or Virtual-Template. This setting specifies from which interface the IP or MAC address should be retrieved to define the unique ID.

- For `{ dns-reverse | ipaddress | mac-address }`, enter `dns-reverse` to retrieve the host name and assign it as the unique ID, enter `ipaddress` to use the IP address, or enter `mac-address` to use the MAC address as the unique ID.

- (Optional) Enter `event` to set the ID to be the event-id value used to identify the switch.

- For `{ hardware-serial | hostname| string string }`, enter `hardware-serial` to set the switch serial number as the unique ID, enter `hostname` (the default) to select the switch host name as the unique ID, or enter an arbitrary text string for `string string` as the unique ID.
To disable the CNS configuration agent, use the **no cns config initial**
(ip-address | hostname) global configuration command.

This example shows how to configure an initial configuration on a remote switch. The switch host name is the unique ID. The CNS Configuration Registrar IP address is 172.28.129.22.

```bash
Switch(config)# cns config connect-intf serial ping-interval 1 retries 1
Switch(config-cns-conn-if)# config-cli ip address negotiated
Switch(config-cns-conn-if)# config-cli encapsulation ppp
Switch(config-cns-conn-if)# config-cli ip directed-broadcast
Switch(config-cns-conn-if)# config-cli no keepalive
Switch(config-cns-conn-if)# config-cli no shutdown
Switch(config-cns-conn-if)# exit
Switch(config)# hostname RemoteSwitch
RemoteSwitch(config)# ip route 10.1.1.1 255.255.255.255 11.11.11.1
RemoteSwitch(config)# cns id Ethernet 0 ipaddress
RemoteSwitch(config)# cns config initial 10.1.1.1 no-persist
```
Enabling a Partial Configuration

Beginning in privileged EXEC mode, follow these steps to enable the CNS configuration agent and to initiate a partial configuration on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>cns config partial {ip-address</td>
</tr>
<tr>
<td></td>
<td>Enable the configuration agent, and initiate a partial configuration.</td>
</tr>
<tr>
<td></td>
<td>• For {ip-address</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For port-number, enter the port number of the configuration server. The default port number is 80.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) Enter source ip-address to use for the source IP address.</td>
</tr>
<tr>
<td>Note</td>
<td>Though visible in the command-line help string, the encrypt keyword is not supported.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>show cns config stats</td>
</tr>
<tr>
<td></td>
<td>or show cns config outstanding</td>
</tr>
<tr>
<td></td>
<td>Verify information about the configuration agent.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable the CNS configuration agent, use the no cns config partial \{ip-address | hostname\} global configuration command. To cancel a partial configuration, use the cns config cancel privileged EXEC command.
You can use the privileged EXEC commands in Table 5-2 to display CNS Configuration information.

Table 5-2 Displaying CNS Configuration

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show cns config connections</td>
<td>Displays the status of the CNS configuration agent connections.</td>
</tr>
<tr>
<td>show cns config outstanding</td>
<td>Displays information about incremental (partial) CNS configurations that have started but are not yet completed.</td>
</tr>
<tr>
<td>show cns config stats</td>
<td>Displays statistics about the CNS configuration agent.</td>
</tr>
<tr>
<td>show cns event connections</td>
<td>Displays the status of the CNS event agent connections.</td>
</tr>
<tr>
<td>show cns event stats</td>
<td>Displays statistics about the CNS event agent.</td>
</tr>
<tr>
<td>show cns event subject</td>
<td>Displays a list of event agent subjects that are subscribed to by applications.</td>
</tr>
</tbody>
</table>
Chapter 6

Clustering Switches

This chapter provides these topics to help you get started with switch clustering:

- **Understanding Switch Clusters**, page 6-2
- **Planning a Switch Cluster**, page 6-5
- **Creating a Switch Cluster**, page 6-18
- **Using the CLI to Manage Switch Clusters**, page 6-25
- **Using SNMP to Manage Switch Clusters**, page 6-26

Configuring switch clusters is more easily done from the Cluster Management Suite (CMS) web-based interface than through the command-line interface (CLI). Therefore, information in this chapter focuses on using CMS to create a cluster. See Chapter 3, “Getting Started with CMS,” for additional information about switch clusters and the clustering options. For complete procedures about using CMS to configure switch clusters, refer to the online help.

For the CLI cluster commands, refer to the switch command reference.

Refer to the release notes for the list of Catalyst switches eligible for switch clustering, including which ones can be command switches and which ones can only be member switches, and for the required software versions and browser and Java plug-in configurations.

Note

This chapter focuses on Catalyst 3550 switch clusters. It also includes guidelines and limitations for clusters mixed with other cluster-capable Catalyst switches, but it does not provide complete descriptions of the cluster features for these other switches. For complete cluster information for a specific Catalyst platform, refer to the software configuration guide for that switch.
Understanding Switch Clusters

A switch cluster is a group of connected Catalyst switches that are managed as a single entity. In a switch cluster, 1 switch must be the command switch and up to 15 switches can be member switches. The total number of switches in a cluster cannot exceed 16 switches. The command switch is the single point of access used to configure, manage, and monitor the member switches. Cluster members can belong to only one cluster at a time.

The benefits of clustering switches include:

- Management of Catalyst switches regardless of their interconnection media and their physical locations. The switches can be in the same location, or they can be distributed across a Layer 2 or Layer 3 (if your cluster is using a Catalyst 3550 multilayer switch as a Layer 3 router between the Layer 2 switches in the cluster) network.

Cluster members are connected to the command switch according to the connectivity guidelines described in the “Automatic Discovery of Cluster Candidates and Members” section on page 6-5. This section includes management VLAN considerations for the Catalyst 1900, Catalyst 2820, Catalyst 2900 XL, Catalyst 2950, and Catalyst 3500 XL switches. For complete information about these switches in a switch-cluster environment, refer to the software configuration guide for that specific switch.

- Command-switch redundancy if a command switch fails. One or more switches can be designated as standby command switches to avoid loss of contact with cluster members. A cluster standby group is a group of standby command switches.

- Management of a variety of Catalyst switches through a single IP address. This conserves on IP addresses, especially if you have a limited number of them. All communication with the switch cluster is through the command switch IP address.

For other clustering benefits, see the “Advantages of Using CMS and Clustering Switches” section on page 1-7.

Refer to the release notes for the list of Catalyst switches eligible for switch clustering, including which ones can be command switches and which ones can only be member switches, and the required software versions.

These sections describe:

- Command Switch Characteristics, page 6-3
- Standby Command Switch Characteristics, page 6-3
- Candidate Switch and Member Switch Characteristics, page 6-4
Command Switch Characteristics

A Catalyst 3550 command switch must meet these requirements:

- It is running Release 12.1(4)EA1 or later.
- It has an IP address.
- It has Cisco Discovery Protocol (CDP) version 2 enabled (the default).
- It is not a command or member switch of another cluster.
- It is connected to the standby command switches through the management VLAN and to the member switches through a common VLAN.
- It is connected to the standby command switches through the management VLAN and to the member switches through a common VLAN.

Note

- We strongly recommend that the highest-end, command-capable switch in the cluster be the command switch:
 - If your switch cluster has a Catalyst 3550 switch, that switch should be the command switch.
 - If your switch cluster has Catalyst 2900 XL, Catalyst 2950, Catalyst 2955, and Catalyst 3500 XL switches, the Catalyst 2950 or the Catalyst 2955 should be the command switch.
 - If your switch cluster has Catalyst 1900, Catalyst 2820, Catalyst 2900 XL, and Catalyst 3500 XL switches, either the Catalyst 2900 XL or Catalyst 3500 XL should be the command switch.

Standby Command Switch Characteristics

A Catalyst 3550 standby command switch must meet these requirements:

- It is running Release 12.1(4)EA1 or later.
- It has an IP address.
- It has CDP version 2 enabled.
- It is connected to other standby switches through its management VLAN and to all member switches through a common VLAN.
- It is connected to other standby switches through its management VLAN and to all member switches through a common VLAN.
- It is redundantly connected to the cluster so that connectivity to member switches is maintained.
- It is not a command or member switch of another cluster.

Note

- Standby command switches must meet these requirements:
 - When the command switch is a Catalyst 3550 switch, all standby command switches must be Catalyst 3550 switches.
 - When the command switch is a Catalyst 2955 switch running Release 12.1(12c)EA1 or later, all standby command switches must be Catalyst 2955 switches running Release 12.1(12c)EA1 or later.
- When the command switch is a Catalyst 2950 switch running Release 12.1(9)EA1 or later, all standby command switches must be Catalyst 2950 switches running Release 12.1(9)EA1 or later.
- When the command switch is a Catalyst 2950 switch running Release 12.1(6)EA2 or later, all standby command switches must be Catalyst 2950 switches running Release 12.1(6)EA2 or later.
- When the command switch is running Release 12.0(5)WC2 or earlier, the standby command switches can be these switches: Catalyst 2900 XL, Catalyst 2950, and Catalyst 3500 XL switches.

- We strongly recommend that the command switch and standby command switches are of the same switch platform.
 - If you have a Catalyst 3550 command switch, the standby command switches should be Catalyst 3550 switches.
 - If you have a Catalyst 2955 command switch, the standby command switches should be Catalyst 2955 switches.
 - If you have a Catalyst 2950 command switch, the standby command switches should be Catalyst 2950 switches.
 - If you have a Catalyst 2900 XL or Catalyst 3500 XL command switch, the standby command switches should be Catalyst 2900 XL and Catalyst 3500 XL switches.

Candidate Switch and Member Switch Characteristics

Candidate switches are cluster-capable switches that have not yet been added to a cluster. Member switches are switches that have actually been added to a switch cluster. Although not required, a candidate or member switch can have its own IP address and password (for related considerations, see the “IP Addresses” section on page 6-16 and “Passwords” section on page 6-16).

To join a cluster, a candidate switch must meet these requirements:

- It is running cluster-capable software.
- It has CDP version 2 enabled.
- It is not a command or member switch of another cluster.
- It is connected to the command switch through at least one common VLAN.
- If a cluster standby group exists, it is connected to every standby command switch through at least one common VLAN. The VLAN to each standby command switch can be different.

Note

Catalyst 1900, Catalyst 2820, Catalyst 2900 XL, Catalyst 2950, and Catalyst 3500 XL candidate and member switches must be connected through their management VLAN to the command switch and standby command switches.

This requirement does not apply if you have a Catalyst 3550 command switch. Candidate and member switches can connect through any VLAN in common with the command switch.
Planning a Switch Cluster

Anticipating conflicts and compatibility issues is a high priority when you manage several switches through a cluster. This section describes these guidelines, requirements, and caveats that you should understand before you create the cluster:

- Automatic Discovery of Cluster Candidates and Members, page 6-5
- HSRP and Standby Command Switches, page 6-12
- IP Addresses, page 6-16
- Host Names, page 6-16
- Passwords, page 6-16
- SNMP Community Strings, page 6-17
- TACACS+ and RADIUS, page 6-17
- Access Modes in CMS, page 6-17
- LRE Profiles, page 6-18
- Availability of Switch-Specific Features in Switch Clusters, page 6-18

Refer to the release notes for the list of Catalyst switches eligible for switch clustering, including which ones can be command switches and which ones can only be member switches, and for the required software versions and browser and Java plug-in configurations.

Automatic Discovery of Cluster Candidates and Members

The command switch uses Cisco Discovery Protocol (CDP) to discover member switches, candidate switches, neighboring switch clusters, and edge devices across multiple VLANs and in star or cascaded topologies.

![Note]

Do not disable CDP on the command switch, on cluster members, or on any cluster-capable switches that you might want a command switch to discover. For more information about CDP, see Chapter 21, “Configuring CDP.”

Following these connectivity guidelines ensures automatic discovery of the switch cluster, cluster candidates, connected switch clusters, and neighboring edge devices:

- Discovery through CDP Hops, page 6-6
- Discovery through Non-CDP-Capable and Noncluster-Capable Devices, page 6-6
- Discovery through Different VLANs, page 6-7
- Discovery through the Same Management VLAN, page 6-8
- Discovery through Different Management VLANs, page 6-9
- Discovery through Routed Ports, page 6-10
- Discovery of Newly Installed Switches, page 6-11
Discovery through CDP Hops

By using CDP, a command switch can discover switches up to seven CDP hops away (the default is three hops) from the edge of the cluster. The edge of the cluster is where the last member switches are connected to the cluster and to candidate switches. For example, member switches 9 and 10 in Figure 6-1 are at the edge of the cluster.

You can set the number of hops the command switch searches for candidate and member switches by selecting Cluster > Hop Count. When new candidate switches are added to the network, the command switch discovers them and adds them to the list of candidate switches.

In Figure 6-1, the command switch has ports assigned to VLANs 16 and 62. The CDP hop count is three. The command switch discovers switches 11, 12, 13, and 14 because they are within three hops from the edge of the cluster. It does not discover switch 15 because it is four hops from the edge of the cluster.

Discovery through Non-CDP-Capable and Noncluster-Capable Devices

If a command switch is connected to a non-CDP-capable third-party hub (such as a non-Cisco hub), it can discover cluster-enabled devices connected to that third-party hub. However, if the command switch is connected to a noncluster-capable Cisco device, it cannot discover a cluster-enabled device connected beyond the noncluster-capable Cisco device.

Figure 6-2 shows that the command switch discovers the Catalyst 3500 XL switch, which is connected to a third-party hub. However, the command switch does not discover the Catalyst 3550 switch that is connected to a Catalyst 5000 switch.

Refer to the release notes for the Catalyst switches that can be part of a switch cluster.
Discovery through Different VLANs

If the command switch is a Catalyst 3550 switch, the cluster can have member switches in different VLANs. Catalyst 3550 member switches must be connected through at least one VLAN in common with the command switch. The command switch in Figure 6-3 has ports assigned to VLANs 9, 16, and 62 and therefore discovers the switches in those VLANs. It does not discover the switch in VLAN 50. It also does not discover the switch in VLAN 16 in the first column because the command switch has no VLAN connectivity to it.

Catalyst 2900 XL, Catalyst 2950, and Catalyst 3500 XL member switches must be connected to the command switch through their management VLAN. For information about discovery through management VLANs, see the “Discovery through the Same Management VLAN” section on page 6-8 and the “Discovery through Different Management VLANs” section on page 6-9. For more information about VLANs, see Chapter 11, “Configuring VLANs.”
Discovery through the Same Management VLAN

A Catalyst 2900 XL command switch, a Catalyst 2950 command switch running a release earlier than Release 12.1(9)EA1, or a Catalyst 3500 XL command switch must connect to all cluster members through its management VLAN. The default management VLAN is VLAN 1. For more information about management VLANs, refer to the software configuration guide for the specific switch.

You can avoid this limitation by using, whenever possible, a Catalyst 3550 command switch, a Catalyst 2955 switch running Release 12.1(12c)EA1 or later, or a Catalyst 2950 command switch running Release 12.1(9)EA1 or later. These command switches can manage cluster members even if they belong to different management VLANs. See the “Discovery through Different Management VLANs” section on page 6-9.

The command switch in Figure 6-4 has ports assigned to management VLAN 9. It discovers all but these switches:

- Switches 7 and 10 because their management VLAN (VLAN 4) is different from the command-switch management VLAN (VLAN 9)
- Switch 9 because automatic discovery does not extend beyond a noncandidate device, which is switch 7

Figure 6-4 Discovery through the Same Management VLAN

![Diagram showing the discovery through the same management VLAN](image-url)
Discovery through Different Management VLANs

We recommend using a Catalyst 3550 command switch, a Catalyst 2955 command switch running Release 12.1(12c)EA1 or later, or a Catalyst 2950 command switch running Release 12.1(9)EA1 or later. These command switches can discover and manage member switches in different VLANs and different management VLANs. Catalyst 3550 member switches, Catalyst 2955 member switches running Release 12.1(12c)EA1 or later, and Catalyst 2950 member switches running Release 12.1(9)EA1 or later must be connected through at least one VLAN in common with the command switch. All other member switches must be connected to the command switch through their management VLAN.

In contrast, a Catalyst 2900 XL command switch, a Catalyst 2950 command switch running a release earlier than Release 12.1(9)EA1, or a Catalyst 3500 XL command switch must connect to all cluster members through its management VLAN. The default management VLAN is VLAN 1. For information about discovery through the same management VLAN on these switches, see the “Discovery through the Same Management VLAN” section on page 6-8.

The Catalyst 2950 command switch (running Release 12.1(9)EA1 or later) in Figure 6-5 and the Catalyst 3550 command switch in Figure 6-6 have ports assigned to VLANs 9, 16, and 62. The management VLAN on the Catalyst 2950 command switch is VLAN 9. Each command switch discovers the switches in the different management VLANs except these:

- Switches 7 and 10 (switches in management VLAN 4) because they are not connected through a common VLAN (meaning VLANs 62 and 9) with the command switch
- Switch 9 because automatic discovery does not extend beyond a noncandidate device, which is switch 7

Figure 6-5 Discovery through Different Management VLANs with a Layer 2 Command Switch
Discovery through Routed Ports

If the command switch has a routed port (RP) configured, it discovers only candidate and member switches in the same VLAN as the routed port. For more information about routed ports, see the “Routed Ports” section on page 10-4.

The command switch in Figure 6-7 can discover the switches in VLANs 9 and 62 but not the switch in VLAN 4. If the routed port path between the command switch and member switch 7 is lost, connectivity with member switch 7 is maintained because of the redundant path through VLAN 9.
Discovery of Newly Installed Switches

To join a cluster, the new, out-of-the-box switch must be connected to the cluster through one of its access ports. An access port (AP) carries the traffic of and belongs to only one VLAN. By default, the new switch and its access ports are assigned to VLAN 1.

When the new switch joins a cluster, its default VLAN changes to the VLAN of the immediately upstream neighbor. The new switch also configures its access port to belong to the VLAN of the immediately upstream neighbor.

The command switch in Figure 6-8 belongs to VLANs 9 and 16. When the new Catalyst 3550 and Catalyst 2950 switches join the cluster:

- The Catalyst 3550 switch and its access port are assigned to VLAN 9.
- The Catalyst 2950 switch and its access port are assigned to management VLAN 16.
HSRP and Standby Command Switches

The switch supports Hot Standby Router Protocol (HSRP) so that you can configure a group of standby command switches. Because a command switch manages the forwarding of all communication and configuration information to all the member switches, we strongly recommend that you configure a cluster standby command switch to take over if the primary command switch fails.

A cluster standby group is a group of command-capable switches that meet the requirements described in the “Standby Command Switch Characteristics” section on page 6-3. Only one cluster standby group can be assigned per cluster.

Note

- When the command switch is a Catalyst 3550 switch, all standby command switches must be Catalyst 3550 switches.
- When the command switch is a Catalyst 2955 switch running Release 12.1(12c)EA1 or later, all standby command switches must be Catalyst 2955 switches running Release 12.1(12c)EA1 or later.
- When the command switch is a Catalyst 2950 switch running Release 12.1(9)EA1 or later, all standby command switches must be Catalyst 2950 switches running Release 12.1(9)EA1 or later.
- When the command switch is a Catalyst 2950 switch running Release 12.1(6)EA2 or later, all standby command switches must be Catalyst 2950 switches running Release 12.1(6)EA2 or later.
- When the command switch is running Release 12.0(5)WC2 or earlier, the standby command switches can be these switches: Catalyst 2900 XL, Catalyst 2950, and Catalyst 3500 XL switches.

Note

The cluster standby group is an HSRP group. Disabling HSRP disables the cluster standby group.
The switches in the cluster standby group are ranked according to HSRP priorities. The switch with the highest priority in the group is the **active command switch** (AC). The switch with the next highest priority is the **standby command switch** (SC). The other switches in the cluster standby group are the **passive command switches** (PC). If the active command switch and the standby command switch become disabled at the same time, the passive command switch with the highest priority becomes the active command switch. For the limitations to automatic discovery, see the “Automatic Recovery of Cluster Configuration” section on page 6-15. For information about changing HSRP priority values, see the “Configuring HSRP Priority” section on page 31-6. The HSRP commands are the same for changing the priority of cluster standby group members and router-redundancy group members.

Note

The HSRP standby hold time interval should be greater than or equal to 3 times the hello time interval. The default HSRP standby hold time interval is 10 seconds. The default HSRP standby hello time interval is 3 seconds. For more information about the standby hold time and hello time intervals, see the “Configuring HSRP Authentication and Timers” section on page 31-8.

These connectivity guidelines ensure automatic discovery of the switch cluster, cluster candidates, connected switch clusters, and neighboring edge devices. These topics also provide more detail about standby command switches:

- Virtual IP Addresses, page 6-13
- Other Considerations for Cluster Standby Groups, page 6-13
- Automatic Recovery of Cluster Configuration, page 6-15

Virtual IP Addresses

You need to assign a unique virtual IP address and group number and name to the cluster standby group. This information must be configured on a specific VLAN or routed port on the active command switch. The active command switch receives traffic destined for the virtual IP address. To manage the cluster, you must access the active command switch through the virtual IP address, not through the command-switch IP address. This is in case the IP address of the active command switch is different from the virtual IP address of the cluster standby group.

If the active command switch fails, the standby command switch assumes ownership of the virtual IP address and becomes the active command switch. The passive switches in the cluster standby group compare their assigned priorities to determine the new standby command switch. The passive standby switch with the highest priority then becomes the standby command switch. When the previously active command switch becomes active again, it resumes its role as the active command switch, and the current active command switch becomes the standby command switch again. For more information about IP address in switch clusters, see the “IP Addresses” section on page 6-16.

Other Considerations for Cluster Standby Groups

These requirements also apply:

- Standby command switches must meet these requirements:
 - When the command switch is a Catalyst 3550 switch, all standby command switches must be Catalyst 3550 switches.
 - When the command switch is a Catalyst 2955 switch running Release 12.1(12c)EA1 or later, all standby command switches must be Catalyst 2955 switches running Release 12.1(12c)EA1 or later.
- When the command switch is a Catalyst 2950 switch running Release 12.1(9)EA1 or later, all standby command switches must be Catalyst 2950 switches running Release 12.1(9)EA1 or later.

- When the command switch is a Catalyst 2950 switch running Release 12.1(6)EA2 or later, all standby command switches must be Catalyst 2950 switches running Release 12.1(6)EA2 or later.

- When the command switch is running Release 12.0(5)WC2 or earlier, the standby command switches can be these switches: Catalyst 2900 XL, Catalyst 2950, and Catalyst 3500 XL switches.

We strongly recommend that the command switch and standby command switches are of the same switch platform.

- If you have a Catalyst 3550 command switch, the standby command switches should be Catalyst 3550 switches.

- If you have a Catalyst 2955 command switch, the standby command switches should be Catalyst 2955 switches.

- If you have a Catalyst 2950 command switch, the standby command switches should be Catalyst 2950 switches.

- If you have a Catalyst 2900 XL or Catalyst 3500 XL command switch, the standby command switches should be Catalyst 2900 XL and Catalyst 3500 XL switches.

* Only one cluster standby group can be assigned to a cluster. You can have more than one router-redundancy standby group.

An HSRP group can be both a cluster standby group and a router-redundancy group. However, if a router-redundancy group becomes a cluster standby group, router redundancy becomes disabled on that group. You can reenable it by using the CLI. For more information about HSRP and router redundancy, see Chapter 31, “Configuring HSRP.”

* All standby-group members must be members of the cluster.

Note There is no limit to the number of switches that you can assign as standby command switches. However, the total number of switches in the cluster—which would include the active command switch, standby-group members, and member switches—cannot be more than 16.

* Each standby-group member (Figure 6-9) must be connected to the command switch through the same VLAN. Each standby-group member must also be redundantly connected to each other through at least one VLAN in common with the switch cluster.

Catalyst 1900, Catalyst 2820, Catalyst 2900 XL, Catalyst 2950, Catalyst 2955, and Catalyst 3500 XL member switches must be connected to the cluster standby group through their management VLANs. For more information about VLANs in switch clusters, see these sections:

- “Discovery through Different VLANs” section on page 6-7
- “Discovery through the Same Management VLAN” section on page 6-8
- “Discovery through Different Management VLANs” section on page 6-9
Automatic Recovery of Cluster Configuration

The active command switch continually forwards cluster-configuration information (but not device-configuration information) to the standby command switch. This ensures that the standby command switch can take over the cluster immediately after the active command switch fails.

Automatic discovery has these limitations:

- This limitation applies only to clusters that have Catalyst 2950, Catalyst 2955, and Catalyst 3550 command and standby command switches: If the active command switch and standby command switch become disabled at the same time, the passive command switch with the highest priority becomes the active command switch. However, because it was a passive standby command switch, the previous command switch did not forward cluster-configuration information to it. The active command switch only forwards cluster-configuration information to the standby command switch. You must therefore rebuild the cluster.

- This limitation applies to all clusters: If the active command switch fails and there are more than two switches in the cluster standby group, the new command switch does not discover any Catalyst 1900, Catalyst 2820, and Catalyst 2916M XL member switches. You must re-add these member switches to the cluster.

- This limitation applies to all clusters: If the active command switch fails and becomes active again, it does not discover any Catalyst 1900, Catalyst 2820, and Catalyst 2916M XL member switches. You must again add these member switches to the cluster.

When the previously active command switch resumes its active role, it receives a copy of the latest cluster configuration from the active command switch, including members that were added while it was down. The active command switch sends a copy of the cluster configuration to the cluster standby group.
IP Addresses

You must assign IP information to a command switch. You can assign more than one IP address to the command switch, and you can access the cluster through any of the command-switch IP addresses. If you configure a cluster standby group, you must use the standby-group virtual IP address to manage the cluster from the active command switch. Using the virtual IP address ensures that you retain connectivity to the cluster if the active command switch fails and that a standby command switch becomes the active command switch.

If the active command switch fails and the standby command switch takes over, you must either use the standby-group virtual IP address or any of the IP addresses available on the new active command switch to access the cluster.

You can assign an IP address to a cluster-capable switch, but it is not necessary. A member switch is managed and communicates with other member switches through the command-switch IP address. If the member switch leaves the cluster and it does not have its own IP address, you then must assign IP information to it to manage it as a standalone switch.

Note

Changing the command switch IP address ends your CMS session on the switch. Restart your CMS session by entering the new IP address in the browser Location field (Netscape Communicator) or Address field (Internet Explorer), as described in the release notes.

For more information about IP addresses, see Chapter 4, “Assigning the Switch IP Address and Default Gateway.”

Host Names

You do not need to assign a host name to either a command switch or an eligible cluster member. However, a host name assigned to the command switch can help to identify the switch cluster. The default host name for the switch is Switch.

If a switch joins a cluster and it does not have a host name, the command switch appends a unique member number to its own host name and assigns it sequentially as each switch joins the cluster. The number means the order in which the switch was added to the cluster. For example, a command switch named eng-cluster could name the fifth cluster member eng-cluster-5.

If a switch has a host name, it retains that name when it joins a cluster. It retains that host name even after it leaves the cluster.

If a switch received its host name from the command switch, was removed from a cluster, was then added to a new cluster, and kept the same member number (such as 5), the old host name (such as eng-cluster-5) is overwritten with the host name of the command switch in the new cluster (such as mkg-cluster-5). If the switch member number changes in the new cluster (such as 3), the switch retains the previous name (eng-cluster-5).

Passwords

You do not need to assign passwords to an individual switch if it will be a cluster member. When a switch joins a cluster, it inherits the command-switch password and retains it when it leaves the cluster. If no command-switch password is configured, the member switch inherits a null password. Member switches only inherit the command-switch password.
If you change the member-switch password to be different from the command-switch password and save the change, the switch is not manageable by the command switch until you change the member-switch password to match the command-switch password. Rebooting the member switch does not revert the password back to the command-switch password. We recommend that you do not change the member-switch password after it joins a cluster.

For more information about passwords, see the “Preventing Unauthorized Access to Your Switch” section on page 8-1.

For password considerations specific to the Catalyst 1900 and Catalyst 2820 switches, refer to the installation and configuration guides for those switches.

SNMP Community Strings

A member switch inherits the command-switch first read-only (RO) and read-write (RW) community strings with \(@esN \) appended to the community strings:

- \(\text{command-switch-readonly-community-string}@esN \), where \(N \) is the member-switch number.
- \(\text{command-switch-readwrite-community-string}@esN \), where \(N \) is the member-switch number.

If the command switch has multiple read-only or read-write community strings, only the first read-only and read-write strings are propagated to the member switch.

The switches support an unlimited number of community strings and string lengths. For more information about SNMP and community strings, see Chapter 26, “Configuring SNMP.”

For SNMP considerations specific to the Catalyst 1900 and Catalyst 2820 switches, refer to the installation and configuration guides specific to those switches.

TACACS+ and RADIUS

Inconsistent authentication configurations in switch clusters cause CMS to continually prompt for a user name and password. If Terminal Access Controller Access Control System Plus (TACACS+) is configured on a cluster member, it must be configured on all cluster members. Similarly, if Remote Authentication Dial-In User Service (RADIUS) is configured on a cluster member, it must be configured on all cluster members. Further, the same switch cluster cannot have some members configured with TACACS+ and other members configured with RADIUS.

For more information about TACACS+, see the “Controlling Switch Access with TACACS+” section on page 8-10. For more information about RADIUS, see the “Controlling Switch Access with RADIUS” section on page 8-18.

Access Modes in CMS

CMS provides two levels of access to the configuration options: read-write access and read-only access. Privilege levels 0 to 15 are supported.

- Privilege level 15 provides you with read-write access to CMS.
- Privilege levels 1 to 14 provide you with read-only access to CMS. Any options in the CMS windows, menu bar, toolbar, and popup menus that change the switch or cluster configuration are not shown in read-only mode.
- Privilege level 0 denies access to CMS.
For more information about CMS access modes, see the “Access Modes in CMS” section on page 3-30.

Note
- If your cluster has these member switches running earlier software releases and if you have read-only access to these member switches, some configuration windows for those switches display incomplete information:
 - Catalyst 2900 XL or Catalyst 3500 XL member switches running Release 12.0(5)WC2 or earlier
 - Catalyst 2950 member switches running Release 12.0(5)WC2 or earlier
 - Catalyst 3550 member switches running Release 12.1(6)EA1 or earlier

For more information about this limitation, refer to the release notes.
- These switches do not support read-only mode on CMS:
 - Catalyst 1900 and Catalyst 2820
 - Catalyst 2900 XL switches with 4-MB CPU DRAM

In read-only mode, these switches appear as unavailable devices and cannot be configured from CMS.

LRE Profiles

A configuration conflict occurs if a switch cluster has Long-Reach Ethernet (LRE) switches that use both private and public profiles. If one LRE switch in a cluster is assigned a public profile, all LRE switches in that cluster must have that same public profile. Before you add an LRE switch to a cluster, make sure that you assign it the same public profile used by other LRE switches in the cluster.

A cluster can have a mix of LRE switches that use different private profiles.

Availability of Switch-Specific Features in Switch Clusters

The menu bar on the command switch displays all options available from the switch cluster. Therefore, features specific to a member switch are available from the command-switch menu bar. For example, Device > LRE Profile appears in the command-switch menu bar when at least one Catalyst 2900 LRE XL switch is in the cluster.

Creating a Switch Cluster

Using CMS to create a cluster is easier than using the CLI commands. This section provides this information:

- Enabling a Command Switch, page 6-19
- Adding Member Switches, page 6-20
- Creating a Cluster Standby Group, page 6-22
- Verifying a Switch Cluster, page 6-24
This section assumes you have already cabled the switches, as described in the switch hardware installation guide, and followed the guidelines described in the “Planning a Switch Cluster” section on page 6-5.

Note
Refer to the release notes for the list of Catalyst switches eligible for switch clustering, including which ones can be command switches and which ones can only be member switches, and for the required software versions and browser and Java plug-in configurations.

Enabling a Command Switch

The switch you designate as the command switch must meet the requirements described in the “Command Switch Characteristics” section on page 6-3, the “Planning a Switch Cluster” section on page 6-5, and the release notes.

Note
- We strongly recommend that the highest-end, command-capable switch in the cluster be the command switch:
 - If your switch cluster has a Catalyst 3550 switch, that switch should be the command switch.
 - If your switch cluster has Catalyst 2900 XL, Catalyst 2950, Catalyst 2955, and Catalyst 3500 XL switches, the Catalyst 2950 or Catalyst 2955 switch should be the command switch.
 - If your switch cluster has Catalyst 1900, Catalyst 2820, Catalyst 2900 XL, and Catalyst 3500 XL switches, either the Catalyst 2900 XL or Catalyst 3500 XL switch should be the command switch.

You can enable a command switch, name the cluster, and assign an IP address and a password to the command switch when you run the setup program during initial switch setup. For information about using the setup program, refer to the release notes.

If you did not enable a command switch during initial switch setup, launch Device Manager from a command-capable switch, and select Cluster > Create Cluster. Enter a cluster number (the default is 0), and use up to 31 characters to name the cluster (Figure 6-10). Instead of using CMS to enable a command switch, you can use the cluster enable global configuration command.

Figure 6-10 Create Cluster Window

![Create Cluster Window](image)
Adding Member Switches

As explained in the “Automatic Discovery of Cluster Candidates and Members” section on page 6-5, the command switch automatically discovers candidate switches. When you add new cluster-capable switches to the network, the command switch discovers them and adds them to a list of candidate switches. To display an updated cluster candidates list from the Add to Cluster window (Figure 6-11), either relaunch CMS and redisplay this window, or follow these steps:

1. Close the Add to Cluster window.
2. Select View > Refresh.
3. Select Cluster > Add to Cluster to redisplay the Add to Cluster window.

From CMS, there are two ways to add switches to a cluster:

- Select Cluster > Add to Cluster, select a candidate switch from the list, click Add, and click OK. To add more than one candidate switch, press Ctrl, and make your choices, or press Shift, and choose the first and last switch in a range.
- Display the Topology view, right-click a candidate-switch icon, and select Add to Cluster (Figure 6-12). In the Topology view, candidate switches are cyan, and member switches are green. To add more than one candidate switch, press Ctrl, and left-click the candidates that you want to add.

Instead of using CMS to add members to the cluster, you can use the cluster member global configuration command from the command switch. Use the password option in this command if the candidate switch has a password.

You can select 1 or more switches as long as the total number of switches in the cluster does not exceed 16 (this includes the command switch). When a cluster has 16 members, the Add to Cluster option is not available for that cluster. In this case, you must remove a member switch before adding a new one.

If a password has been configured on a candidate switch, you are prompted to enter it before it can be added to the cluster. If the candidate switch does not have a password, any entry is ignored.

If multiple candidates switches have the same password, you can select them as a group, and add them at the same time.

If a candidate switch in the group has a password different from the group, only that specific candidate switch is not added to the cluster.

When a candidate switch joins a cluster, it inherits the command-switch password. For more information about setting passwords, see the “Passwords” section on page 6-16.

For additional authentication considerations in switch clusters, see the “TACACS+ and RADIUS” section on page 6-17.
Enter the password of the candidate switch. If no password exists for the switch, leave this field blank.

Select a switch, and click Add. Press Ctrl and left-click to select more than one switch.

Thin line means a connection to a candidate switch. Right-click a candidate switch to display the pop-up menu, and select Add to Cluster to add the switch to the cluster.
Creating a Cluster Standby Group

The cluster standby group members must meet the requirements described in the “Standby Command Switch Characteristics” section on page 6-3 and “HSRP and Standby Command Switches” section on page 6-12. To create a cluster standby group, select Cluster > Standby Command Switches (Figure 6-13).

Instead of using CMS to add switches to a standby group and to bind the standby group to a cluster, you can use the standby ip, the standby name, and the standby priority interface configuration commands and the cluster standby group global configuration command.

Note

- When the command switch is a Catalyst 3550 switch, all standby command switches must be Catalyst 3550 switches.
- When the command switch is a Catalyst 2955 switch running Release 12.1(12c)EA1 or later, all standby command switches must be Catalyst 2955 switches running Release 12.1(12c)EA1 or later.
- When the command switch is a Catalyst 2950 switch running Release 12.1(9)EA1 or later, all standby command switches must be Catalyst 2950 switches running Release 12.1(9)EA1 or later.
- When the command switch is a Catalyst 2950 switch running Release 12.1(6)EA2 or later, all standby command switches must be Catalyst 2950 switches running Release 12.1(6)EA2 or later.
- When the command switch is running Release 12.0(5)WC2 or earlier, the standby command switches can be these switches: Catalyst 2900 XL, Catalyst 2950, and Catalyst 3500 XL switches.

These abbreviations are appended to the switch host names in the Standby Command Group list to show their eligibility or status in the cluster standby group:

- AC—Active command switch
- SC—Standby command switch
- PC—Member of the cluster standby group but not the standby command switch
- HC—Candidate switch that can be added to the cluster standby group
- CC—Command switch when HSRP is disabled

You must enter a virtual IP address for the cluster standby group. This address must be in the same subnet as the IP addresses of the switch. The group number must be unique within the IP subnet. It can be from 0 to 255, and the default is 0. The group name can have up to 31 characters.

The Standby Command Configuration window uses the default values for the preempt and name commands that you have set by using the CLI. If you use this window to create the HSRP group, all switches in the group have the preempt command enabled. You must also provide a name for the group.

Note

The HSRP standby hold time interval should be greater than or equal to 3 times the hello time interval. The default HSRP standby hold time interval is 10 seconds. The default HSRP standby hello time interval is 3 seconds. For more information about the standby hold time and hello time intervals, see the “Configuring HSRP Authentication and Timers” section on page 31-8.
Creating a Switch Cluster

Figure 6-13 Standby Command Configuration Window

Active command switch. Standby command switch.

Must be a valid IP address in the same subnet as the active command switch.

Once entered, this information cannot be changed.
Verifying a Switch Cluster

When you finish adding cluster members, follow these steps to verify the cluster:

Step 1 Enter the command switch IP address in the browser **Location** field (Netscape Communicator) or **Address** field (Microsoft Internet Explorer) to access all switches in the cluster.

Step 2 Enter the command-switch password.

Step 3 Select **View > Topology** to display the cluster topology and to view link information. For complete information about the Topology view, including descriptions of the icons, links, and colors, see the “Topology View” section on page 3-10.

Step 4 Select **Reports > Inventory** to display an inventory of the switches in the cluster (Figure 6-14).

The summary includes information such as switch model numbers, serial numbers, software versions, IP information, and location.

You can also display port and switch statistics from **Reports > Port Statistics** and **Port > Port Settings > Runtime Status**.

Instead of using CMS to verify the cluster, you can use the `show cluster members` user EXEC command from the command switch or use the `show cluster` user EXEC command from the command switch or from a member switch.

Figure 6-14 Inventory Window

If you lose connectivity with a member switch or if a command switch fails, see the “Using Recovery Procedures” section on page 36-1.

For more information about creating and managing clusters, refer to the online help. For information about the cluster commands, refer to the switch command reference.
Using the CLI to Manage Switch Clusters

You can configure member switches from the CLI by first logging into the command switch. Enter the `rcommand` user EXEC command and the member switch number to start a Telnet session (through a console or Telnet connection) and to access the member switch CLI. The command mode changes, and the IOS commands operate as usual. Enter the `exit` privileged EXEC command on the member switch to return to the command-switch CLI.

This example shows how to log into member-switch 3 from the command-switch CLI:

```
switch# rcommand 3
```

If you do not know the member-switch number, enter the `show cluster members` privileged EXEC command on the command switch. For more information about the `rcommand` command and all other cluster commands, refer to the switch command reference.

The Telnet session accesses the member-switch CLI at the same privilege level as on the command switch. The IOS commands then operate as usual. For instructions on configuring the switch for a Telnet session, see the “Disabling Password Recovery” section on page 8-5.

Catalyst 1900 and Catalyst 2820 CLI Considerations

If your switch cluster has Catalyst 1900 and Catalyst 2820 switches running standard edition software, the Telnet session accesses the management console (a menu-driven interface) if the command switch is at privilege level 15. If the command switch is at privilege level 1 to 14, you are prompted for the password to access the menu console.

Command-switch privilege levels map to the Catalyst 1900 and Catalyst 2820 member switches running standard and Enterprise Edition Software as follows:

- If the command-switch privilege level is 1 to 14, the member switch is accessed at privilege level 1.
- If the command-switch privilege level is 15, the member switch is accessed at privilege level 15.

Note

The Catalyst 1900 and Catalyst 2820 CLI is available only on switches running Enterprise Edition Software.

For more information about the Catalyst 1900 and Catalyst 2820 switches, refer to the installation and configuration guides for those switches.
Using SNMP to Manage Switch Clusters

When you first power on the switch, SNMP is enabled if you enter the IP information by using the setup program and accept its proposed configuration. If you did not use the setup program to enter the IP information and SNMP was not enabled, you can enable it as described in the “Configuring SNMP” section on page 26-5. On Catalyst 1900 and Catalyst 2820 switches, SNMP is enabled by default.

When you create a cluster, the command switch manages the exchange of messages between member switches and an SNMP application. The cluster software on the command switch appends the member switch number (@esN, where N is the switch number) to the first configured read-write and read-only community strings on the command switch and propagates them to the member switch. The command switch uses this community string to control the forwarding of gets, sets, and get-next messages between the SNMP management station and the member switches.

Note
When a cluster standby group is configured, the command switch can change without your knowledge. Use the first read-write and read-only community strings to communicate with the command switch if there is a cluster standby group configured for the cluster.

If the member switch does not have an IP address, the command switch redirects traps from the member switch to the management station, as shown in Figure 6-15. If a member switch has its own IP address and community strings, the member switch can send traps directly to the management station, without going through the command switch.

If a member switch has its own IP address and community strings, they can be used in addition to the access provided by the command switch. For more information about SNMP and community strings, see Chapter 26, “Configuring SNMP.”
Administering the Switch

This chapter describes how to perform one-time operations to administer your Catalyst 3550 switch. This chapter consists of these sections:

- Managing the System Time and Date, page 7-1
- Configuring a System Name and Prompt, page 7-15
- Creating a Banner, page 7-18
- Managing the MAC Address Table, page 7-20
- Optimizing System Resources for User-Selected Features, page 7-27

Managing the System Time and Date

You can manage the system time and date on your switch using automatic configuration, such as the Network Time Protocol (NTP), or manual configuration methods.

Note: For complete syntax and usage information for the commands used in this section, refer to the Cisco IOS Configuration Fundamentals Command Reference for Release 12.1.

This section contains this configuration information:

- Understanding the System Clock, page 7-1
- Understanding Network Time Protocol, page 7-2
- Configuring NTP, page 7-3
- Configuring Time and Date Manually, page 7-10

Understanding the System Clock

The heart of the time service is the system clock. This clock runs from the moment the system starts up and keeps track of the date and time.

The system clock can then be set from these sources:

- Network Time Protocol
- Manual configuration
The system clock can provide time to these services:

- User `show` commands
- Logging and debugging messages

The system clock keeps track of time internally based on Universal Time Coordinated (UTC), also known as Greenwich Mean Time (GMT). You can configure information about the local time zone and summer time (daylight saving time) so that the time is correctly displayed for the local time zone.

The system clock keeps track of whether the time is authoritative or not (that is, whether it has been set by a time source considered to be authoritative). If it is not authoritative, the time is available only for display purposes and is not redistributed. For configuration information, see the “Configuring Time and Date Manually” section on page 7-10.

Understanding Network Time Protocol

The NTP is designed to time-synchronize a network of devices. NTP runs over User Datagram Protocol (UDP), which runs over IP. NTP is documented in RFC 1305.

An NTP network usually gets its time from an authoritative time source, such as a radio clock or an atomic clock attached to a time server. NTP then distributes this time across the network. NTP is extremely efficient; no more than one packet per minute is necessary to synchronize two devices to within a millisecond of one another.

NTP uses the concept of a stratum to describe how many NTP hops away a device is from an authoritative time source. A stratum 1 time server has a radio or atomic clock directly attached, a stratum 2 time server receives its time through NTP from a stratum 1 time server, and so on. A device running NTP automatically chooses as its time source the device with the lowest stratum number with which it communicates through NTP. This strategy effectively builds a self-organizing tree of NTP speakers.

NTP avoids synchronizing to a device whose time might not be accurate by never synchronizing to a device that is not synchronized. NTP also compares the time reported by several devices and does not synchronize to a device whose time is significantly different than the others, even if its stratum is lower.

The communications between devices running NTP (known as associations) are usually statically configured; each device is given the IP address of all devices with which it should form associations. Accurate timekeeping is possible by exchanging NTP messages between each pair of devices with an association. However, in a LAN environment, NTP can be configured to use IP broadcast messages instead. This alternative reduces configuration complexity because each device can simply be configured to send or receive broadcast messages. However, in that case, information flow is one-way only.

The time kept on a device is a critical resource; you should use the security features of NTP to avoid the accidental or malicious setting of an incorrect time. Two mechanisms are available: an access list-based restriction scheme and an encrypted authentication mechanism.

Cisco’s implementation of NTP does not support stratum 1 service; it is not possible to connect to a radio or atomic clock. We recommend that the time service for your network be derived from the public NTP servers available on the IP Internet. Figure 7-1 show a typical network example using NTP.

If the network is isolated from the Internet, Cisco’s implementation of NTP allows a device to act as though it is synchronized through NTP, when in fact it has determined the time by using other means. Other devices then synchronize to that device through NTP.

When multiple sources of time are available, NTP is always considered to be more authoritative. NTP time overrides the time set by any other method.
Several manufacturers include NTP software for their host systems, and a publicly available version for systems running UNIX and its various derivatives is also available. This software allows host systems to be time-synchronized as well.

Figure 7-1 Typical NTP Network Configuration

![Typical NTP Network Configuration Diagram](image)

The Catalyst3550 switches do not have a hardware-supported clock, and they cannot function as an NTP master clock to which peers synchronize themselves when an external NTP source is not available. These switches also have no hardware support for a calendar. As a result, the `ntp update-calendar` and the `ntp master` global configuration commands are not available.

This section contains this configuration information:

- Default NTP Configuration, page 7-4
- Configuring NTP Authentication, page 7-4
- Configuring NTP Associations, page 7-5
- Configuring NTP Broadcast Service, page 7-6
- Configuring NTP Access Restrictions, page 7-7
- Configuring the Source IP Address for NTP Packets, page 7-9
- Displaying the NTP Configuration, page 7-10
Default NTP Configuration

Table 7-1 shows the default NTP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTP authentication</td>
<td>Disabled. No authentication key is specified.</td>
</tr>
<tr>
<td>NTP peer or server associations</td>
<td>None configured.</td>
</tr>
<tr>
<td>NTP broadcast service</td>
<td>Disabled; no interface sends or receives NTP broadcast packets.</td>
</tr>
<tr>
<td>NTP access restrictions</td>
<td>No access control is specified.</td>
</tr>
<tr>
<td>NTP packet source IP address</td>
<td>The source address is determined by the outgoing interface.</td>
</tr>
</tbody>
</table>

NTP is enabled on all interfaces by default. All interfaces receive NTP packets.

Configuring NTP Authentication

This procedure must be coordinated with the administrator of the NTP server; the information you configure in this procedure must be matched by the servers used by the switch to synchronize its time to the NTP server.

Beginning in privileged EXEC mode, follow these steps to authenticate the associations (communications between devices running NTP that provide for accurate timekeeping) with other devices for security purposes:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ntp authenticate</td>
<td>Enable the NTP authentication feature, which is disabled by default.</td>
</tr>
<tr>
<td>Step 3 ntp authentication-key number md5 value</td>
<td>Define the authentication keys. By default, none are defined.</td>
</tr>
<tr>
<td></td>
<td>• For number, specify a key number. The range is 1 to 4294967295.</td>
</tr>
<tr>
<td></td>
<td>• md5 specifies that message authentication support is provided by using the message digest algorithm 5 (MD5).</td>
</tr>
<tr>
<td></td>
<td>• For value, enter an arbitrary string of up to eight characters for the key.</td>
</tr>
<tr>
<td></td>
<td>The switch does not synchronize to a device unless both have one of these authentication keys, and the key number is specified by the ntp trusted-key key-number command.</td>
</tr>
<tr>
<td>Step 4 ntp trusted-key key-number</td>
<td>Specify one or more key numbers (defined in Step 3) that a peer NTP device must provide in its NTP packets for this switch to synchronize to it. By default, no trusted keys are defined. For key-number, specify the key defined in Step 3. This command provides protection against accidentally synchronizing the switch to a device that is not trusted.</td>
</tr>
</tbody>
</table>
To disable NTP authentication, use the `no ntp authenticate` global configuration command. To remove an authentication key, use the `no ntp authentication-key number` global configuration command. To disable authentication of the identity of a device, use the `no ntp trusted-key key-number` global configuration command.

This example shows how to configure the switch to synchronize only to devices providing authentication key 42 in the device’s NTP packets:

```
Switch(config)# ntp authenticate
Switch(config)# ntp authentication-key 42 md5 aNiceKey
Switch(config)# ntp trusted-key 42
```

Configuring NTP Associations

An NTP association can be a peer association (this switch can either synchronize to the other device or allow the other device to synchronize to it), or it can be a server association (meaning that only this switch synchronizes to the other device, and not the other way around).

Beginning in privileged EXEC mode, follow these steps to form an NTP association with another device:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>ntp peer ip-address [version number] [key keyid] [source interface] [prefer] or ntp server ip-address [version number] [key keyid] [source interface] [prefer]</td>
<td>Configure the switch system clock to synchronize a peer or to be synchronized by a peer (peer association). or Configure the switch system clock to be synchronized by a time server (server association).</td>
</tr>
</tbody>
</table>

No peer or server associations are defined by default.

- For `ip-address` in a peer association, specify either the IP address of the peer providing, or being provided, the clock synchronization. For a server association, specify the IP address of the time server providing the clock synchronization.
- (Optional) For `number`, specify the NTP version number. The range is 1 to 3. By default, version 3 is selected.
- (Optional) For `keyid`, enter the authentication key defined with the `ntp authentication-key` global configuration command.
- (Optional) For `interface`, specify the interface from which to pick the IP source address. By default, the source IP address is taken from the outgoing interface.
- (Optional) Enter the `prefer` keyword to make this peer or server the preferred one that provides synchronization. This keyword reduces switching back and forth between peers and servers.
Managing the System Time and Date

You need to configure only one end of an association; the other device can automatically establish the association. If you are using the default NTP version (version 3) and NTP synchronization does not occur, try using NTP version 2. Many NTP servers on the Internet run version 2.

To remove a peer or server association, use the `no ntp peer ip-address` or the `no ntp server ip-address` global configuration command.

This example shows how to configure the switch to synchronize its system clock with the clock of the peer at IP address 172.16.22.44 using NTP version 2:

```
Switch(config)# ntp server 172.16.22.44 version 2
```

Configuring NTP Broadcast Service

The communications between devices running NTP (known as associations) are usually statically configured; each device is given the IP addresses of all devices with which it should form associations. Accurate timekeeping is possible by exchanging NTP messages between each pair of devices with an association. However, in a LAN environment, NTP can be configured to use IP broadcast messages instead. This alternative reduces configuration complexity because each device can simply be configured to send or receive broadcast messages. However, the information flow is one-way only.

The switch can send or receive NTP broadcast packets on an interface-by-interface basis if there is an NTP broadcast server, such as a router, broadcasting time information on the network. The switch can send NTP broadcast packets to a peer so that the peer can synchronize to it. The switch can also receive NTP broadcast packets to synchronize its own clock. This section has procedures for both sending and receiving NTP broadcast packets.

Beginning in privileged EXEC mode, follow these steps to configure the switch to send NTP broadcast packets to peers so that they can synchronize their clock to the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the interface to send NTP broadcast packets, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 ntp broadcast [version number] [key keyid] [destination-address]</td>
<td>Enable the interface to send NTP broadcast packets to a peer. By default, this feature is disabled on all interfaces.</td>
</tr>
<tr>
<td></td>
<td>By default, this feature is disabled on all interfaces.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>number</code>, specify the NTP version number. The range is 1 to 3. If you do not specify a version, version 3 is used.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>keyid</code>, specify the authentication key to use when sending packets to the peer.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>destination-address</code>, specify the IP address of the peer that is synchronizing its clock to this switch.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>

You need to configure only one end of an association; the other device can automatically establish the association. If you are using the default NTP version (version 3) and NTP synchronization does not occur, try using NTP version 2. Many NTP servers on the Internet run version 2.

To remove a peer or server association, use the `no ntp peer ip-address` or the `no ntp server ip-address` global configuration command.

This example shows how to configure the switch to synchronize its system clock with the clock of the peer at IP address 172.16.22.44 using NTP version 2:

```
Switch(config)# ntp server 172.16.22.44 version 2
```

Configuring NTP Broadcast Service

The communications between devices running NTP (known as associations) are usually statically configured; each device is given the IP addresses of all devices with which it should form associations. Accurate timekeeping is possible by exchanging NTP messages between each pair of devices with an association. However, in a LAN environment, NTP can be configured to use IP broadcast messages instead. This alternative reduces configuration complexity because each device can simply be configured to send or receive broadcast messages. However, the information flow is one-way only.

The switch can send or receive NTP broadcast packets on an interface-by-interface basis if there is an NTP broadcast server, such as a router, broadcasting time information on the network. The switch can send NTP broadcast packets to a peer so that the peer can synchronize to it. The switch can also receive NTP broadcast packets to synchronize its own clock. This section has procedures for both sending and receiving NTP broadcast packets.

Beginning in privileged EXEC mode, follow these steps to configure the switch to send NTP broadcast packets to peers so that they can synchronize their clock to the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the interface to send NTP broadcast packets, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 ntp broadcast [version number] [key keyid] [destination-address]</td>
<td>Enable the interface to send NTP broadcast packets to a peer. By default, this feature is disabled on all interfaces.</td>
</tr>
<tr>
<td></td>
<td>By default, this feature is disabled on all interfaces.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>number</code>, specify the NTP version number. The range is 1 to 3. If you do not specify a version, version 3 is used.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>keyid</code>, specify the authentication key to use when sending packets to the peer.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>destination-address</code>, specify the IP address of the peer that is synchronizing its clock to this switch.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>
Managing the System Time and Date

To disable the interface from sending NTP broadcast packets, use the `no ntp broadcast` interface configuration command.

This example shows how to configure an interface to send NTP version 2 packets:

```
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# ntp broadcast version 2
```

Beginning in privileged EXEC mode, follow these steps to configure the switch to receive NTP broadcast packets from connected peers:

```
Step 1
configure terminal
Enter global configuration mode.

Step 2
interface interface-id
Specify the interface to receive NTP broadcast packets, and enter interface configuration mode.

Step 3
ntp broadcast client
Enable the interface to receive NTP broadcast packets.
By default, no interfaces receive NTP broadcast packets.

Step 4
exit
Return to global configuration mode.

Step 5
ntp broadcastdelay microseconds
(Optional) Change the estimated round-trip delay between the switch and the NTP broadcast server.
The default is 3000 microseconds; the range is 1 to 999999.

Step 6
end
Return to privileged EXEC mode.

Step 7
show running-config
Verify your entries.

Step 8
copy running-config startup-config
(Optional) Save your entries in the configuration file.
```

To disable an interface from receiving NTP broadcast packets, use the `no ntp broadcast client` interface configuration command. To change the estimated round-trip delay to the default, use the `no ntp broadcastdelay` global configuration command.

This example shows how to configure an interface to receive NTP broadcast packets:

```
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# ntp broadcast client
```

Configuring NTP Access Restrictions

You can control NTP access on two levels as described in these sections:

- Creating an Access Group and Assigning a Basic IP Access List, page 7-8
- Disabling NTP Services on a Specific Interface, page 7-9
Creating an Access Group and Assigning a Basic IP Access List

Beginning in privileged EXEC mode, follow these steps to control access to NTP services by using access lists:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ntp access-group { query-only</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>access-list access-list-number permit source [source-wildcard]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

The access group keywords are scanned in this order, from least restrictive to most restrictive:

1. peer—Allows time requests and NTP control queries and allows the switch to synchronize itself to a device whose address passes the access list criteria.
2. serve—Allows time requests and NTP control queries, but does not allow the switch to synchronize itself to a device whose address passes the access list criteria.
3. serve-only—Allows only time requests from a device whose address passes the access list criteria.
4. query-only—Allows only NTP control queries from a device whose address passes the access list criteria.
If the source IP address matches the access lists for more than one access type, the first type is granted. If no access groups are specified, all access types are granted to all devices. If any access groups are specified, only the specified access types are granted.

To remove access control to the switch NTP services, use the `no ntp access-group {query-only | serve-only | serve | peer}` global configuration command.

This example shows how to configure the switch to allow itself to synchronize to a peer from access list 99. However, the switch restricts access to allow only time requests from access list 42:

```
Switch# configure terminal
Switch(config)# ntp access-group peer 99
Switch(config)# ntp access-group serve-only 42
Switch(config)# access-list 99 permit 172.20.130.5
Switch(config)# access list 42 permit 172.20.130.6
```

Disabling NTP Services on a Specific Interface

NTP services are enabled on all interfaces by default.

Beginning in privileged EXEC mode, follow these steps to disable NTP packets from being received on an interface:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to disable.</td>
</tr>
<tr>
<td>Step 3</td>
<td>ntp disable</td>
<td>Disable NTP packets from being received on the interface.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>By default, all interfaces receive NTP packets.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To re-enable receipt of NTP packets on an interface, use the `no ntp disable` interface configuration command.

Configuring the Source IP Address for NTP Packets

When the switch sends an NTP packet, the source IP address is normally set to the address of the interface through which the NTP packet is sent. Use the `ntp source` global configuration command when you want to use a particular source IP address for all NTP packets. The address is taken from the specified interface. This command is useful if the address on an interface cannot be used as the destination for reply packets.
Beginning in privileged EXEC mode, follow these steps to configure a specific interface from which the IP source address is to be taken:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ntp source type number</td>
<td>Specify the interface type and number from which the IP source address is taken. By default, the source address is determined by the outgoing interface.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

The specified interface is used for the source address for all packets sent to all destinations. If a source address is to be used for a specific association, use the source keyword in the ntp peer or ntp server global configuration command as described in the “Configuring NTP Associations” section on page 7-5.

Displaying the NTP Configuration

You can use two privileged EXEC commands to display NTP information:
- show ntp associations [detail]
- show ntp status

For detailed information about the fields in these displays, refer to the Cisco IOS Configuration Fundamentals Command Reference for Release 12.1.

Configuring Time and Date Manually

If no other source of time is available, you can manually configure the time and date after the system is restarted. The time remains accurate until the next system restart. We recommend that you use manual configuration only as a last resort. If you have an outside source to which the switch can synchronize, you do not need to manually set the system clock.

This section contains this configuration information:
- Setting the System Clock, page 7-11
- Displaying the Time and Date Configuration, page 7-11
- Configuring the Time Zone, page 7-12
- Configuring Summer Time (Daylight Saving Time), page 7-13
Setting the System Clock

If you have an outside source on the network that provides time services, such as an NTP server, you do not need to manually set the system clock.

Beginning in privileged EXEC mode, follow these steps to set the system clock:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>clock set hh:mm:ss day month year</td>
<td>Manually set the system clock using one of these formats.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>clock set hh:mm:ss month day year</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 3</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

This example shows how to manually set the system clock to 1:32 p.m. on July 23, 2001:

```
Switch# clock set 13:32:00 23 July 2001
```

Displaying the Time and Date Configuration

To display the time and date configuration, use the `show clock [detail]` privileged EXEC command.

The system clock keeps an authoritative flag that shows whether the time is authoritative (believed to be accurate). If the system clock has been set by a timing source such as NTP, the flag is set. If the time is not authoritative, it is used only for display purposes. Until the clock is authoritative and the authoritative flag is set, the flag prevents peers from synchronizing to the clock when the peers’ time is invalid.

The symbol that precedes the `show clock` display has this meaning:

- *—Time is not authoritative.
- (blank)—Time is authoritative.
- .—Time is authoritative, but NTP is not synchronized.
Configuring the Time Zone

Beginning in privileged EXEC mode, follow these steps to manually configure the time zone:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 clock timezone zone</td>
<td>Set the time zone.</td>
</tr>
<tr>
<td>hours-offset [minutes-offset]</td>
<td>The switch keeps internal time in universal time coordinated (UTC), so</td>
</tr>
<tr>
<td></td>
<td>this command is used only for display purposes and when the time is</td>
</tr>
<tr>
<td></td>
<td>manually set.</td>
</tr>
<tr>
<td></td>
<td>• For zone, enter the name of the time zone to be displayed when</td>
</tr>
<tr>
<td></td>
<td>standard time is in effect. The default is UTC.</td>
</tr>
<tr>
<td></td>
<td>• For hours-offset, enter the hours offset from UTC.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For minutes-offset, enter the minutes offset from UTC.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
<tr>
<td>startup-config</td>
<td></td>
</tr>
</tbody>
</table>

The minutes-offset variable in the clock timezone global configuration command is available for those cases where a local time zone is a percentage of an hour different from UTC. For example, the time zone for some sections of Atlantic Canada (AST) is UTC-3.5, where the 3 means 3 hours and .5 means 50 percent. In this case, the necessary command is clock timezone AST -3 30.

To set the time to UTC, use the no clock timezone global configuration command.
Configuring Summer Time (Daylight Saving Time)

Beginning in privileged EXEC mode, follow these steps to configure summer time (daylight saving time) in areas where it starts and ends on a particular day of the week each year:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>clock summer-time zone recurring [week day month hh:mm week day month hh:mm [offset]]</td>
<td>Configure summer time to start and end on the specified days every year. Summer time is disabled by default. If you specify clock summer-time zone recurring without parameters, the summer time rules default to the United States rules.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For zone, specify the name of the time zone (for example, PDT) to be displayed when summer time is in effect.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) For week, specify the week of the month (1 to 5 or last).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) For day, specify the day of the week (Sunday, Monday...).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) For month, specify the month (January, February...).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) For hh:mm, specify the time (24-hour format) in hours and minutes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) For offset, specify the number of minutes to add during summer time. The default is 60.</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

The first part of the `clock summer-time` global configuration command specifies when summer time begins, and the second part specifies when it ends. All times are relative to the local time zone. The start time is relative to standard time. The end time is relative to summer time. If the starting month is after the ending month, the system assumes that you are in the southern hemisphere.

This example shows how to specify that summer time starts on the first Sunday in April at 02:00 and ends on the last Sunday in October at 02:00:

```
Switch(config)# clock summer-time PDT recurring 1 Sunday April 2:00 last Sunday October 2:00
```
Beginning in privileged EXEC mode, follow these steps if summer time in your area does not follow a recurring pattern (configure the exact date and time of the next summer time events):

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>clock summer-time zone date [month date year hh:mm month date year hh:mm [offset]]</td>
</tr>
<tr>
<td>or</td>
<td>clock summer-time zone date [date month year hh:mm date month year hh:mm [offset]]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

The first part of the **clock summer-time** global configuration command specifies when summer time begins, and the second part specifies when it ends. All times are relative to the local time zone. The start time is relative to standard time. The end time is relative to summer time. If the starting month is after the ending month, the system assumes that you are in the southern hemisphere.

To disable summer time, use the **no clock summer-time** global configuration command.

This example shows how to set summer time to start on October 12, 2000, at 02:00, and end on April 26, 2001, at 02:00:

```
Switch(config)# clock summer-time pdt date 12 October 2000 2:00 26 April 2001 2:00
```
Configuring a System Name and Prompt

You configure the system name on the switch to identify it. By default, the system name and prompt are *Switch*.

If you have not configured a system prompt, the first 20 characters of the system name are used as the system prompt. A greater-than symbol (>) is appended. The prompt is updated whenever the system name changes, unless you manually configure the prompt by using the `prompt` global configuration command.

Note

For complete syntax and usage information for the commands used in this section, refer to the *Cisco IOS Configuration Fundamentals Command Reference* and the *Cisco IOS IP and IP Routing Command Reference for Release 12.1*.

This section contains this configuration information:

- Default System Name and Prompt Configuration, page 7-15
- Configuring a System Name, page 7-15
- Configuring a System Prompt, page 7-16
- Understanding DNS, page 7-16

Default System Name and Prompt Configuration

The default switch system name and prompt is *Switch*.

Configuring a System Name

Beginning in privileged EXEC mode, follow these steps to manually configure a system name:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>hostname name</code></td>
<td>Manually configure a system name.</td>
</tr>
<tr>
<td></td>
<td>The default setting is switch.</td>
</tr>
<tr>
<td></td>
<td>The name must follow the rules for ARPANET host names. They must start</td>
</tr>
<tr>
<td></td>
<td>with a letter, end with a letter or digit, and have as interior characters</td>
</tr>
<tr>
<td></td>
<td>only letters, digits, and hyphens. Names can be up to 63 characters.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

When you set the system name, it is also used as the system prompt. You can override the prompt setting by using the `prompt` global configuration command.

To return to the default hostname, use the `no hostname` global configuration command.
Configuring a System Prompt

Beginning in privileged EXEC mode, follow these steps to manually configure a system prompt:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>prompt string</td>
<td>Configure the command-line prompt to override the setting from the</td>
</tr>
<tr>
<td></td>
<td>hostname command.</td>
</tr>
<tr>
<td></td>
<td>The default prompt is either switch or the name defined with the</td>
</tr>
<tr>
<td></td>
<td>hostname global configuration command, followed by an angle</td>
</tr>
<tr>
<td></td>
<td>bracket (>) for user EXEC mode or a pound sign (#) for privileged EXEC</td>
</tr>
<tr>
<td></td>
<td>mode.</td>
</tr>
<tr>
<td></td>
<td>The prompt can consist of all printing characters and escape sequences.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default prompt, use the no prompt [string] global configuration command.

Understanding DNS

The DNS protocol controls the Domain Name System (DNS), a distributed database with which you can map host names to IP addresses. When you configure DNS on your switch, you can substitute the host name for the IP address with all IP commands, such as ping, telnet, connect, and related Telnet support operations.

IP defines a hierarchical naming scheme that allows a device to be identified by its location or domain. Domain names are pieced together with periods (.) as the delimiting characters. For example, Cisco Systems is a commercial organization that IP identifies by a com domain name, so its domain name is cisco.com. A specific device in this domain, for example, the File Transfer Protocol (FTP) system is identified as ftp.cisco.com.

To keep track of domain names, IP has defined the concept of a domain name server, which holds a cache (or database) of names mapped to IP addresses. To map domain names to IP addresses, you must first identify the host names, specify the name server that is present on your network, and enable the DNS.

This section contains this configuration information:

- Default DNS Configuration, page 7-17
- Setting Up DNS, page 7-17
- Displaying the DNS Configuration, page 7-18
Default DNS Configuration

Table 7-2 shows the default DNS configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS enable state</td>
<td>Enabled.</td>
</tr>
<tr>
<td>DNS default domain name</td>
<td>None configured.</td>
</tr>
<tr>
<td>DNS servers</td>
<td>No name server addresses are configured.</td>
</tr>
</tbody>
</table>

Setting Up DNS

Beginning in privileged EXEC mode, follow these steps to set up your switch to use the DNS:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>ip domain-name name</td>
<td>Define a default domain name that the software uses to complete unqualified host names (names without a dotted-decimal domain name). Do not include the initial period that separates an unqualified name from the domain name. At boot time, no domain name is configured; however, if the switch configuration comes from a BOOTP or Dynamic Host Configuration Protocol (DHCP) server, then the default domain name might be set by the BOOTP or DHCP server (if the servers were configured with this information).</td>
</tr>
<tr>
<td>3</td>
<td>ip name-server server-address1</td>
<td>Specify the address of one or more name servers to use for name and address resolution. You can specify up to six name servers. Separate each server address with a space. The first server specified is the primary server. The switch sends DNS queries to the primary server first. If that query fails, the backup servers are queried.</td>
</tr>
<tr>
<td></td>
<td>[server-address2 ...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>server-address6]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ip domain-lookup</td>
<td>(Optional) Enable DNS-based host name-to-address translation on your switch. This feature is enabled by default. If your network devices require connectivity with devices in networks for which you do not control name assignment, you can dynamically assign device names that uniquely identify your devices by using the global Internet naming scheme (DNS).</td>
</tr>
<tr>
<td>5</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>6</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>7</td>
<td>copy running-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
<tr>
<td></td>
<td>startup-config</td>
<td></td>
</tr>
</tbody>
</table>
If you use the switch IP address as its hostname, the IP address is used and no DNS query occurs. If you configure a hostname that contains no periods (.), a period followed by the default domain name is appended to the hostname before the DNS query is made to map the name to an IP address. The default domain name is the value set by the `ip domain-name` global configuration command. If there is a period (.) in the hostname, the IOS software looks up the IP address without appending any default domain name to the hostname.

To remove a domain name, use the `no ip domain-name name` global configuration command. To remove a name server address, use the `no ip name-server server-address` global configuration command. To disable DNS on the switch, use the `no ip domain-lookup` global configuration command.

Displaying the DNS Configuration

To display the DNS configuration information, use the `show running-config` privileged EXEC command.

Creating a Banner

You can configure a message-of-the-day (MOTD) and a login banner. The MOTD banner displays on all connected terminals at login and is useful for sending messages that affect all network users (such as impending system shutdowns).

The login banner also displays on all connected terminals. It is displayed after the MOTD banner and before the login prompts.

Note

For complete syntax and usage information for the commands used in this section, refer to the *Cisco IOS Configuration Fundamentals Command Reference for Release 12.1.*

This section contains this configuration information:

- Default Banner Configuration, page 7-18
- Configuring a Message-of-the-Day Login Banner, page 7-19
- Configuring a Login Banner, page 7-20

Default Banner Configuration

The MOTD and login banners are not configured.
Configuring a Message-of-the-Day Login Banner

You can create a single or multiline message banner that appears on the screen when someone logs in to the switch.

Beginning in privileged EXEC mode, follow these steps to configure a MOTD login banner:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>banner motd c message c</td>
<td>Specify the message of the day.</td>
</tr>
<tr>
<td></td>
<td>For c, enter the delimiting character of your choice, for example, a</td>
</tr>
<tr>
<td></td>
<td>pound sign (#), and press the Return key. The delimiting character</td>
</tr>
<tr>
<td></td>
<td>signifies the beginning and end of the banner text. Characters after the</td>
</tr>
<tr>
<td></td>
<td>ending delimiter are discarded.</td>
</tr>
<tr>
<td></td>
<td>For message, enter a banner message up to 255 characters. You cannot</td>
</tr>
<tr>
<td></td>
<td>use the delimiting character in the message.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To delete the MOTD banner, use the no banner motd global configuration command.

This example shows how to configure a MOTD banner for the switch by using the pound sign (#) symbol as the beginning and ending delimiter:

```
Switch(config)# banner motd #
This is a secure site. Only authorized users are allowed.
For access, contact technical support.
#
Switch(config)#
```

This example shows the banner displayed from the previous configuration:

```
Unix> telnet 172.2.5.4
Trying 172.2.5.4...
Connected to 172.2.5.4.
Escape character is '}'.

This is a secure site. Only authorized users are allowed.
For access, contact technical support.

User Access Verification

Password:
```
Configuring a Login Banner

You can configure a login banner to be displayed on all connected terminals. This banner appears after the MOTD banner and before the login prompt.

Beginning in privileged EXEC mode, follow these steps to configure a login banner:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>banner login c message c</td>
</tr>
<tr>
<td></td>
<td>Specify the login message.</td>
</tr>
<tr>
<td></td>
<td>For c, enter the delimiting character of your choice, for example, a</td>
</tr>
<tr>
<td></td>
<td>pound sign (#), and press the Return key. The delimiting character</td>
</tr>
<tr>
<td></td>
<td>signifies the beginning and end of the banner text. Characters after</td>
</tr>
<tr>
<td></td>
<td>the ending delimiter are discarded.</td>
</tr>
<tr>
<td></td>
<td>For message, enter a login message up to 255 characters. You cannot</td>
</tr>
<tr>
<td></td>
<td>use the delimiting character in the message.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To delete the login banner, use the `no banner login` global configuration command.

This example shows how to configure a login banner for the switch by using the dollar sign ($) symbol as the beginning and ending delimiter:

```
Switch(config)# banner login $
Access for authorized users only. Please enter your username and password.
$
Switch(config)#
```

Managing the MAC Address Table

The MAC address table contains address information that the switch uses to forward traffic between ports. All MAC addresses in the address table are associated with one or more ports. The address table includes these types of addresses:

- Dynamic address: a source MAC address that the switch learns and then ages when it is not in use.
- Static address: a manually entered unicast or multicast address that does not age and that is not lost when the switch resets.

The address table lists the destination MAC address, the associated VLAN ID, and port number associated with the address.

Note

For complete syntax and usage information for the commands used in this section, refer to the command reference for this release.
This section contains this configuration information:

- Building the Address Table, page 7-21
- MAC Addresses and VLANs, page 7-21
- Default MAC Address Table Configuration, page 7-22
- Changing the Address Aging Time, page 7-22
- Removing Dynamic Address Entries, page 7-23
- Configuring MAC Address Notification Traps, page 7-23
- Adding and Removing Static Address Entries, page 7-25
- Adding and Removing Secure Addresses, page 7-26
- Displaying Address Table Entries, page 7-26

Building the Address Table

With multiple MAC addresses supported on all ports, you can connect any port on the switch to individual workstations, repeaters, switches, routers, or other network devices. The switch provides dynamic addressing by learning the source address of packets it receives on each port and adding the address and its associated port number to the address table. As stations are added or removed from the network, the switch updates the address table, adding new dynamic addresses and aging out those that are not in use.

The aging interval is configured on a per-switch basis. However, the switch maintains an address table for each VLAN, and STP can accelerate the aging interval on a per-VLAN basis.

The switch sends packets between any combination of ports, based on the destination address of the received packet. Using the MAC address table, the switch forwards the packet only to the port or ports associated with the destination address. If the destination address is on the port that sent the packet, the packet is filtered and not forwarded. The switch always uses the store-and-forward method: complete packets are stored and checked for errors before transmission.

MAC Addresses and VLANs

All addresses are associated with a VLAN. An address can exist in more than one VLAN and have different destinations in each. Multicast addresses, for example, could be forwarded to port 1 in VLAN 1 and ports 9, 10, and 11 in VLAN 5.

Each VLAN maintains its own logical address table. A known address in one VLAN is unknown in another until it is learned or statically associated with a port in the other VLAN. Addresses that are statically entered in one VLAN must be configured as static addresses in all other VLANs or remain unlearned in the other VLANs.
Default MAC Address Table Configuration

Table 7-3 shows the default MAC address table configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aging time</td>
<td>300 seconds</td>
</tr>
<tr>
<td>Dynamic addresses</td>
<td>Automatically learned</td>
</tr>
<tr>
<td>Static addresses</td>
<td>None configured</td>
</tr>
</tbody>
</table>

Changing the Address Aging Time

Dynamic addresses are source MAC addresses that the switch learns and then ages when they are not in use. You can change the aging time setting for all VLANs or for a specified VLAN.

Setting too short an aging time can cause addresses to be prematurely removed from the table. Then when the switch receives a packet for an unknown destination, it floods the packet to all ports in the same VLAN as the receiving port. This unnecessary flooding can impact performance. Setting too long an aging time can cause the address table to be filled with unused addresses, which prevents new addresses from being learned. Flooding results, which can impact switch performance.

Beginning in privileged EXEC mode, follow these steps to configure the dynamic address table aging time:

To return to the default value, use the **no mac address-table aging-time** global configuration command.
Removing Dynamic Address Entries

To remove all dynamic entries, use the `clear mac address-table dynamic` command in privileged EXEC mode. You can also remove a specific MAC address (`clear mac address-table dynamic address mac-address`), remove all addresses on the specified physical port or port channel (`clear mac address-table dynamic interface interface-id`), or remove all addresses on a specified VLAN (`clear mac address-table dynamic vlan vlan-id`).

To verify that dynamic entries have been removed, use the `show mac address-table dynamic` privileged EXEC command.

Configuring MAC Address Notification Traps

MAC address notification enables you to track users on a network by storing the MAC address activity on the switch. Whenever the switch learns or removes a MAC address, an SNMP notification can be generated and sent to the NMS. If you have many users coming and going from the network, you can set a trap interval time to bundle the notification traps and reduce network traffic. The MAC notification history table stores the MAC address activity for each hardware port for which the trap is enabled. MAC address notifications are generated for dynamic and secure MAC addresses; events are not generated for self addresses, multicast addresses, or other static addresses.

Beginning in privileged EXEC mode, follow these steps to configure the switch to send MAC address notification traps to an NMS host:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>`snmp-server host host-addr {traps</td>
<td>informs} {version</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>host-addr</code>, specify the name or address of the NMS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Specify <code>traps</code> (the default) to send SNMP traps to the host. Specify <code>informs</code> to send SNMP informs to the host.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Specify the SNMP version to support. Version 1, the default, is not available with informs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>community-string</code>, specify the string to send with the notification operation. Though you can set this string by using the <code>snmp-server host</code> command, we recommend that you define this string by using the <code>snmp-server community</code> command before using the <code>snmp-server host</code> command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>notification-type</code>, use the <code>mac-notification</code> keyword.</td>
</tr>
<tr>
<td>3</td>
<td><code>snmp-server enable traps mac-notification</code></td>
<td>Enable the switch to send MAC address traps to the NMS.</td>
</tr>
<tr>
<td>4</td>
<td><code>mac address-table notification</code></td>
<td>Enable the MAC address notification feature.</td>
</tr>
</tbody>
</table>
Managing the MAC Address Table

To disable the switch from sending MAC address notification traps, use the `no snmp-server enable traps mac-notification` global configuration command. To disable the MAC address notification traps on a specific interface, use the `no snmp trap mac-notification {added | removed}` interface configuration command. To disable the MAC address notification feature, use the `no mac address-table notification` global configuration command.

This example shows how to specify 172.20.10.10 as the NMS, enable the switch to send MAC address notification traps to the NMS, enable the MAC address notification feature, set the interval time to 60 seconds, set the history-size to 100 entries, and enable traps whenever a MAC address is added on Fast Ethernet interface 0/4.

```
Switch(config)# snmp-server host 172.20.10.10 traps private
Switch(config)# snmp-server enable traps mac-notification
Switch(config)# mac address-table notification
Switch(config)# mac address-table notification interval 60
Switch(config)# mac address-table notification history-size 100
Switch(config)# interface fastetheret0/4
Switch(config-if)# snmp trap mac-notification added
```

You can verify the previous commands by entering the `show mac address-table notification interface` and the `show mac address-table notification` privileged EXEC commands.
Adding and Removing Static Address Entries

A static address has these characteristics:
- It is manually entered in the address table and must be manually removed.
- It can be a unicast or multicast address.
- It does not age and is retained when the switch restarts.

You can add and remove static addresses and define the forwarding behavior for them. The forwarding behavior determines how a port that receives a packet forwards it to another port for transmission. Because all ports are associated with at least one VLAN, the switch acquires the VLAN ID for the address from the ports that you specify. You can specify a different list of destination ports for each source port.

A static address in one VLAN must be a static address in other VLANs. A packet with a static address that arrives on a VLAN where it has not been statically entered is flooded to all ports and not learned.

You add a static address to the address table by specifying the destination MAC address (unicast or multicast) and the VLAN from which it is received. Packets received with this destination address are forwarded to the interface specified with the `interface-id` option.

Beginning in privileged EXEC mode, follow these steps to add a static address:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>mac address-table static mac-addr vlan vlan-id interface interface-id</td>
<td>Add a static address to the MAC address table.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For <code>mac-addr</code>, specify the destination MAC address (unicast or multicast) to add to the address table. Packets with this destination address received in the specified VLAN are forwarded to the specified interface.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For <code>vlan-id</code>, specify the VLAN for which the packet with the specified MAC address is received. Valid VLAN IDs are 1 to 4094.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For <code>interface-id</code>, specify the interface to which the received packet is forwarded. Valid interfaces include physical ports.</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>show mac address-table static</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove static entries from the address table, use the `no mac address-table static mac-addr vlan vlan-id interface interface-id` global configuration command.

This example shows how to add the static address c2f3.220a.12f4 to the MAC address table. When a packet is received in VLAN 4 with this MAC address as its destination address, the packets is forwarded to the specified interface:

```bash
Switch(config)# mac address-table static c2f3.220a.12f4 vlan 4 interface gigabitethernet0/1
```
Adding and Removing Secure Addresses

A secure address is a manually entered unicast address or dynamically learned address that is forwarded to only one port per VLAN. If you enter a static address that is already assigned to another port, the request will be rejected.

Secure addresses can be learned dynamically if the configured secure addresses do not reach the maximum limit of the port.

You can configure an interface to convert the dynamic MAC addresses to sticky secure MAC addresses and to add them to the running configuration by enabling sticky learning. When sticky learning is enabled, the interface converts all the dynamic secure MAC addresses, including those that were learned dynamically before sticky learning is enabled, to sticky secure MAC addresses. It adds all the sticky secure MAC addresses to the running configuration. For more information, see the “Secure MAC Addresses” section on page 20-8.

Beginning in privileged EXEC mode, follow these steps to add a secure address:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport port-security mac-address mac-address</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show port-security</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To remove a secure address, use the `no switchport port-security mac-address mac-address` global configuration command.

Displaying Address Table Entries

You can display the MAC address table by using one or more of the privileged EXEC commands described in Table 7-4:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mac address-table address</td>
<td>Displays MAC address table information for the specified MAC address.</td>
</tr>
<tr>
<td>show mac address-table aging-time</td>
<td>Displays the aging time in all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td>show mac address-table count</td>
<td>Displays the number of addresses present in all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td>show mac address-table dynamic</td>
<td>Displays dynamic MAC address table entries only.</td>
</tr>
<tr>
<td>show mac address-table interface</td>
<td>Displays the MAC address table information for the specified interface.</td>
</tr>
<tr>
<td>show mac address-table multicast</td>
<td>Displays the Layer 2 multicast entries for all VLANs or the specified VLAN.</td>
</tr>
<tr>
<td>show mac address-table static</td>
<td>Displays static MAC address table entries only.</td>
</tr>
<tr>
<td>show mac address-table vlan</td>
<td>Displays the MAC address table information for the specified VLAN.</td>
</tr>
</tbody>
</table>
Optimizing System Resources for User-Selected Features

By using Switch Database Management (SDM) templates, you can configure memory resources in the switch to optimize support for specific features, depending on how the switch is used in your network. You can select one of four templates to specify how system resources are allocated. You can then approximate the maximum number of unicast MAC addresses, Internet Group Management Protocol (IGMP) groups, quality of service (QoS) access control entries (ACEs), security ACEs, unicast routes, multicast routes, subnet VLANs (routed interfaces), and Layer 2 VLANs that can be configured on the switch.

The four templates prioritize system memory to optimize support for these types of features:

- **QoS and security ACEs**—The access template might typically be used in an access switch at the network edge where the route table sizes might not be substantial. Filtering and QoS might be more important because an access switch is the entry to the whole network.
- **Routing**—The routing template maximizes system resources for unicast routing, typically required for a router or aggregator in the center of a network.
- **VLANs**—The VLAN template disables routing and supports the maximum number of unicast MAC addresses. It would typically be selected for a Catalyst 3550 used as a Layer 2 switch.
- **Default**—The default template gives balance to all functionalities (QoS, ACLs, unicast routing, multicast routing, VLANs and MAC addresses).

You can also enable the switch to support 144-bit Layer 3 TCAM, allowing extra fields in the stored routing tables, by reformatting the routing table memory allocation. Using the `extended-match` keyword with the default, access, or routing templates reformats the allocated TCAM by reducing the number of allowed unicast routes, and storing extra routing information in the lower 72 bits of the Layer 3 TCAM. The 144-bit Layer 3 TCAM is required when running the Web Cache Communication Protocol (WCCP) or multiple VPN routing/forwarding (multi-VRF) instances in customer edge (CE) devices (multi-VRF CE) on the switch.

Table 7-5 lists the approximate number of each resource supported in each of the four templates for Catalyst 3550 Gigabit Ethernet switches. Table 7-6 compares the four templates for a Catalyst 3550 switch with primarily Fast Ethernet ports.

The first six rows in the tables (unicast MAC addresses through multicast routes) represent approximate hardware boundaries set when a template is selected. If a section of a hardware resource is full, all processing overflow is sent to the CPU, seriously impacting switch performance.

The last two rows, the total number of routed ports and SVIs and the number of Layer 2 VLANs, are guidelines used to calculate hardware resource consumption related to the other resource parameters.

The number of subnet VLANs (routed ports and SVIs) are not limited by software and can be set to a number higher than indicated in the tables. If the number of subnet VLANs configured is lower or equal to the number in the tables, the number of entries in each category (unicast addresses, IGMP groups, and so on) for each template will be as shown. As the number of subnet VLANs increases, CPU utilization typically increases. If the number of subnet VLANs increases beyond the number shown in the tables, the number of supported entries in each category could decrease depending on features that are enabled. For example, if PIM-DVMRP is enabled with more than 16 subnet VLANs, the number of entries for multicast routes will be in the range of 1K-5K entries for the access template.
Follow these guidelines when using the SDM templates:

- The maximum number of resources allowed in each template is an approximation and depends upon the actual number of other features configured. For example, in the default template for the Catalyst 3550-12T, if your switch has more than 16 routed interfaces configured, the number of multicast or unicast routes that can be accommodated by hardware might be fewer than shown.

- Using the `sdm prefer vlan` global configuration command disables routing capability in the switch. Any routing configurations are rejected after the reload, and previously configured routing options might be lost. Use the `sdm prefer vlan` global configuration command only on switches intended for Layer 2 switching with no routing.
• Do not use the routing template if you are not enabling routing on your switch. Entering the `sdm prefer routing` global configuration command on a switch does not enable routing, but it would prevent other features from using the memory allocated to unicast and multicast routing in the routing template, which could be up to 30 K in Gigabit Ethernet switches and 17 K in Fast Ethernet switches.

• You must use the `extended-match` keyword to support 144-bit Layer 3 TCAM when WCCP or multi-VRF CE is enabled on the switch. This keyword is not supported on the VLAN template.

This procedure shows how to change the SDM template from the default. The switch must reload before the configuration takes effect. If you use the `show sdm prefer` privileged EXEC command before the switch reloads, the previous configuration (in this case, the default) is displayed.

Beginning in privileged EXEC mode, follow these steps to use the SDM template to maximize feature usage:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| Step 2 | `sdm prefer {access [extended-match] | extended-match | routing [extended-match] | vlan}` Specify the SDM template to be used on the switch: The keywords have these meanings:
 • `access`—Maximizes the use of QoS classification ACEs and security ACEs on the switch.
 • `routing`—Maximizes routing on the switch.
 • `vlan`—Maximizes VLAN configuration on the switch with no routing allowed.
 • `extended-match`—Reformats routing memory space to allow 144-bit Layer 3 TCAM support in the default, access, or routing template to support WCCP or multi-VRF CE.
 The default template (if none of these is configured) balances the use of unicast MAC addresses, IGMP groups, QoS ACEs, security ACEs, unicast and multicast routes, routed interfaces, and Layer 2 VLANs. |
| Step 3 | `end` Return to privileged EXEC mode. |
| Step 4 | `reload` Reload the operating system. |

After the system reboots, you can use the `show sdm prefer` privileged EXEC command to verify the new template configuration. If you use the `show sdm prefer` command before the `reload` privileged EXEC command, the previous template is displayed instead of the new one.

To return to the default template, use the `no sdm prefer` global configuration command.

This example shows how to configure a switch with the routing template and verify the configuration:

```
Switch(config)# sdm prefer routing
Switch(config)# end
Switch# reload
Proceed with reload? [confirm]
```
Configuring Switch-Based Authentication

This chapter describes how to configure switch-based authentication on the Catalyst 3550 switch. This chapter consists of these sections:

- Preventing Unauthorized Access to Your Switch, page 8-1
- Protecting Access to Privileged EXEC Commands, page 8-2
- Controlling Switch Access with TACACS+, page 8-10
- Controlling Switch Access with RADIUS, page 8-18
- Controlling Switch Access with Kerberos, page 8-32
- Configuring the Switch for Local Authentication and Authorization, page 8-36
- Configuring the Switch for Secure Shell, page 8-37

Preventing Unauthorized Access to Your Switch

You can prevent unauthorized users from reconfiguring your switch and viewing configuration information. Typically, you want network administrators to have access to your switch while you restrict access to users who dial from outside the network through an asynchronous port, connect from outside the network through a serial port, or connect through a terminal or workstation from within the local network.

To prevent unauthorized access into your switch, you should configure one or more of these security features:

- At a minimum, you should configure passwords and privileges at each switch port. These passwords are locally stored on the switch. When users attempt to access the switch through a port or line, they must enter the password specified for the port or line before they can access the switch. For more information, see the “Protecting Access to Privileged EXEC Commands” section on page 8-2.
- For an additional layer of security, you can also configure username and password pairs, which are locally stored on the switch. These pairs are assigned to lines or interfaces and authenticate each user before that user can access the switch. If you have defined privilege levels, you can also assign a specific privilege level (with associated rights and privileges) to each username and password pair. For more information, see the “Configuring Username and Password Pairs” section on page 8-7.
- If you want to use username and password pairs, but you want to store them centrally on a server instead of locally, you can store them in a database on a security server. Multiple networking devices can then use the same database to obtain user authentication (and, if necessary, authorization) information. For more information, see the “Controlling Switch Access with TACACS+” section on page 8-10.
Protecting Access to Privileged EXEC Commands

A simple way of providing terminal access control in your network is to use passwords and assign privilege levels. Password protection restricts access to a network or network device. Privilege levels define what commands users can enter after they have logged into a network device.

Note
For complete syntax and usage information for the commands used in this section, refer to the Cisco IOS Security Command Reference for Release 12.1.

This section describes how to control access to the configuration file and privileged EXEC commands. It contains this configuration information:

- Default Password and Privilege Level Configuration, page 8-2
- Setting or Changing a Static Enable Password, page 8-3
- Protecting Enable and Enable Secret Passwords with Encryption, page 8-4
- Disabling Password Recovery, page 8-5
- Setting a Telnet Password for a Terminal Line, page 8-6
- Configuring Username and Password Pairs, page 8-7
- Configuring Multiple Privilege Levels, page 8-8

Default Password and Privilege Level Configuration

Table 8-1 shows the default password and privilege level configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable password and privilege level</td>
<td>No password is defined. The default is level 15 (privileged EXEC level). The password is not encrypted in the configuration file.</td>
</tr>
<tr>
<td>Enable secret password and privilege level</td>
<td>No password is defined. The default is level 15 (privileged EXEC level). The password is encrypted before it is written to the configuration file.</td>
</tr>
<tr>
<td>Line password</td>
<td>No password is defined.</td>
</tr>
</tbody>
</table>
Setting or Changing a Static Enable Password

The enable password controls access to the privileged EXEC mode. Beginning in privileged EXEC mode, follow these steps to set or change a static enable password:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>enable password password</td>
<td>Define a new password or change an existing password for access to</td>
</tr>
<tr>
<td></td>
<td>privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>By default, no password is defined.</td>
</tr>
<tr>
<td></td>
<td>For password, specify a string from 1 to 25 alphanumeric characters.</td>
</tr>
<tr>
<td></td>
<td>The string cannot start with a number, is case sensitive, and allows</td>
</tr>
<tr>
<td></td>
<td>ignores leading spaces. It can contain the question mark (?) character</td>
</tr>
<tr>
<td></td>
<td>if you precede the question mark with the key combination Ctrl-v when</td>
</tr>
<tr>
<td></td>
<td>you create the password; for example, to create the password abc?123,</td>
</tr>
<tr>
<td></td>
<td>do this:</td>
</tr>
<tr>
<td></td>
<td>Enter abc.</td>
</tr>
<tr>
<td></td>
<td>Enter Ctrl-v.</td>
</tr>
<tr>
<td></td>
<td>Enter ?123.</td>
</tr>
<tr>
<td></td>
<td>When the system prompts you to enter the enable password, you need not</td>
</tr>
<tr>
<td></td>
<td>precede the question mark with the Ctrl-v; you can simply enter abc?123</td>
</tr>
<tr>
<td></td>
<td>at the password prompt.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
<tr>
<td></td>
<td>The enable password is not encrypted and can be read in the switch</td>
</tr>
<tr>
<td></td>
<td>configuration file.</td>
</tr>
</tbody>
</table>

To remove the password, use the no enable password global configuration command.

This example shows how to change the enable password to l1u2c3k4y5. The password is not encrypted and provides access to level 15 (traditional privileged EXEC mode access):

Switch(config)# enable password l1u2c3k4y5
Protecting Enable and Enable Secret Passwords with Encryption

To provide an additional layer of security, particularly for passwords that cross the network or that are stored on a Trivial File Transfer Protocol (TFTP) server, you can use either the **enable password** or **enable secret** global configuration commands. Both commands accomplish the same thing; that is, you can establish an encrypted password that users must enter to access privileged EXEC mode (the default) or any privilege level you specify.

We recommend that you use the **enable secret** command because it uses an improved encryption algorithm.

If you configure the **enable secret** command, it takes precedence over the **enable password** command; the two commands cannot be in effect simultaneously.

Beginning in privileged EXEC mode, follow these steps to configure encryption for enable and enable secret passwords:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| 2 | **enable password** [**level** level] **{password | encryption-type encrypted-password}**
 or
 enable secret [**level** level] **{password | encryption-type encrypted-password}** | Define a new password or change an existing password for access to privileged EXEC mode.
 or
 Define a secret password, which is saved using a nonreversible encryption method.
 - (Optional) For **level**, the range is from 0 to 15. Level 1 is normal user EXEC mode privileges. The default level is 15 (privileged EXEC mode privileges).
 - For **password**, specify a string from 1 to 25 alphanumeric characters. The string cannot start with a number, is case sensitive, and allows spaces but ignores leading spaces. By default, no password is defined.
 - (Optional) For **encryption-type**, only type 5, a Cisco proprietary encryption algorithm, is available. If you specify an encryption type, you must provide an encrypted password—an encrypted password you copy from another Catalyst 3550 switch configuration.
 Note If you specify an encryption type and then enter a clear text password, you cannot re-enter privileged EXEC mode. You cannot recover a lost encrypted password by any method. |
| 3 | service password-encryption | (Optional) Encrypt the password when the password is defined or when the configuration is written.
 Encryption prevents the password from being readable in the configuration file. |
| 4 | end | Return to privileged EXEC mode. |
| 5 | copy running-config startup-config | (Optional) Save your entries in the configuration file. |
If both the enable and enable secret passwords are defined, users must enter the enable secret password.

Use the `level` keyword to define a password for a specific privilege level. After you specify the level and set a password, give the password only to users who need to have access at this level. Use the `privilege level` global configuration command to specify commands accessible at various levels. For more information, see the “Configuring Multiple Privilege Levels” section on page 8-8.

If you enable password encryption, it applies to all passwords including username passwords, authentication key passwords, the privileged command password, and console and virtual terminal line passwords.

To remove a password and level, use the `no enable password [level level]` or `no enable secret [level level]` global configuration command. To disable password encryption, use the `no service password-encryption` global configuration command.

This example shows how to configure the encrypted password `1FaD0$Xyti5Rkls3LoyxzS8` for privilege level 2:

```
Switch(config)# enable secret level 2 5 $1$FaD0$Xyti5Rkls3LoyxzS8
```

Disabling Password Recovery

The default configuration for Catalyst 3550 switches allows an end user with physical access to the switch to recover from a lost password by interrupting the boot process while the switch is powering up and then by entering a new password. The password recovery disable feature for Catalyst 3550 Fast Ethernet switches allows the system administrator to protect access to the switch password by disabling part of this functionality and allowing the user to interrupt the boot process only by agreeing to set the system back to the default configuration. With password recovery disabled, you can still interrupt the boot process and change the password, but the configuration file (config.text) and the VLAN database file (vlan.dat) are deleted.

Note

The password recovery disable feature is valid only on Catalyst 3550 Fast Ethernet switches; it is not available for Catalyst 3550 Gigabit Ethernet switches.

Note

If you disable password recovery, we recommend that you keep a backup copy of the configuration file on a secure server in case the end user interrupts the boot process and sets the system back to defaults. Do not keep a backup copy of the configuration file on the switch. If the switch is operating in VTP transparent mode, we recommend that you also keep a backup copy of the VLAN database file on a secure server. When the switch is returned to the default system configuration, you can download the saved files to the switch by using the XMODEM protocol. For more information, see the “Recovering from a Lost or Forgotten Password” section on page 36-2.
Beginning in privileged EXEC mode, follow these steps to disable password recovery:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>no service password-recovery</td>
<td>Disable password recovery. This setting is saved in an area of the Flash memory that is accessible by the boot loader and the IOS image, but it is not part of the file system and is not accessible by any user.</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>show version</td>
<td>Verify the configuration by checking the last few lines of the display.</td>
</tr>
</tbody>
</table>

To re-enable password recovery, use the `service password-recovery` global configuration command.

Note Disabling password recovery will not work if you have set the switch to boot manually by using the `boot manual` global configuration command because this command allows the user to automatically see the boot loader prompt (`switch:`) after power cycling the switch.

Setting a Telnet Password for a Terminal Line

When you power-up your switch for the first time, an automatic setup program runs to assign IP information and to create a default configuration for continued use. The setup program also prompts you to configure your switch for Telnet access through a password. If you neglected to configure this password during the setup program, you can configure it now through the command-line interface (CLI).

Beginning in privileged EXEC mode, follow these steps to configure your switch for Telnet access:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Attach a PC or workstation with emulation software to the switch console port. The default data characteristics of the console port are 9600, 8, 1, no parity. You might need to press the Return key several times to see the command-line prompt.</td>
</tr>
<tr>
<td>2</td>
<td>enable password password</td>
</tr>
<tr>
<td>3</td>
<td>configure terminal</td>
</tr>
<tr>
<td>4</td>
<td>line vty 0 15</td>
</tr>
<tr>
<td>5</td>
<td>password password</td>
</tr>
<tr>
<td>6</td>
<td>end</td>
</tr>
</tbody>
</table>
Protecting Access to Privileged EXEC Commands

To remove the password, use the **no password** global configuration command.

This example shows how to set the Telnet password to *let45me67in89*:

```
Switch(config)# line vty 10
Switch(config-line)# password let45me67in89
```

Configuring Username and Password Pairs

You can configure username and password pairs, which are locally stored on the switch. These pairs are assigned to lines or interfaces and authenticate each user before that user can access the switch. If you have defined privilege levels, you can also assign a specific privilege level (with associated rights and privileges) to each username and password pair.

Beginning in privileged EXEC mode, follow these steps to establish a username-based authentication system that requests a login username and a password:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 username name [privilege level] {password encryption-type password}</td>
<td>Enter the username, privilege level, and password for each user.</td>
</tr>
<tr>
<td></td>
<td>• For name, specify the user ID as one word. Spaces and quotation marks are not allowed.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For level, specify the privilege level the user has after gaining access. The range is 0 to 15. Level 15 gives privileged EXEC mode access. Level 1 gives user EXEC mode access.</td>
</tr>
<tr>
<td></td>
<td>• For encryption-type, enter 0 to specify that an unencrypted password will follow. Enter 7 to specify that a hidden password will follow.</td>
</tr>
<tr>
<td></td>
<td>• For password, specify the password the user must enter to gain access to the switch. The password must be from 1 to 25 characters, can contain embedded spaces, and must be the last option specified in the username command.</td>
</tr>
<tr>
<td>Step 3 line console 0 or line vty 0 15</td>
<td>Enter line configuration mode, and configure the console port (line 0) or the VTY lines (line 0 to 15).</td>
</tr>
<tr>
<td>Step 4 login local</td>
<td>Enable local password checking at login time. Authentication is based on the username specified in Step 2.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To disable username authentication for a specific user, use the `no username name` global configuration command. To disable password checking and allow connections without a password, use the `no login` line configuration command.

Configuring Multiple Privilege Levels

By default, the IOS software has two modes of password security: user EXEC and privileged EXEC. You can configure up to 16 hierarchical levels of commands for each mode. By configuring multiple passwords, you can allow different sets of users to have access to specified commands.

For example, if you want many users to have access to the `clear line` command, you can assign it level 2 security and distribute the level 2 password fairly widely. But if you want more restricted access to the `configure` command, you can assign it level 3 security and distribute that password to a more restricted group of users.

This section includes this configuration information:

- Setting the Privilege Level for a Command, page 8-8
- Changing the Default Privilege Level for Lines, page 8-9
- Logging into and Exiting a Privilege Level, page 8-10

Setting the Privilege Level for a Command

Beginning in privileged EXEC mode, follow these steps to set the privilege level for a command mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>privilege mode level level command</code></td>
<td>Set the privilege level for a command.</td>
</tr>
<tr>
<td></td>
<td>• For <code>mode</code>, enter <code>configure</code> for global configuration mode, <code>exec</code> for EXEC mode, <code>interface</code> for interface configuration mode, or <code>line</code> for line configuration mode.</td>
</tr>
<tr>
<td></td>
<td>• For <code>level</code>, the range is from 0 to 15. Level 1 is for normal user EXEC mode privileges. Level 15 is the level of access permitted by the <code>enable</code> password.</td>
</tr>
<tr>
<td></td>
<td>• For <code>command</code>, specify the command to which you want to restrict access.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Specify the enable password for the privilege level.</td>
</tr>
<tr>
<td><code>enable password level level password</code></td>
<td>• For <code>level</code>, the range is from 0 to 15. Level 1 is for normal user EXEC mode privileges.</td>
</tr>
<tr>
<td></td>
<td>• For <code>password</code>, specify a string from 1 to 25 alphanumeric characters. The string cannot start with a number, is case sensitive, and allows spaces but ignores leading spaces. By default, no password is defined.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td></td>
</tr>
</tbody>
</table>
When you set a command to a privilege level, all commands whose syntax is a subset of that command are also set to that level. For example, if you set the `show ip traffic` command to level 15, the `show` commands and `show ip` commands are automatically set to privilege level 15 unless you set them individually to different levels.

To return to the default privilege for a given command, use the `no privilege mode level level` global configuration command.

This example shows how to set the `configure` command to privilege level 14 and define `SecretPswd14` as the password users must enter to use level 14 commands:

```
Switch(config)# privilege exec level 14 configure
Switch(config)# enable password level 14 SecretPswd14
```

Changing the Default Privilege Level for Lines

Beginning in privileged EXEC mode, follow these steps to change the default privilege level for a line:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td><code>line vty line</code></td>
<td>Select the virtual terminal line on which to restrict access.</td>
</tr>
<tr>
<td>3</td>
<td><code>privilege level level</code></td>
<td>Change the default privilege level for the line.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For <code>level</code>, the range is from 0 to 15. Level 1 is for normal user EXEC mode privileges. Level 15 is the level of access permitted by the <code>enable</code> password.</td>
</tr>
<tr>
<td>4</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td><code>show running-config</code> or <code>show privilege</code></td>
<td>Verify your entries. The first command displays the password and access level configuration. The second command displays the privilege level configuration.</td>
</tr>
<tr>
<td>6</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Users can override the privilege level you set using the `privilege level` line configuration command by logging in to the line and enabling a different privilege level. They can lower the privilege level by using the `disable` command. If users know the password to a higher privilege level, they can use that password to enable the higher privilege level. You might specify a high level or privilege level for your console line to restrict line usage.

To return to the default line privilege level, use the `no privilege level` line configuration command.
Controlling Switch Access with TACACS+

This section describes how to enable and configure Terminal Access Controller Access Control System Plus (TACACS+), which provides detailed accounting information and flexible administrative control over authentication and authorization processes. TACACS+ is facilitated through authentication, authorization, accounting (AAA) and can be enabled only through AAA commands.

For complete syntax and usage information for the commands used in this section, refer to the Cisco IOS Security Command Reference for Release 12.1.

This section contains this configuration information:
- Understanding TACACS+, page 8-10
- TACACS+ Operation, page 8-12
- Configuring TACACS+, page 8-12
- Displaying the TACACS+ Configuration, page 8-17

Understanding TACACS+

TACACS+ is a security application that provides centralized validation of users attempting to gain access to your switch. TACACS+ services are maintained in a database on a TACACS+ daemon typically running on a UNIX or Windows NT workstation. You should have access to and should configure a TACACS+ server before the configuring TACACS+ features on your switch.

TACACS+ provides for separate and modular authentication, authorization, and accounting facilities. TACACS+ allows for a single access control server (the TACACS+ daemon) to provide each service—authentication, authorization, and accounting—individually. Each service can be tied into its own database to take advantage of other services available on that server or on the network, depending on the capabilities of the daemon.

The goal of TACACS+ is to provide a method for managing multiple network access points from a single management service. Your switch can be a network access server along with other Cisco routers and access servers. A network access server provides connections to a single user, to a network or subnetwork, and to interconnected networks as shown in Figure 8-1.
TACACS+, administered through the AAA security services, can provide these services:

- **Authentication**—Provides complete control of authentication through login and password dialog, challenge and response, and messaging support.

 The authentication facility can conduct a dialog with the user (for example, after a username and password are provided, to challenge a user with several questions, such as home address, mother’s maiden name, service type, and social security number). The TACACS+ authentication service can also send messages to user screens. For example, a message could notify users that their passwords must be changed because of the company’s password aging policy.

- **Authorization**—Provides fine-grained control over user capabilities for the duration of the user’s session, including but not limited to setting autocommands, access control, session duration, or protocol support. You can also enforce restrictions on what commands a user can execute with the TACACS+ authorization feature.

- **Accounting**—Collects and sends information used for billing, auditing, and reporting to the TACACS+ daemon. Network managers can use the accounting facility to track user activity for a security audit or to provide information for user billing. Accounting records include user identities, start and stop times, executed commands (such as PPP), number of packets, and number of bytes.

The TACACS+ protocol provides authentication between the switch and the TACACS+ daemon, and it ensures confidentiality because all protocol exchanges between the switch and the TACACS+ daemon are encrypted.

You need a system running the TACACS+ daemon software to use TACACS+ on your switch.
TACACS+ Operation

When a user attempts a simple ASCII login by authenticating to a switch using TACACS+, this process occurs:

1. When the connection is established, the switch contacts the TACACS+ daemon to obtain a username prompt, which is then displayed to the user. The user enters a username, and the switch then contacts the TACACS+ daemon to obtain a password prompt. The switch displays the password prompt to the user, the user enters a password, and the password is then sent to the TACACS+ daemon.

 TACACS+ allows a conversation to be held between the daemon and the user until the daemon receives enough information to authenticate the user. The daemon prompts for a username and password combination, but can include other items, such as the user’s mother’s maiden name.

2. The switch eventually receives one of these responses from the TACACS+ daemon:
 - ACCEPT—The user is authenticated and service can begin. If the switch is configured to require authorization, authorization begins at this time.
 - REJECT—The user is not authenticated. The user can be denied access or is prompted to retry the login sequence, depending on the TACACS+ daemon.
 - ERROR—An error occurred at some time during authentication with the daemon or in the network connection between the daemon and the switch. If an ERROR response is received, the switch typically tries to use an alternative method for authenticating the user.
 - CONTINUE—The user is prompted for additional authentication information.

After authentication, the user undergoes an additional authorization phase if authorization has been enabled on the switch. Users must first successfully complete TACACS+ authentication before proceeding to TACACS+ authorization.

3. If TACACS+ authorization is required, the TACACS+ daemon is again contacted, and it returns an ACCEPT or REJECT authorization response. If an ACCEPT response is returned, the response contains data in the form of attributes that direct the EXEC or NETWORK session for that user, determining the services that the user can access:
 - Telnet, Secure Shell (SSH), rlogin, or privileged EXEC services
 - Connection parameters, including the host or client IP address, access list, and user timeouts

Configuring TACACS+

This section describes how to configure your switch to support TACACS+. At a minimum, you must identify the host or hosts maintaining the TACACS+ daemon and define the method lists for TACACS+ authentication. You can optionally define method lists for TACACS+ authorization and accounting. A method list defines the sequence and methods to be used to authenticate, to authorize, or to keep accounts on a user. You can use method lists to designate one or more security protocols to be used, thus ensuring a backup system if the initial method fails. The software uses the first method listed to authenticate, to authorize, or to keep accounts on users; if that method does not respond, the software selects the next method in the list. This process continues until there is successful communication with a listed method or the method list is exhausted.
This section contains this configuration information:

- Default TACACS+ Configuration, page 8-13
- Identifying the TACACS+ Server Host and Setting the Authentication Key, page 8-13
- Configuring TACACS+ Login Authentication, page 8-14
- Configuring TACACS+ Authorization for Privileged EXEC Access and Network Services, page 8-16
- Starting TACACS+ Accounting, page 8-17

Default TACACS+ Configuration

TACACS+ and AAA are disabled by default.

To prevent a lapse in security, you cannot configure TACACS+ through a network management application. When enabled, TACACS+ can authenticate users accessing the switch through the CLI.

Note

Although TACACS+ configuration is performed through the CLI, the TACACS+ server authenticates HTTP connections that have been configured with a privilege level of 15.

Identifying the TACACS+ Server Host and Setting the Authentication Key

You can configure the switch to use a single server or AAA server groups to group existing server hosts for authentication. You can group servers to select a subset of the configured server hosts and use them for a particular service. The server group is used with a global server-host list and contains the list of IP addresses of the selected server hosts.

Beginning in privileged EXEC mode, follow these steps to identify the IP host or host maintaining TACACS+ server and optionally set the encryption key:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>tacacs-server host hostname [port integer] [timeout integer] [key string]</td>
<td>Identify the IP host or hosts maintaining a TACACS+ server. Enter this command multiple times to create a list of preferred hosts. The software searches for hosts in the order in which you specify them.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- For hostname, specify the name or IP address of the host.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) For port integer, specify a server port number. The default is port 49. The range is 1 to 65535.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) For timeout integer, specify a time in seconds the switch waits for a response from the daemon before it times out and declares an error. The default is 5 seconds. The range is 1 to 1000 seconds.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- (Optional) For key string, specify the encryption key for encrypting and decrypting all traffic between the switch and the TACACS+ daemon. You must configure the same key on the TACACS+ daemon for encryption to be successful.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>aaa new-model</td>
<td>Enable AAA.</td>
</tr>
</tbody>
</table>
Controlling Switch Access with TACACS+

To remove the specified TACACS+ server name or address, use the `no tacacs-server host hostname` global configuration command. To remove a server group from the configuration list, use the `no aaa group server tacacs+ group-name` global configuration command. To remove the IP address of a TACACS+ server, use the `no server ip-address` server group subconfiguration command.

Configuring TACACS+ Login Authentication

To configure AAA authentication, you define a named list of authentication methods and then apply that list to various interfaces. The method list defines the types of authentication to be performed and the sequence in which they are performed; it must be applied to a specific interface before any of the defined authentication methods are performed. The only exception is the default method list (which, by coincidence, is named `default`). The default method list is automatically applied to all interfaces except those that have a named method list explicitly defined. A defined method list overrides the default method list.

A method list describes the sequence and authentication methods to be queried to authenticate a user. You can designate one or more security protocols to be used for authentication, thus ensuring a backup system for authentication in case the initial method fails. The software uses the first method listed to authenticate users; if that method fails to respond, the software selects the next authentication method in the method list. This process continues until there is successful communication with a listed authentication method or until all defined methods are exhausted. If authentication fails at any point in this cycle—meaning that the security server or local username database responds by denying the user access—the authentication process stops, and no other authentication methods are attempted.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 4 | **aaa group server tacacs+ group-name** | (Optional) Define the AAA server-group with a group name.
This command puts the switch in a server group subconfiguration mode. |
| Step 5 | **server ip-address** | (Optional) Associate a particular TACACS+ server with the defined server group. Repeat this step for each TACACS+ server in the AAA server group.
Each server in the group must be previously defined in Step 2. |
| Step 6 | **end** | Return to privileged EXEC mode. |
| Step 7 | **show tacacs** | Verify your entries. |
| Step 8 | **copy running-config startup-config** | (Optional) Save your entries in the configuration file. |
Beginning in privileged EXEC mode, follow these steps to configure login authentication:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>aaa new-model Enable AAA.</td>
</tr>
</tbody>
</table>
| **Step 3** | **aaa authentication login** \{default | list-name\} method1 [method2...]
Create a login authentication method list.
- To create a default list that is used when a named list is not specified in the **login authentication** command, use the **default** keyword followed by the methods that are to be used in default situations. The default method list is automatically applied to all interfaces.
- For **list-name**, specify a character string to name the list you are creating.
- For **method1...**, specify the actual method the authentication algorithm tries. The additional methods of authentication are used only if the previous method returns an error, not if it fails.
Select one of these methods:
- **enable**—Use the enable password for authentication. Before you can use this authentication method, you must define an enable password by using the **enable password** global configuration command.
- **group tacacs+**—Uses TACACS+ authentication. Before you can use this authentication method, you must configure the TACACS+ server. For more information, see the “Identifying the TACACS+ Server Host and Setting the Authentication Key” section on page 8-13.
- **line**—Use the line password for authentication. Before you can use this authentication method, you must define a line password. Use the **password password** line configuration command.
- **local**—Use the local username database for authentication. You must enter username information in the database. Use the **username password** global configuration command.
- **local-case**—Use a case-sensitive local username database for authentication. You must enter username information in the database by using the **username name password** global configuration command.
- **none**—Do not use any authentication for login. |
| **Step 4** | **line** [console | tty | vty] line-number [ending-line-number] Enter line configuration mode, and configure the lines to which you want to apply the authentication list. |
| **Step 5** | **login authentication** \{default | list-name\}
Apply the authentication list to a line or set of lines.
- If you specify **default**, use the default list created with the **aaa authentication login** command.
- For **list-name**, specify the list created with the **aaa authentication login** command. |
| **Step 6** | **end** Return to privileged EXEC mode. |
| **Step 7** | **show running-config** Verify your entries. |
| **Step 8** | **copy running-config startup-config** (Optional) Save your entries in the configuration file. |
To disable AAA, use the `no aaa new-model` global configuration command. To disable AAA authentication, use the `no aaa authentication login {default | list-name} method1 [method2...]` global configuration command. To either disable TACACS+ authentication for logins or to return to the default value, use the `no login authentication {default | list-name}` line configuration command.

Configuring TACACS+ Authorization for Privileged EXEC Access and Network Services

AAA authorization limits the services available to a user. When AAA authorization is enabled, the switch uses information retrieved from the user’s profile, which is located either in the local user database or on the security server, to configure the user’s session. The user is granted access to a requested service only if the information in the user profile allows it.

You can use the `aaa authorization` global configuration command with the `tacacs+` keyword to set parameters that restrict a user’s network access to privileged EXEC mode.

The `aaa authorization exec tacacs+ local` command sets these authorization parameters:

- Use TACACS+ for privileged EXEC access authorization if authentication was performed by using TACACS+.
- Use the local database if authentication was not performed by using TACACS+.

Note

Authorization is bypassed for authenticated users who log in through the CLI even if authorization has been configured.

Beginning in privileged EXEC mode, follow these steps to specify TACACS+ authorization for privileged EXEC access and network services:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>aaa authorization network tacacs+ Configure the switch for user TACACS+ authorization for all network-related service requests.</td>
</tr>
<tr>
<td>Step 3</td>
<td>aaa authorization exec tacacs+ Configure the switch for user TACACS+ authorization to determine if the user has privileged EXEC access. The <code>exec</code> keyword might return user profile information (such as <code>autocommand</code> information).</td>
</tr>
<tr>
<td>Step 4</td>
<td>end Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable authorization, use the `no aaa authorization {network | exec} method1` global configuration command.
Starting TACACS+ Accounting

The AAA accounting feature tracks the services that users are accessing and the amount of network resources that they are consuming. When AAA accounting is enabled, the switch reports user activity to the TACACS+ security server in the form of accounting records. Each accounting record contains accounting attribute-value (AV) pairs and is stored on the security server. This data can then be analyzed for network management, client billing, or auditing.

Beginning in privileged EXEC mode, follow these steps to enable TACACS+ accounting for each Cisco IOS privilege level and for network services:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>aaa accounting network start-stop tacacs+</td>
</tr>
<tr>
<td></td>
<td>Enable TACACS+ accounting for all network-related service requests.</td>
</tr>
<tr>
<td>Step 3</td>
<td>aaa accounting exec start-stop tacacs+</td>
</tr>
<tr>
<td></td>
<td>Enable TACACS+ accounting to send a start-record accounting notice at the beginning of a privileged EXEC process and a stop-record at the end.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable accounting, use the `no aaa accounting {network | exec} {start-stop} method1...` global configuration command.

Displaying the TACACS+ Configuration

To display TACACS+ server statistics, use the `show tacacs` privileged EXEC command.
Controlling Switch Access with RADIUS

This section describes how to enable and configure the Remote Authentication Dial-In User Service (RADIUS), which provides detailed accounting information and flexible administrative control over authentication and authorization processes. RADIUS is facilitated through AAA and can be enabled only through AAA commands.

Note
For complete syntax and usage information for the commands used in this section, refer to the Cisco IOS Security Command Reference for Release 12.1.

This section contains this configuration information:

- Understanding RADIUS, page 8-18
- RADIUS Operation, page 8-19
- Configuring RADIUS, page 8-20
- Displaying the RADIUS Configuration, page 8-31

Understanding RADIUS

RADIUS is a distributed client/server system that secures networks against unauthorized access. RADIUS clients run on supported Cisco routers and switches, including Catalyst 3550 multilayer switches, Catalyst 2955 switches, and Catalyst 2950 switches. Clients send authentication requests to a central RADIUS server, which contains all user authentication and network service access information. The RADIUS host is normally a multiuser system running RADIUS server software from Cisco (Cisco Secure Access Control Server version 3.0), Livingston, Merit, Microsoft, or another software provider. For more information, refer to the RADIUS server documentation.

Use RADIUS in these network environments that require access security:

- Networks with multiple-vendor access servers, each supporting RADIUS. For example, access servers from several vendors use a single RADIUS server-based security database. In an IP-based network with multiple vendors’ access servers, dial-in users are authenticated through a RADIUS server that has been customized to work with the Kerberos security system.
- Turnkey network security environments in which applications support the RADIUS protocol, such as in an access environment that uses a smart card access control system. In one case, RADIUS has been used with Enigma’s security cards to validates users and to grant access to network resources.
- Networks already using RADIUS. You can add a Cisco switch containing a RADIUS client to the network. This might be the first step when you make a transition to a TACACS+ server. See Figure 8-2 on page 8-19.
- Network in which the user must only access a single service. Using RADIUS, you can control user access to a single host, to a single utility such as Telnet, or to the network through a protocol such as IEEE 802.1X. For more information about this protocol, see Chapter 9, “Configuring 802.1X Port-Based Authentication.”
- Networks that require resource accounting. You can use RADIUS accounting independently of RADIUS authentication or authorization. The RADIUS accounting functions allow data to be sent at the start and end of services, showing the amount of resources (such as time, packets, bytes, and so forth) used during the session. An Internet service provider might use a freeware-based version of RADIUS access control and accounting software to meet special security and billing needs.
RADIUS is not suitable in these network security situations:

- Multiprotocol access environments. RADIUS does not support AppleTalk Remote Access (ARA), NetBIOS Frame Control Protocol (NBFCP), NetWare Asynchronous Services Interface (NASI), or X.25 PAD connections.
- Switch-to-switch or router-to-router situations. RADIUS does not provide two-way authentication. RADIUS can be used to authenticate from one device to a non-Cisco device if the non-Cisco device requires authentication.
- Networks using a variety of services. RADIUS generally binds a user to one service model.

Figure 8-2 Transitioning from RADIUS to TACACS+ Services

RADIUS Operation

When a user attempts to log in and authenticate to a switch that is access controlled by a RADIUS server, these events occur:

1. The user is prompted to enter a username and password.
2. The username and encrypted password are sent over the network to the RADIUS server.
3. The user receives one of these responses from the RADIUS server:
 a. ACCEPT—The user is authenticated.
 b. REJECT—The user is either not authenticated and is prompted to re-enter the username and password, or access is denied.
 c. CHALLENGE—A challenge requires additional data from the user.
 d. CHALLENGE PASSWORD—A response requests the user to select a new password.

The ACCEPT or REJECT response is bundled with additional data that is used for privileged EXEC or network authorization. Users must first successfully complete RADIUS authentication before proceeding to RADIUS authorization, if it is enabled. The additional data included with the ACCEPT or REJECT packets includes these items:

- Telnet, SSH, rlogin, or privileged EXEC services
- Connection parameters, including the host or client IP address, access list, and user timeouts
Configuring RADIUS

This section describes how to configure your switch to support RADIUS. At a minimum, you must identify the host or hosts that run the RADIUS server software and define the method lists for RADIUS authentication. You can optionally define method lists for RADIUS authorization and accounting.

A method list defines the sequence and methods to be used to authenticate, to authorize, or to keep accounts on a user. You can use method lists to designate one or more security protocols to be used (such as TACACS+ or local username lookup), thus ensuring a backup system if the initial method fails. The software uses the first method listed to authenticate, to authorize, or to keep accounts on users; if that method does not respond, the software selects the next method in the list. This process continues until there is successful communication with a listed method or the method list is exhausted.

You should have access to and should configure a RADIUS server before configuring RADIUS features on your switch.

This section contains this configuration information:

- Default RADIUS Configuration, page 8-20
- Identifying the RADIUS Server Host, page 8-20 (required)
- Configuring RADIUS Login Authentication, page 8-23 (required)
- Defining AAA Server Groups, page 8-25 (optional)
- Configuring RADIUS Authorization for User Privileged Access and Network Services, page 8-27 (optional)
- Starting RADIUS Accounting, page 8-28 (optional)
- Configuring Settings for All RADIUS Servers, page 8-29 (optional)
- Configuring the Switch to Use Vendor-Specific RADIUS Attributes, page 8-29 (optional)
- Configuring the Switch for Vendor-Proprietary RADIUS Server Communication, page 8-31 (optional)

Default RADIUS Configuration

RADIUS and AAA are disabled by default.

To prevent a lapse in security, you cannot configure RADIUS through a network management application. When enabled, RADIUS can authenticate users accessing the switch through the CLI.

Identifying the RADIUS Server Host

Switch-to-RADIUS-server communication involves several components:

- Host name or IP address
- Authentication destination port
- Accounting destination port
- Key string
- Timeout period
- Retransmission value
You identify RADIUS security servers by their host name or IP address, host name and specific UDP port numbers, or their IP address and specific UDP port numbers. The combination of the IP address and the UDP port number creates a unique identifier, allowing different ports to be individually defined as RADIUS hosts providing a specific AAA service. This unique identifier enables RADIUS requests to be sent to multiple UDP ports on a server at the same IP address.

If two different host entries on the same RADIUS server are configured for the same service—for example, accounting—the second host entry configured acts as a fail-over backup to the first one. Using this example, if the first host entry fails to provide accounting services, the switch tries the second host entry configured on the same device for accounting services. (The RADIUS host entries are tried in the order that they are configured.)

A RADIUS server and the switch use a shared secret text string to encrypt passwords and exchange responses. To configure RADIUS to use the AAA security commands, you must specify the host running the RADIUS server daemon and a secret text (key) string that it shares with the switch.

The timeout, retransmission, and encryption key values can be configured globally for all RADIUS servers, on a per-server basis, or in some combination of global and per-server settings. To apply these settings globally to all RADIUS servers communicating with the switch, use the three unique global configuration commands: `radius-server timeout`, `radius-server retransmit`, and `radius-server key`. To apply these values on a specific RADIUS server, use the `radius-server host` global configuration command.

Note
If you configure both global and per-server functions (timeout, retransmission, and key commands) on the switch, the per-server timer, retransmission, and key value commands override global timer, retransmission, and key value commands. For information on configuring these setting on all RADIUS servers, see the “Configuring Settings for All RADIUS Servers” section on page 8-29.

You can configure the switch to use AAA server groups to group existing server hosts for authentication. For more information, see the “Defining AAA Server Groups” section on page 8-25.
Beginning in privileged EXEC mode, follow these steps to configure per-server RADIUS server communication. This procedure is required.

Command	**Purpose**
Step 1
configure terminal | Enter global configuration mode.

Step 2
radius-server host
<hostname | ip-address>
[auth-port port-number]
[acct-port port-number]
[timeout seconds]
[retransmit retries]
[key string] | Specify the IP address or host name of the remote RADIUS server host.
- (Optional) For **auth-port** port-number, specify the UDP destination port for authentication requests.
- (Optional) For **acct-port** port-number, specify the UDP destination port for accounting requests.
- (Optional) For **timeout** seconds, specify the time interval that the switch waits for the RADIUS server to reply before resending. The range is 1 to 1000. This setting overrides the **radius-server timeout** global configuration command setting. If no timeout is set with the **radius-server host** command, the setting of the **radius-server timeout** command is used.
- (Optional) For **retransmit** retries, specify the number of times a RADIUS request is resent to a server if that server is not responding or responding slowly. The range is 1 to 1000. If no retransmit value is set with the **radius-server host** command, the setting of the **radius-server retransmit** global configuration command is used.
- (Optional) For **key** string, specify the authentication and encryption key used between the switch and the RADIUS daemon running on the RADIUS server.

Note
The key is a text string that must match the encryption key used on the RADIUS server. Always configure the key as the last item in the **radius-server host** command. Leading spaces are ignored, but spaces within and at the end of the key are used. If you use spaces in your key, do not enclose the key in quotation marks unless the quotation marks are part of the key.

To configure the switch to recognize more than one host entry associated with a single IP address, enter this command as many times as necessary, making sure that each UDP port number is different. The switch software searches for hosts in the order in which you specify them. Set the timeout, retransmit, and encryption key values to use with the specific RADIUS host.

Step 3
end | Return to privileged EXEC mode.

Step 4
show running-config | Verify your entries.

Step 5
copy running-config startup-config | (Optional) Save your entries in the configuration file.

To remove the specified RADIUS server, use the **no radius-server host hostname | ip-address** global configuration command.
This example shows how to configure one RADIUS server to be used for authentication and another to be used for accounting:

Switch(config) # radius-server host 172.29.36.49 auth-port 1612 key rad1
Switch(config) # radius-server host 172.20.36.50 acct-port 1618 key rad2

This example shows how to configure host1 as the RADIUS server and to use the default ports for both authentication and accounting:

Switch(config) # radius-server host host1

Note: You also need to configure some settings on the RADIUS server. These settings include the IP address of the switch and the key string to be shared by both the server and the switch. For more information, refer to the RADIUS server documentation.

Configuring RADIUS Login Authentication

To configure AAA authentication, you define a named list of authentication methods and then apply that list to various interfaces. The method list defines the types of authentication to be performed and the sequence in which they are performed; it must be applied to a specific interface before any of the defined authentication methods are performed. The only exception is the default method list (which, by coincidence, is named default). The default method list is automatically applied to all interfaces except those that have a named method list explicitly defined.

A method list describes the sequence and authentication methods to be queried to authenticate a user. You can designate one or more security protocols to be used for authentication, thus ensuring a backup system for authentication in case the initial method fails. The software uses the first method listed to authenticate users; if that method fails to respond, the software selects the next authentication method in the method list. This process continues until there is successful communication with a listed authentication method or until all defined methods are exhausted. If authentication fails at any point in this cycle—meaning that the security server or local username database responds by denying the user access—the authentication process stops, and no other authentication methods are attempted.

Beginning in privileged EXEC mode, follow these steps to configure login authentication. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 aaa new-model</td>
<td>Enable AAA.</td>
</tr>
</tbody>
</table>
Controlling Switch Access with RADIUS

Command

aaa authentication login {default | list-name} method1 [method2...]

Create a login authentication method list.

- To create a default list that is used when a named list is not specified in the `login authentication` command, use the `default` keyword followed by the methods that are to be used in default situations. The default method list is automatically applied to all interfaces.
- For `list-name`, specify a character string to name the list you are creating.
- For `method1...`, specify the actual method the authentication algorithm tries. The additional methods of authentication are used only if the previous method returns an error, not if it fails.

Select one of these methods:

- **enable**—Use the enable password for authentication. Before you can use this authentication method, you must define an enable password by using the `enable password` global configuration command.
- **group radius**—Use RADIUS authentication. Before you can use this authentication method, you must configure the RADIUS server. For more information, see the “Identifying the RADIUS Server Host” section on page 8-20.
- **line**—Use the line password for authentication. Before you can use this authentication method, you must define a line password. Use the `password password` line configuration command.
- **local**—Use the local username database for authentication. You must enter username information in the database. Use the `username name password` global configuration command.
- **local-case**—Use a case-sensitive local username database for authentication. You must enter username information in the database by using the `username password` global configuration command.
- **none**—Do not use any authentication for login.

Command

line {console | tty | vty} line-number [ending-line-number]

Enter line configuration mode, and configure the lines to which you want to apply the authentication list.

Command

login authentication {default | list-name}

Apply the authentication list to a line or set of lines.

- If you specify `default`, use the default list created with the `aaa authentication login` command.
- For `list-name`, specify the list created with the `aaa authentication login` command.

Command

end

Return to privileged EXEC mode.

Command

show running-config

Verify your entries.

Command

copy running-config startup-config

(Optional) Save your entries in the configuration file.
To disable AAA, use the **no aaa new-model** global configuration command. To disable AAA authentication, use the **no aaa authentication login {default | list-name} method1 [method2...]** global configuration command. To either disable RADIUS authentication for logins or to return to the default value, use the **no login authentication {default | list-name}** line configuration command.

Defining AAA Server Groups

You can configure the switch to use AAA server groups to group existing server hosts for authentication. You select a subset of the configured server hosts and use them for a particular service. The server group is used with a global server-host list, which lists the IP addresses of the selected server hosts.

Server groups also can include multiple host entries for the same server if each entry has a unique identifier (the combination of the IP address and UDP port number), allowing different ports to be individually defined as RADIUS hosts providing a specific AAA service. If you configure two different host entries on the same RADIUS server for the same service, (for example, accounting), the second configured host entry acts as a fail-over backup to the first one.

You use the **server group** server configuration command to associate a particular server with a defined group server. You can either identify the server by its IP address or identify multiple host instances or entries by using the optional **auth-port** and **acct-port** keywords.
Beginning in privileged EXEC mode, follow these steps to define the AAA server group and associate a particular RADIUS server with it:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 `radius-server host {hostname</td>
<td>Specify the IP address or host name of the remote RADIUS server host.</td>
</tr>
<tr>
<td>ip-address} [auth-port port-number]</td>
<td>(Optional) For <code>auth-port port-number</code>, specify the UDP destination</td>
</tr>
<tr>
<td>[acct-port port-number] [timeout seconds]</td>
<td>port for authentication requests.</td>
</tr>
<tr>
<td>[retransmit retries] [key string]</td>
<td>(Optional) For <code>acct-port port-number</code>, specify the UDP destination</td>
</tr>
<tr>
<td></td>
<td>port for accounting requests.</td>
</tr>
<tr>
<td></td>
<td>(Optional) For <code>timeout seconds</code>, specify the time interval that the</td>
</tr>
<tr>
<td></td>
<td>switch waits for the RADIUS server to reply before resending. The</td>
</tr>
<tr>
<td></td>
<td>range is 1 to 1000. This setting overrides the <code>radius-server timeout</code></td>
</tr>
<tr>
<td></td>
<td>global configuration command setting. If no timeout is set with the</td>
</tr>
<tr>
<td></td>
<td><code>radius-server host</code> command, the setting of the <code>radius-server timeout</code></td>
</tr>
<tr>
<td></td>
<td>command is used.</td>
</tr>
<tr>
<td></td>
<td>(Optional) For <code>retransmit retries</code>, specify the number of times a</td>
</tr>
<tr>
<td></td>
<td>RADIUS request is resent to a server if that server is not responding</td>
</tr>
<tr>
<td></td>
<td>or responding slowly. The range is 1 to 1000. If no retransmit value is</td>
</tr>
<tr>
<td></td>
<td>set with the <code>radius-server host</code> command, the setting of the</td>
</tr>
<tr>
<td></td>
<td><code>radius-server retransmit</code> global configuration command is used.</td>
</tr>
<tr>
<td></td>
<td>(Optional) For <code>key string</code>, specify the authentication and encryption</td>
</tr>
<tr>
<td></td>
<td>key used between the switch and the RADIUS daemon running on the</td>
</tr>
<tr>
<td></td>
<td>RADIUS server.</td>
</tr>
<tr>
<td></td>
<td>Note: The key is a text string that must match the encryption key used</td>
</tr>
<tr>
<td></td>
<td>on the RADIUS server. Always configure the key as the last item in the</td>
</tr>
<tr>
<td></td>
<td><code>radius-server host</code> command. Leading spaces are ignored, but spaces</td>
</tr>
<tr>
<td></td>
<td>within and at the end of the key are used. If you use spaces in your</td>
</tr>
<tr>
<td></td>
<td>key, do not enclose the key in quotation marks unless the quotation</td>
</tr>
<tr>
<td></td>
<td>marks are part of the key.</td>
</tr>
<tr>
<td>Step 3 <code>aaa new-model</code></td>
<td>Enable AAA.</td>
</tr>
<tr>
<td>Step 4 <code>aaa group server radius group-name</code></td>
<td>Define the AAA server-group with a group name.</td>
</tr>
<tr>
<td></td>
<td>This command puts the switch in a server group configuration mode.</td>
</tr>
<tr>
<td>Step 5 <code>server ip-address</code></td>
<td>Associate a particular RADIUS server with the defined server group.</td>
</tr>
<tr>
<td></td>
<td>Repeat this step for each RADIUS server in the AAA server group.</td>
</tr>
<tr>
<td></td>
<td>Each server in the group must be previously defined in Step 2.</td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7 <code>show running-config</code></td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>
To remove the specified RADIUS server, use the `no radius-server host hostname | ip-address` global configuration command. To remove a server group from the configuration list, use the `no aaa group server radius group-name` global configuration command. To remove the IP address of a RADIUS server, use the `no server ip-address` server group configuration command.

In this example, the switch is configured to recognize two different RADIUS group servers (`group1` and `group2`). Group1 has two different host entries on the same RADIUS server configured for the same services. The second host entry acts as a fail-over backup to the first entry.

```
Switch(config)# radius-server host 172.20.0.1 auth-port 1000 acct-port 1001
Switch(config)# radius-server host 172.10.0.1 auth-port 1645 acct-port 1646
Switch(config)# aaa new-model
Switch(config)# aaa group server radius group1
Switch(config-sg-radius)# server 172.20.0.1 auth-port 1000 acct-port 1001
Switch(config-sg-radius)# exit
Switch(config)# aaa group server radius group2
Switch(config-sg-radius)# server 172.20.0.1 auth-port 2000 acct-port 2001
Switch(config-sg-radius)# exit
```

Configuring RADIUS Authorization for User Privileged Access and Network Services

AAA authorization limits the services available to a user. When AAA authorization is enabled, the switch uses information retrieved from the user’s profile, which is in the local user database or on the security server, to configure the user’s session. The user is granted access to a requested service only if the information in the user profile allows it.

You can use the `aaa authorization` global configuration command with the `radius` keyword to set parameters that restrict a user’s network access to privileged EXEC mode.

The `aaa authorization exec radius local` command sets these authorization parameters:

- Use RADIUS for privileged EXEC access authorization if authentication was performed by using RADIUS.
- Use the local database if authentication was not performed by using RADIUS.

Note

Authorization is bypassed for authenticated users who log in through the CLI even if authorization has been configured.
Beginning in privileged EXEC mode, follow these steps to specify RADIUS authorization for privileged EXEC access and network services:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 aaa authorization network radius</td>
<td>Configure the switch for user RADIUS authorization for all network-related service requests.</td>
</tr>
<tr>
<td>Step 3 aaa authorization exec radius</td>
<td>Configure the switch for user RADIUS authorization to determine if the user has privileged EXEC access. The exec keyword might return user profile information (such as autocommand information).</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file. \</td>
</tr>
</tbody>
</table>

To disable authorization, use the **no aaa authorization {network | exec} method1** global configuration command.

Starting RADIUS Accounting

The AAA accounting feature tracks the services that users are accessing and the amount of network resources that they are consuming. When AAA accounting is enabled, the switch reports user activity to the RADIUS security server in the form of accounting records. Each accounting record contains accounting attribute-value (AV) pairs and is stored on the security server. This data can then be analyzed for network management, client billing, or auditing.

Beginning in privileged EXEC mode, follow these steps to enable RADIUS accounting for each Cisco IOS privilege level and for network services:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 aaa accounting network start-stop radius</td>
<td>Enable RADIUS accounting for all network-related service requests.</td>
</tr>
<tr>
<td>Step 3 aaa accounting exec start-stop radius</td>
<td>Enable RADIUS accounting to send a start-record accounting notice at the beginning of a privileged EXEC process and a stop-record at the end.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file. \</td>
</tr>
</tbody>
</table>

To disable accounting, use the **no aaa accounting {network | exec} {start-stop} method1** global configuration command.
Configuring Settings for All RADIUS Servers

Beginning in privileged EXEC mode, follow these steps to configure global communication settings between the switch and all RADIUS servers:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 radius-server key string</td>
<td>Specify the shared secret text string used between the switch and all RADIUS servers.</td>
</tr>
<tr>
<td></td>
<td>Note The key is a text string that must match the encryption key used on the RADIUS server. Leading spaces are ignored, but spaces within and at the end of the key are used. If you use spaces in your key, do not enclose the key in quotation marks unless the quotation marks are part of the key.</td>
</tr>
<tr>
<td>Step 3 radius-server retransmit retries</td>
<td>Specify the number of times the switch sends each RADIUS request to the server before giving up. The default is 3; the range 1 to 1000.</td>
</tr>
<tr>
<td>Step 4 radius-server timeout seconds</td>
<td>Specify the number of seconds a switch waits for a reply to a RADIUS request before resending the request. The default is 5 seconds; the range is 1 to 1000.</td>
</tr>
<tr>
<td>Step 5 radius-server deadtime minutes</td>
<td>Specify the number of minutes a RADIUS server, which is not responding to authentication requests, to be skipped, thus avoiding the wait for the request to timeout before trying the next configured server. The default is 0; the range is 1 to 1440 minutes.</td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7 show running-config</td>
<td>Verify your settings.</td>
</tr>
<tr>
<td>Step 8 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting for the retransmit, timeout, and deadtime, use the no forms of these commands.

Configuring the Switch to Use Vendor-Specific RADIUS Attributes

The Internet Engineering Task Force (IETF) draft standard specifies a method for communicating vendor-specific information between the switch and the RADIUS server by using the vendor-specific attribute (attribute 26). Vendor-specific attributes (VSAs) allow vendors to support their own extended attributes not suitable for general use. The Cisco RADIUS implementation supports one vendor-specific option by using the format recommended in the specification. Cisco’s vendor-ID is 9, and the supported option has vendor-type 1, which is named cisco-avpair. The value is a string with this format:

```
protocol : attribute sep value *
```

Protocol is a value of the Cisco protocol attribute for a particular type of authorization. *Attribute* and *value* are an appropriate attribute-value (AV) pair defined in the Cisco TACACS+ specification, and *sep* is = for mandatory attributes and is * for optional attributes. The full set of features available for TACACS+ authorization can then be used for RADIUS.
For example, this AV pair activates Cisco’s *multiple named ip address pools* feature during IP authorization (during PPP’s IPCP address assignment):

```plaintext
cisco-avpair= "ip:addr-pool=first"
```

This example shows how to provide a user logging in from a switch with immediate access to privileged EXEC commands:

```plaintext
cisco-avpair= "shell:priv-lvl=15"
```

This example shows how to specify an authorized VLAN in the RADIUS server database:

```plaintext
cisco-avpair= "tunnel-type(#64)=VLAN(13)"
cisco-avpair= "tunnel-medium-type(#65)=802 media(6)"
cisco-avpair= "tunnel-private-group-ID(#81)=vlanid"
```

This example shows how to apply an input ACL, in ASCII format, to an interface for the duration of this connection:

```plaintext
cisco-avpair= "ip:inacl#1=deny ip 10.10.10.10 0.0.255.255 20.20.20.20 255.255.0.0"
cisco-avpair= "ip:inacl#2=deny ip 10.10.10.10 0.0.255.255 any"
cisco-avpair= "mac:inacl#3=deny any any decnet-iv"
```

This example shows how to apply an output ACL, in ASCII format, to an interface for the duration of this connection:

```plaintext
cisco-avpair= "ip:outacl#2=deny ip 10.10.10.10 0.0.255.255 any"
```

Other vendors have their own unique vendor-IDs, options, and associated VSAs. For more information about vendor-IDs and VSAs, refer to RFC 2138, “Remote Authentication Dial-In User Service (RADIUS).”

Beginning in privileged EXEC mode, follow these steps to configure the switch to recognize and use VSAs:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2** | **radius-server vsa send [accounting | authentication]** Enable the switch to recognize and use VSAs as defined by RADIUS IETF attribute 26.
- (Optional) Use the **accounting** keyword to limit the set of recognized vendor-specific attributes to only accounting attributes.
- (Optional) Use the **authentication** keyword to limit the set of recognized vendor-specific attributes to only authentication attributes.
If you enter this command without keywords, both accounting and authentication vendor-specific attributes are used. |
| **Step 3** | **end** Return to privileged EXEC mode. |
| **Step 4** | **show running-config** Verify your settings. |
| **Step 5** | **copy running-config startup-config** (Optional) Save your entries in the configuration file. |

For a complete list of RADIUS attributes or more information about vendor-specific attribute 26, refer to the “RADIUS Attributes” appendix in the *Cisco IOS Security Configuration Guide for Release 12.1.*
Controlling Switch Access with RADIUS

Chapter 8 Configuring Switch-Based Authentication

Configuring the Switch for Vendor-Proprietary RADIUS Server Communication

Although an IETF draft standard for RADIUS specifies a method for communicating vendor-proprietary information between the switch and the RADIUS server, some vendors have extended the RADIUS attribute set in a unique way. Cisco IOS software supports a subset of vendor-proprietary RADIUS attributes.

As mentioned earlier, to configure RADIUS (whether vendor-proprietary or IETF draft-compliant), you must specify the host running the RADIUS server daemon and the secret text string it shares with the switch. You specify the RADIUS host and secret text string by using the `radius-server` global configuration commands.

Beginning in privileged EXEC mode, follow these steps to specify a vendor-proprietary RADIUS server host and a shared secret text string:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>radius-server host {hostname</td>
</tr>
<tr>
<td></td>
<td>Specify the IP address or host name of the remote RADIUS server host and identify that it is using a vendor-proprietary implementation of RADIUS.</td>
</tr>
<tr>
<td>Step 3</td>
<td>radius-server key string</td>
</tr>
<tr>
<td></td>
<td>Specify the shared secret text string used between the switch and the vendor-proprietary RADIUS server. The switch and the RADIUS server use this text string to encrypt passwords and exchange responses.</td>
</tr>
<tr>
<td></td>
<td>Note The key is a text string that must match the encryption key used on the RADIUS server. Leading spaces are ignored, but spaces within and at the end of the key are used. If you use spaces in your key, do not enclose the key in quotation marks unless the quotation marks are part of the key.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td></td>
<td>Verify your settings.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To delete the vendor-proprietary RADIUS host, use the `no radius-server host {hostname | ip-address} non-standard` global configuration command. To disable the key, use the `no radius-server key` global configuration command.

This example shows how to specify a vendor-proprietary RADIUS host and to use a secret key of `rad124` between the switch and the server:

```
Switch(config)# radius-server host 172.20.30.15 nonstandard
Switch(config)# radius-server key rad124
```

Displaying the RADIUS Configuration

To display the RADIUS configuration, use the `show running-config` privileged EXEC command.
Controlling Switch Access with Kerberos

This section describes how to enable and configure the Kerberos security system, which authenticates requests for network resources by using a trusted third party.

This section consists of these topics:

- Understanding Kerberos, page 8-32
- Kerberos Operation, page 8-34
- Configuring Kerberos, page 8-35

For Kerberos configuration examples, refer to the “Kerberos Configuration Examples” section in the “Security Server Protocols” chapter of the Cisco IOS Security Configuration Guide, Release 12.1, at this URL:

Note

For complete syntax and usage information for the commands used in this section, refer to the “Kerberos Commands” section in the “Security Server Protocols” chapter of the Cisco IOS Security Command Reference, Release 12.1, at this URL:

Note

In the Kerberos configuration examples and in the Cisco IOS Security Command Reference, Release 12.1, the trusted third party can be a Catalyst 3550 switch that supports Kerberos, that is configured as a network security server, and that can authenticate users by using the Kerberos protocol.

Understanding Kerberos

Kerberos is a secret-key network authentication protocol, which was developed at the Massachusetts Institute of Technology (MIT). It uses the Data Encryption Standard (DES) cryptographic algorithm for encryption and authentication and authenticates requests for network resources. Kerberos uses the concept of a trusted third party to perform secure verification of users and services. This trusted third party is called the key distribution center (KDC).

The main purpose of Kerberos is to verify that users are who they claim to be and the network services that they use are what the services claim to be. To do this, a KDC or trusted Kerberos server issues tickets to users. These tickets, which have a limited lifespan, are stored in user credential caches. The Kerberos server uses the tickets instead of usernames and passwords to authenticate users and network services.

Note

A Kerberos server can be a Catalyst 3550 switch that is configured as a network security server and that can authenticate users by using the Kerberos protocol.

The Kerberos credential scheme uses a process called single logon. This process authenticates a user once and then allows secure authentication (without encrypting another password) wherever that user credential is accepted.
This software release supports Kerberos 5, which allows organizations that are already using Kerberos 5 to use the same Kerberos authentication database on the KDC that they are already using on their other network hosts (such as UNIX servers and PCs).

In this software release, Kerberos supports these network services:

- Telnet
- rlogin
- rsh (Remote Shell Protocol)

Table 8-2 lists the common Kerberos-related terms and definitions:

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication</td>
<td>A process by which a user or service identifies itself to another service. For example, a client can authenticate to a switch or a switch can authenticate to another switch.</td>
</tr>
<tr>
<td>Authorization</td>
<td>A means by which the switch determines what privileges the user has in a network or on the switch and what actions the user can perform.</td>
</tr>
<tr>
<td>Credential</td>
<td>A general term that refers to authentication tickets, such as TGTs and service credentials. Kerberos credentials verify the identity of a user or service. If a network service decides to trust the Kerberos server that issued a ticket, it can be used in place of re-entering a username and password. Credentials have a default lifespan of eight hours.</td>
</tr>
<tr>
<td>Instance</td>
<td>An authorization level label for Kerberos principals. Most Kerberos principals are of the form user@REALM (for example, smith@EXAMPLE.COM). A Kerberos principal with a Kerberos instance has the form user/instance@REALM (for example, smith/admin@EXAMPLE.COM). The Kerberos instance can be used to specify the authorization level for the user if authentication is successful. The server of each network service might implement and enforce the authorization mappings of Kerberos instances but is not required to do so.</td>
</tr>
<tr>
<td>Note</td>
<td>The Kerberos principal and instance names must be in all lowercase characters.</td>
</tr>
<tr>
<td>Note</td>
<td>The Kerberos realm name must be in all uppercase characters.</td>
</tr>
<tr>
<td>KDC</td>
<td>Key distribution center that consists of a Kerberos server and database program that is running on a network host.</td>
</tr>
<tr>
<td>Kerberized</td>
<td>A term that describes applications and services that have been modified to support the Kerberos credential infrastructure.</td>
</tr>
<tr>
<td>Kerberos realm</td>
<td>A domain consisting of users, hosts, and network services that are registered to a Kerberos server. The Kerberos server is trusted to verify the identity of a user or network service to another user or network service.</td>
</tr>
<tr>
<td>Note</td>
<td>The Kerberos realm name must be in all uppercase characters.</td>
</tr>
<tr>
<td>Kerberos server</td>
<td>A daemon that is running on a network host. Users and network services register their identity with the Kerberos server. Network services query the Kerberos server to authenticate to other network services.</td>
</tr>
</tbody>
</table>
Kerberos Operation

This section describes how Kerberos operates with a Catalyst 3550 switch that is configured as a network security server. Although you can customize Kerberos in a number of ways, remote users attempting to access network services must pass through three layers of security before they can access network services.

To authenticate to network services by using a Catalyst 3550 switch as a Kerberos server, remote users must follow these steps:

1. **Authenticating to a Boundary Switch**, page 8-35
2. **Obtaining a TGT from a KDC**, page 8-35
3. **Authenticating to Network Services**, page 8-35

Note
A Kerberos server can be a Catalyst 3550 switch that is configured as a network security server and that can authenticate remote users by using the Kerberos protocol.
Chapter 8 Configuring Switch-Based Authentication

Authenticating to a Boundary Switch

This section describes the first layer of security through which a remote user must pass. The user must first authenticate to the boundary switch. When the remote user authenticates to a boundary switch, this process occurs:

1. The user opens an un-Kerberized Telnet connection to the boundary switch.
2. The switch prompts the user for a username and password.
3. The switch requests a TGT from the KDC for this user.
4. The KDC sends an encrypted TGT to the switch that includes the user identity.
5. The switch attempts to decrypt the TGT by using the password that the user entered. If the decryption is successful, the user is authenticated to the switch. If the decryption is not successful, the user repeats the process starting with Step 2.

A remote user who initiates a un-Kerberized Telnet session and authenticates to a boundary switch is inside the firewall, but the user must still authenticate directly to the KDC before getting access to the network services. The user must authenticate to the KDC because the TGT that the KDC issues is stored on the switch and cannot be used for additional authentication until the user logs on to the switch.

Obtaining a TGT from a KDC

This section describes the second layer of security through which a remote user must pass. The user must now authenticate to a KDC and obtain a TGT from the KDC to access network services.

For instructions about how to authenticate to a KDC, refer to the “Obtaining a TGT from a KDC” section in the “Security Server Protocols” chapter of the Cisco IOS Security Configuration Guide, Release 12.1, at this URL:

Authenticating to Network Services

This section describes the third layer of security through which a remote user must pass. The user with a TGT must now authenticate to the network services in a Kerberos realm.

For instructions about how to authenticate to a network service, refer to the “Authenticating to Network Services” section in the “Security Server Protocols” chapter of the Cisco IOS Security Configuration Guide, Release 12.1, at this URL:

Configuring Kerberos

So that remote users can authenticate to network services, you must configure the hosts and the KDC in the Kerberos realm to communicate and mutually authenticate users and network services. To do this, you must identify them to each other. You add entries for the hosts to the Kerberos database on the KDC and add KEYTAB files generated by the KDC to all hosts in the Kerberos realm. You also create entries for the users in the KDC database.
When you add or create entries for the hosts and users, follow these guidelines:

- The Kerberos principal name must be in all lowercase characters.
- The Kerberos instance name must be in all lowercase characters.
- The Kerberos realm name must be in all uppercase characters.

Note

A Kerberos server can be a Catalyst 3550 switch that is configured as a network security server and that can authenticate users by using the Kerberos protocol.

To set up a Kerberos-authenticated server-client system, follow these steps:

- Configure the KDC by using Kerberos commands.
- Configure the switch to use the Kerberos protocol.

Configuring the Switch for Local Authentication and Authorization

You can configure AAA to operate without a server by setting the switch to implement AAA in local mode. The switch then handles authentication and authorization. No accounting is available in this configuration.

Beginning in privileged EXEC mode, follow these steps to configure the switch for local AAA:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>aaa new-model</td>
</tr>
<tr>
<td>Step 3</td>
<td>aaa authentication login default local</td>
</tr>
<tr>
<td>Step 4</td>
<td>aaa authorization exec local</td>
</tr>
<tr>
<td>Step 5</td>
<td>aaa authorization network local</td>
</tr>
</tbody>
</table>
To disable AAA, use the `no aaa new-model` global configuration command. To disable authorization, use the `no aaa authorization {network | exec} method1` global configuration command.

Configuring the Switch for Secure Shell

This section describes how to configure the Secure Shell (SSH) feature. To use this feature, the cryptographic (encrypted) multilayer software image must be installed on your switch. You must obtain authorization to use this feature and to download the cryptographic software files from Cisco.com. For more information, refer to the release notes for this release.

This section contains this configuration information:

- Understanding SSH, page 8-37
- Configuring SSH, page 8-38

To disable AAA, use the `no aaa new-model` global configuration command. To disable authorization, use the `no aaa authorization {network | exec} method1` global configuration command.

Understanding SSH

SSH is a protocol that provides a secure, remote connection to a device. There are two versions of SSH: SSH version 1 and SSH version 2. This software release only supports SSH version 1.
SSH provides more security for remote connections than Telnet by providing strong encryption when a device is authenticated. The SSH feature has an SSH server and an SSH integrated client. SSH supports these user authentication methods:

- TACACS+ (for more information, see the “Controlling Switch Access with TACACS+” section on page 8-10)
- RADIUS (for more information, see the “Controlling Switch Access with RADIUS” section on page 8-18)
- Local authentication and authorization (for more information, see the “Configuring the Switch for Local Authentication and Authorization” section on page 8-36)

For more information about SSH, refer to the “Configuring Secure Shell” section in the Cisco IOS Security Configuration Guide for Release 12.2.

Note
The SSH feature in this software release does not support IP Security (IPSec).

Configuring SSH

Before configuring SSH, download the cryptographic software image from Cisco.com. For more information, refer to the release notes for this release.

For information about configuring SSH and displaying SSH settings, refer to the “Configuring Secure Shell” section in the Cisco IOS Security Configuration Guide for Release 12.2.
Configuring 802.1X Port-Based Authentication

This chapter describes how to configure IEEE 802.1X port-based authentication on your Catalyst 3550 switch to prevent unauthorized devices (clients) from gaining access to the network.

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter consists of these sections:
- Understanding 802.1X Port-Based Authentication, page 9-1
- Configuring 802.1X Authentication, page 9-8
- Displaying 802.1X Statistics and Status, page 9-17

Understanding 802.1X Port-Based Authentication

The IEEE 802.1X standard defines a client-server-based access control and authentication protocol that restricts unauthorized clients from connecting to a LAN through publicly accessible ports. The authentication server authenticates each client connected to a switch port before making available any services offered by the switch or the LAN.

Until the client is authenticated, 802.1X access control allows only Extensible Authentication Protocol over LAN (EAPOL) traffic through the port to which the client is connected. After authentication is successful, normal traffic can pass through the port.

These sections describe 802.1X port-based authentication:
- Device Roles, page 9-2
- Authentication Initiation and Message Exchange, page 9-3
- Ports in Authorized and Unauthorized States, page 9-4
- Voice VLAN Ports, page 9-5
- Using 802.1X with Port Security, page 9-5
- Using 802.1X with Per-User ACLs, page 9-6
- Using 802.1X with VLAN Assignment, page 9-7
- Supported Topologies, page 9-8
Device Roles

With 802.1X port-based authentication, the devices in the network have specific roles as shown in Figure 9-1.

- **Client**—the device (workstation) that requests access to the LAN and switch services and responds to requests from the switch. The workstation must be running 802.1X-compliant client software such as that offered in the Microsoft Windows XP operating system. (The client is the *supplicant* in the IEEE 802.1X specification.)

 To resolve Windows XP network connectivity and 802.1X authentication issues, read the Microsoft Knowledge Base article at this URL: http://support.microsoft.com/support/kb/articles/Q303/5/97.ASP

- **Authentication server**—performs the actual authentication of the client. The authentication server validates the identity of the client and notifies the switch whether or not the client is authorized to access the LAN and switch services. Because the switch acts as the proxy, the authentication service is transparent to the client. In this release, the Remote Authentication Dial-In User Service (RADIUS) security system with Extensible Authentication Protocol (EAP) extensions is the only supported authentication server; it is available in Cisco Secure Access Control Server version 3.0. RADIUS operates in a client/server model in which secure authentication information is exchanged between the RADIUS server and one or more RADIUS clients.

- **Switch** (edge switch or wireless access point)—controls the physical access to the network based on the authentication status of the client. The switch acts as an intermediary (proxy) between the client and the authentication server, requesting identity information from the client, verifying that information with the authentication server, and relaying a response to the client. The switch includes the RADIUS client, which is responsible for encapsulating and decapsulating the EAP frames and interacting with the authentication server.

 When the switch receives EAPOL frames and relays them to the authentication server, the Ethernet header is stripped and the remaining EAP frame is re-encapsulated in the RADIUS format. The EAP frames are not modified or examined during encapsulation, and the authentication server must support EAP within the native frame format. When the switch receives frames from the authentication server, the server's frame header is removed, leaving the EAP frame, which is then encapsulated for Ethernet and sent to the client.

 The devices that can act as intermediaries include the Catalyst 3550 multilayer switch, the Catalyst 2950 switch, the Catalyst 2955 switch, or a wireless access point. These devices must be running software that supports the RADIUS client and 802.1X.
Authentication Initiation and Message Exchange

The switch or the client can initiate authentication. If you enable authentication on a port by using the `dot1x port-control auto` interface configuration command, the switch must initiate authentication when it determines that the port link state transitions from down to up. It then sends an EAP-request/identity frame to the client to request its identity (typically, the switch sends an initial identity/request frame followed by one or more requests for authentication information). Upon receipt of the frame, the client responds with an EAP-response/identity frame.

However, if during bootup, the client does not receive an EAP-request/identity frame from the switch, the client can initiate authentication by sending an EAPOL-start frame, which prompts the switch to request the client’s identity.

Note If 802.1X is not enabled or supported on the network access device, any EAPOL frames from the client are dropped. If the client does not receive an EAP-request/identity frame after three attempts to start authentication, the client sends frames as if the port is in the authorized state. A port in the authorized state effectively means that the client has been successfully authenticated. For more information, see the “Ports in Authorized and Unauthorized States” section on page 9-4.

When the client supplies its identity, the switch begins its role as the intermediary, passing EAP frames between the client and the authentication server until authentication succeeds or fails. If the authentication succeeds, the switch port becomes authorized. For more information, see the “Ports in Authorized and Unauthorized States” section on page 9-4.

The specific exchange of EAP frames depends on the authentication method being used. Figure 9-2 shows a message exchange initiated by the client using the One-Time-Password (OTP) authentication method with a RADIUS server.

Figure 9-2 Message Exchange

```
Client               Catalyst 2950 or 3550 switch               Authentication server (RADIUS)
                          
EAPOL-Start            
EAP-Request/Identity   
EAP-Response/Identity  
EAP-Request/OTP        
RADIUS Access-Request  
RADIUS Access-Challenge
EAP-Response/OTP       
EAP-Request/OTP        
RADIUS Access-Request  
EAP-Success            
RADIUS Access-Accept   

Port Authorized

EAPOL-Logoff           
Port Unauthorized
```
Chapter 9 Configuring 802.1X Port-Based Authentication

Ports in Authorized and Unauthorized States

The switch port state determines whether or not the client is granted access to the network. The port starts in the unauthorized state. While in this state, the port disallows all ingress and egress traffic except for 802.1X protocol packets. When a client is successfully authenticated, the port transitions to the authorized state, allowing all traffic for the client to flow normally.

If a client that does not support 802.1X is connected to an unauthorized 802.1X port, the switch requests the client’s identity. In this situation, the client does not respond to the request, the port remains in the unauthorized state, and the client is not granted access to the network.

In contrast, when an 802.1X-enabled client connects to a port that is not running the 802.1X protocol, the client initiates the authentication process by sending the EAPOL-start frame. When no response is received, the client sends the request for a fixed number of times. Because no response is received, the client begins sending frames as if the port is in the authorized state.

You control the port authorization state by using the `dot1x port-control` interface configuration command and these keywords:

- **force-authorized**—disables 802.1X authentication and causes the port to transition to the authorized state without any authentication exchange required. The port sends and receives normal traffic without 802.1X-based authentication of the client. This is the default setting.
- **force-unauthorized**—causes the port to remain in the unauthorized state, ignoring all attempts by the client to authenticate. The switch cannot provide authentication services to the client through the interface.
- **auto**—enables 802.1X authentication and causes the port to begin in the unauthorized state, allowing only EAPOL frames to be sent and received through the port. The authentication process begins when the link state of the port transitions from down to up or when an EAPOL-start frame is received. The switch requests the identity of the client and begins relaying authentication messages between the client and the authentication server. Each client attempting to access the network is uniquely identified by the switch by using the client’s MAC address.

If the client is successfully authenticated (receives an Accept frame from the authentication server), the port state changes to authorized, and all frames from the authenticated client are allowed through the port. If the authentication fails, the port remains in the unauthorized state, but authentication can be retried. If the authentication server cannot be reached, the switch can resend the request. If no response is received from the server after the specified number of attempts, authentication fails, and network access is not granted.

When a client logs off, it sends an EAPOL-logoff message, causing the switch port to transition to the unauthorized state.

If the link state of a port transitions from up to down, or if an EAPOL-logoff frame is received, the port returns to the unauthorized state.
Voice VLAN Ports

Multiple VLAN access ports (MVAPs) are ports that belong to two VLANs. This configuration allows the separating of voice traffic and the data traffic onto different VLANs. A switch port configured with a voice VLAN has separate VLANs configured for carrying:

- The voice traffic to and from the IP phone.
- The data traffic to and from the workstation connected to the switch through the IP phone.

Thus, each port configured for voice VLAN is associated with a port VLAN identifier (PVID) which is the native VLAN of the port, and a voice VLAN identifier (VVID) that is used to configure the IP phone connected to the port.

When 802.1X is enabled on a port that has a voice VLAN, the VLAN remains down on the port (equivalent to an unauthenticated state) until a CDP message is received from an IP phone. The VLAN then becomes active, allowing the phone to work independently of 802.1X authentication. The VLAN becomes inactive on the port if the CDP entry times out or if it is cleared by using the `cdp clear table` privileged EXEC command.

A workstation connected to the port uses the PVID and is authenticated through 802.1X as usual. The IP phone has access to the VVID for its voice traffic irrespective of the authorized or unauthorized state of the port.

Only one client is allowed on the voice VLAN other workstations or IP phones are blocked. When you enable the multiple-hosts mode, when an 802.1X user is authenticated on the primary VLAN, additional clients on the voice VLAN are unrestricted after 802.1X authentication succeeds on the primary VLAN.

When 802.1X is enabled on a port, you cannot configure a port VLAN that is equal to a voice VLAN.

Using 802.1X with Port Security

You can enable an 802.1X port for port security by using the `dot1x multiple-hosts` interface configuration command. You must also configure port security on the port by using the `switchport port-security` interface configuration command. With the multiple-hosts mode enabled, 802.1X authenticates the port, and port security manages network access for all MAC addresses, including that of the client. You can then limit the number or group of clients that can access the network through an 802.1X multiple-host port.

These are some examples of the interaction between 802.1X and port security on the switch:

- When a client is authenticated, and the port security table is not full, the client’s MAC address is added to the port security list of secure hosts. The port then proceeds to come up normally.

 When a client is authenticated and manually configured for port security, it is guaranteed an entry in the secure host table (unless port security static aging has been enabled).

 A security violation occurs if the client is authenticated, but port security table is full. This can happen if the maximum number of secure hosts have been statically configured, or if the client ages out of the secure host table. If the client’s address is aged out, its place in the secure host table can be taken by another host. In this case, you should enable periodic reauthentication with a shorter time period than the port security aging time.

 The port security violation modes determine the action for security violations. See the “Security Violations” section on page 20-8 for more information.
Understanding 802.1X Port-Based Authentication

When the client logs off, the port transitions back to an unauthenticated state and all dynamic entries in the secure host table are cleared, including the entry for the client. Normal authentication then takes place.

If the port is administratively shut down the port becomes unauthenticated and all dynamic entries are removed from the secure host table.

See the “Enabling Multiple Hosts” section on page 9-16, and the “Configuring Port Security” section on page 20-7 for more information about enabling 802.1X and port security on your switch.

Using 802.1X with Per-User ACLs

You can enable per-user ACLs to provide different levels of network access and service to an 802.1X-authenticated user. The per-user ACL attributes are retrieved from the RADIUS server and are applied for the duration of the user session.

The switch supports only one type of per-user ACL, router ACLs or port ACLs. Router ACLs apply to Layer 3 interfaces, and port ACLs apply to Layer 2 or Layer 3 interfaces. If one port is configured with a port-based ACL, the switch rejects any attempt to configure a router-based ACL. In contrast, if one port has a router-based ACL, the switch rejects any attempt to configure a port-based ACL. To avoid configuration conflicts, you should carefully plan the user profiles stored on the RADIUS server.

Only one 802.1X-authenticated user is supported on a port. If the multiple-hosts mode is enabled on the port, the per-user ACL attribute is disabled for the associated port.

QoS maps and VLAN maps are not supported for per-user ACLs.

RADIUS supports per-user attributes, including vendor-specific attributes. These vendor-specific attributes (VSAs) are in octet-string format and are passed to the switch during the authentication process. The VSAs used for per-user ACLs are \texttt{in\textasciicircum acl#<\text{n}>} for ingress direction and \texttt{out\textasciicircum acl#<\text{n}>} for egress direction. MAC ACLs are only supported in the ingress direction.

Use only extended ACL syntax style to define the per-user configuration stored on the RADIUS server. When the definitions are passed from the RADIUS server, they are created by using the extended naming convention. However, if you use the Filter-Id attribute, it can point to a standard ACL.

You can use the Filter-Id attribute to specify an inbound or outbound ACL that is already configured on the switch. The attribute contains the ACL number followed by \texttt{in} or \texttt{out} for ingress filtering or egress filtering. If the RADIUS server does not allow \texttt{in} or \texttt{out} syntax, the access list is applied to the outbound ACL by default. The switch supports IP standard and IP extended access lists, number 1 to 199 and 1300 to 2699.

See the “Configuring the Switch to Use Vendor-Specific RADIUS Attributes” section on page 8-29 for examples of vendor-specific attributes and Chapter 27, “Configuring Network Security with ACLs” for more information about configuring ACLs.

To configure per-user ACLs, you need to:

- Enable AAA authentication
- Enable AAA authorization using the \texttt{network} and \texttt{config-commands} keywords to allow interface configuration from the RADIUS server
- Enable 802.1X
- Configure the user profile and VSAs on the RADIUS server
- Disable the 802.1X multiple-hosts mode on the port
You can use VLAN assignment to limit network access for certain users. With VLAN assignment, 802.1X-authenticated ports are assigned to a VLAN based on the username of the client connected to that port. The RADIUS server database maintains the username-to-VLAN mappings. After successful 802.1X authentication of the port, the RADIUS server sends the VLAN assignment to the user.

When configured on the switch and the RADIUS server, 802.1X with VLAN assignment has these characteristics:

- If no VLAN is supplied by the RADIUS server or AAA authorization is disabled, the port is configured in its access VLAN after successful authentication.
- If authorization is enabled but the VLAN information from the server is not valid, the port remains down in the unauthenticated state. This prevents ports from appearing unexpectedly in an inappropriate VLAN because of a configuration error.

 Configuration errors could include specifying a VLAN for a routed port, a malformed VLAN ID, a non-existent or internal (routed port) VLAN id, or attempting assignment to a voice VLAN ID.
- If authorization is enabled and all information from the server is valid, the port is placed in the specified VLAN after successful authentication.
- If the multiple-hosts mode is enabled, all hosts are in the same VLAN as the first authenticated user.
- If 802.1X is disabled on the port, it is returned to the configured access VLAN.

To configure VLAN assignment you need to:

- Enable AAA
- Enable 802.1X
- Assign vendor-specific tunnel attributes in the RADIUS server. The RADIUS server must return these attributes to the switch:
 - [64] Tunnel-Type = VLAN
 - [65] Tunnel-Medium-Type = 802
 - [81] Tunnel-Private-Group-ID = VLAN NAME

 Attribute [64] must contain the value VLAN (type 13). Attribute [65] must contain the value 802 (type 6). Attribute [81] specifies the VLAN name assigned to the 802.1X-authenticated user.

See the “Configuring the Switch to Use Vendor-Specific RADIUS Attributes” section on page 8-29 for examples of vendor-specific attributes.
Supported Topologies

The 802.1X port-based authentication is supported in two topologies:

- Point-to-point
- Wireless LAN

In a point-to-point configuration (see Figure 9-1 on page 9-2), only one client can be connected to the 802.1X-enabled switch port. The switch detects the client when the port link state changes to the up state. If a client leaves or is replaced with another client, the switch changes the port link state to down, and the port returns to the unauthorized state.

Figure 9-3 shows 802.1X port-based authentication in a wireless LAN. The 802.1X port is configured as a multiple-host port that becomes authorized as soon as one client is authenticated. When the port is authorized, all other hosts indirectly attached to the port are granted access to the network. If the port becomes unauthorized (re-authentication fails or an EAPOL-logoff message is received), the switch denies access to the network to all of the attached clients. In this topology, the wireless access point is responsible for authenticating the clients attached to it, and the wireless access point acts as a client to the switch.

Figure 9-3 Wireless LAN Example

Configuring 802.1X Authentication

These sections describe how to configure 802.1X port-based authentication on your switch:

- Default 802.1X Configuration, page 9-9
- 802.1X Configuration Guidelines, page 9-10
- Enabling 802.1X Authentication, page 9-10 (required)
- Configuring the Switch-to-RADIUS-Server Communication, page 9-12 (required)
- Enabling Periodic Re-Authentication, page 9-13 (optional)
- Manually Re-Authenticating a Client Connected to a Port, page 9-14 (optional)
- Changing the Quiet Period, page 9-14 (optional)
- Changing the Switch-to-Client Retransmission Time, page 9-15 (optional)
- Setting the Switch-to-Client Frame-Retransmission Number, page 9-15 (optional)
- Enabling Multiple Hosts, page 9-16 (optional)
- Resetting the 802.1X Configuration to the Default Values, page 9-17 (optional)
Default 802.1X Configuration

Table 9-1 shows the default 802.1X configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication, authorization, and accounting (AAA)</td>
<td>Disabled.</td>
</tr>
<tr>
<td>RADIUS server</td>
<td></td>
</tr>
<tr>
<td>• IP address</td>
<td>• None specified.</td>
</tr>
<tr>
<td>• UDP authentication port</td>
<td>• 1812.</td>
</tr>
<tr>
<td>• Key</td>
<td>• None specified.</td>
</tr>
<tr>
<td>Per-interface 802.1X enable state</td>
<td>Disabled (force-authorized). The port sends and receives normal traffic without 802.1X-based authentication of the client.</td>
</tr>
<tr>
<td>Periodic re-authentication</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Number of seconds between re-authentication attempts</td>
<td>3600 seconds.</td>
</tr>
<tr>
<td>Quiet period</td>
<td>60 seconds (number of seconds that the switch remains in the quiet state following a failed authentication exchange with the client).</td>
</tr>
<tr>
<td>Retransmission time</td>
<td>30 seconds (number of seconds that the switch should wait for a response to an EAP request/identity frame from the client before resending the request).</td>
</tr>
<tr>
<td>Maximum retransmission number</td>
<td>2 times (number of times that the switch will send an EAP-request/identity frame before restarting the authentication process).</td>
</tr>
<tr>
<td>Multiple host support</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Client timeout period</td>
<td>30 seconds (when relaying a request from the authentication server to the client, the amount of time the switch waits for a response before resending the request to the client.</td>
</tr>
<tr>
<td>Authentication server timeout period</td>
<td>30 seconds (when relaying a response from the client to the authentication server, the amount of time the switch waits for a reply before resending the response to the server. This setting is not configurable.).</td>
</tr>
</tbody>
</table>
802.1X Configuration Guidelines

These are some configuration guidelines and operating characteristics of 802.1X authentication:

- When 802.1X is enabled, ports are authenticated before any other Layer 2 or Layer 3 features are enabled.
- The 802.1X protocol is supported on both Layer 2 static-access ports and Layer 3 routed ports, but it is not supported on these port types:
 - Trunk port—If you try to enable 802.1X on a trunk port, an error message appears, and 802.1X is not enabled. If you try to change the mode of an 802.1X-enabled port to trunk, the port mode is not changed.
 - Dynamic ports—A port in dynamic mode can negotiate with its neighbor to become a trunk port. If you try to enable 802.1X on a dynamic port, an error message appears, and 802.1X is not enabled. If you try to change the mode of an 802.1X-enabled port to dynamic, the port mode is not changed.
 - Dynamic-access ports—If you try to enable 802.1X on a dynamic-access (VLAN Query Protocol [VQP]) port, an error message appears, and 802.1X is not enabled. If you try to change an 802.1X-enabled port to dynamic VLAN assignment, an error message appears, and the VLAN configuration is not changed.
 - EtherChannel port—Before enabling 802.1X on the port, you must first remove it from the EtherChannel. If you try to enable 802.1X on an EtherChannel or on an active port in an EtherChannel, an error message appears, and 802.1X is not enabled. If you enable 802.1X on a not-yet active port of an EtherChannel, the port does not join the EtherChannel.
 - Switched Port Analyzer (SPAN) and Remote SPAN (RSPAN) destination ports—You can enable 802.1X on a port that is a SPAN or RSPAN destination or reflector port. However, 802.1X is disabled until the port is removed as a SPAN or RSPAN destination or reflector port. You can enable 802.1X on a SPAN or RSPAN source port.
- If you try to enable 802.1X on a secure port without enabling the multiple-hosts mode, the switch returns an error message, and 802.1X is not enabled. If you try to change an 802.1X-enabled port to a secure port without enabling the multiple-hosts mode, the switch returns an error message, and the security settings are not changed.
- When 802.1X is enabled on a port, you cannot configure a port VLAN that is equal to a voice VLAN.

Enabling 802.1X Authentication

To enable 802.1X port-based authentication, you must enable AAA and specify the authentication method list. A method list describes the sequence and authentication methods to be queried to authenticate a user.

The software uses the first method listed to authenticate users; if that method fails to respond, the software selects the next authentication method in the method list. This process continues until there is successful communication with a listed authentication method or until all defined methods are exhausted. If authentication fails at any point in this cycle, the authentication process stops, and no other authentication methods are attempted.

To allow per-user ACLs and VLAN assignment, you need to enable AAA authorization to configure the switch for all network-related service requests.
Beginning in privileged EXEC mode, follow these steps to configure 802.1X port-based authentication. This procedure is required.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>aaa new-model</td>
<td>Enable AAA.</td>
</tr>
</tbody>
</table>
| 3 | aaa authentication dot1x {default} method1 [method2...] | Create an 802.1X authentication method list. To create a default list that is used when a named list is not specified in the authentication command, use the default keyword followed by the methods that are to be used in default situations. The default method list is automatically applied to all interfaces. Enter at least one of these keywords:
 - group radius—Use the list of all RADIUS servers for authentication.
 - none—Use no authentication. The client is automatically authenticated by the switch without using the information supplied by the client. |
| 4 | aaa authorization network {default} group radius | (Optional) Configure the switch for user RADIUS authorization for all network-related service requests, such as per-user ACLs or VLAN assignment. Note To configure per-user ACLs, multiple-hosts mode must be disabled. |
| 5 | aaa authorization config-commands | (Optional) Configure the switch to allow per-user ACLs by enabling configuration mode commands. |
| 6 | interface interface-id | Enter interface configuration mode, and specify the interface connected to the client that is to be enabled for 802.1X authentication. |
| 7 | dot1x port-control auto | Enable 802.1X authentication on the interface. For feature interaction information with trunk, dynamic, dynamic-access, EtherChannel, secure, and SPAN ports, see the “802.1X Configuration Guidelines” section on page 9-10. |
| 8 | end | Return to privileged EXEC mode. |
| 9 | show dot1x | Verify your entries. Check the Status column in the 802.1X Port Summary section of the display. An enabled status means the port-control value is set either to auto or to force-unauthorized. |
| 10 | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To disable AAA, use the no aaa new-model global configuration command. To disable 802.1X AAA authentication, use the no aaa authentication dot1x {default [list-name] method1 [method2...]} global configuration command. To disable 802.1X AAA authorization, use the no aaa authorization global configuration command. To disable 802.1X authentication, use the dot1x port-control force-authorized or the no dot1x port-control interface configuration command.
Chapter 9 Configuring 802.1X Port-Based Authentication

Configuring 802.1X Authentication

This example shows how to enable AAA and 802.1X on Fast Ethernet port 0/1:

```
Switch# configure terminal
Switch(config)# aaa new-model
Switch(config)# aaa authentication dot1x default group radius
Switch(config)# interface fastethernet0/1
Switch(config-if)# switchport mode access
Switch(config-if)# dot1x port-control auto
Switch(config-if)# end
```

Configuring the Switch-to-RADIUS-Server Communication

RADIUS security servers are identified by their host name or IP address, host name and specific UDP port numbers, or IP address and specific UDP port numbers. The combination of the IP address and UDP port number creates a unique identifier, which enables RADIUS requests to be sent to multiple UDP ports on a server at the same IP address. If two different host entries on the same RADIUS server are configured for the same service—for example, authentication—the second host entry configured acts as the fail-over backup to the first one. The RADIUS host entries are tried in the order that they were configured.

Beginning in privileged EXEC mode, follow these steps to configure the RADIUS server parameters on the switch. This procedure is required.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>radius-server host {hostname</td>
<td>ip-address} auth-port port-number key string</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Always configure the key as the last item in the radius-server host command syntax because leading spaces are ignored, but spaces within and at the end of the key are used. If you use spaces in the key, do not enclose the key in quotation marks unless the quotation marks are part of the key. This key must match the encryption used on the RADIUS daemon.</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To delete the specified RADIUS server, use the no radius-server host \{hostname | ip-address\} global configuration command.
This example shows how to specify the server with IP address 172.20.39.46 as the RADIUS server, to use port 1612 as the authorization port, and to set the encryption key to `rad123`, matching the key on the RADIUS server:

```
Switch(config)# radius-server host 172.20.39.46 auth-port 1612 key rad123
```

You can globally configure the timeout, retransmission, and encryption key values for all RADIUS servers by using the `radius-server host` global configuration command. If you want to configure these options on a per-server basis, use the `radius-server timeout`, `radius-server retransmit`, and the `radius-server key` global configuration commands. For more information, see the “Configuring Settings for All RADIUS Servers” section on page 8-29.

You also need to configure some settings on the RADIUS server. These settings include the IP address of the switch and the key string to be shared by both the server and the switch. For more information, refer to the RADIUS server documentation.

Enabling Periodic Re-Authentication

You can enable periodic 802.1X client re-authentication and specify how often it occurs. If you do not specify a time period before enabling re-authentication, the number of seconds between re-authentication attempts is 3600.

Automatic 802.1X client re-authentication is a global setting and cannot be set for clients connected to individual ports. To manually re-authenticate the client connected to a specific port, see the “Manually Re-Authenticating a Client Connected to a Port” section on page 9-14.

Beginning in privileged EXEC mode, follow these steps to enable periodic re-authentication of the client and to configure the number of seconds between re-authentication attempts:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>dot1x re-authentication</td>
<td>Enable periodic re-authentication of the client, which is disabled by</td>
</tr>
<tr>
<td></td>
<td></td>
<td>default.</td>
</tr>
<tr>
<td>Step 3</td>
<td>dot1x timeout re-authperiod <code>seconds</code></td>
<td>Set the number of seconds between re-authentication attempts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The range is 1 to 4294967295; the default is 3600 seconds.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This command affects the behavior of the switch only if periodic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>re-authentication is enabled.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show dot1x</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable periodic re-authentication, use the `no dot1x re-authentication` global configuration command. To return to the default number of seconds between re-authentication attempts, use the `no dot1x timeout re-authperiod` global configuration command.

This example shows how to enable periodic re-authentication and set the number of seconds between re-authentication attempts to 4000:

```
Switch(config)# dot1x re-authentication
Switch(config)# dot1x timeout re-authperiod 4000
```
Manually Re-Authenticating a Client Connected to a Port

You can manually re-authenticate the client connected to a specific port at any time by entering the `dot1x re-authenticate interface interface-id` privileged EXEC command. If you want to enable or disable periodic re-authentication, see the “Enabling Periodic Re-Authentication” section on page 9-13.

This example shows how to manually re-authenticate the client connected to Fast Ethernet port 0/1:

```
Switch# dot1x re-authenticate interface fastethernet0/1
Starting reauthentication on FastEthernet0/1
```

Changing the Quiet Period

When the switch cannot authenticate the client, the switch remains idle for a set period of time, and then tries again. The idle time is determined by the quiet-period value. A failed authentication of the client might occur because the client provided an invalid password. You can provide a faster response time to the user by entering a smaller number than the default.

Beginning in privileged EXEC mode, follow these steps to change the quiet period:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 dot1x timeout quiet-period seconds</td>
<td>Set the number of seconds that the switch remains in the quiet state following a failed authentication exchange with the client. The range is 0 to 65535 seconds; the default is 60.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show dot1x</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default quiet time, use the `no dot1x timeout quiet-period` global configuration command.

This example shows how to set the quiet time on the switch to 30 seconds:

```
Switch(config)# dot1x timeout quiet-period 30
```
Changing the Switch-to-Client Retransmission Time

The client responds to the EAP-request/identity frame from the switch with an EAP-response/identity frame. If the switch does not receive this response, it waits a set period of time (known as the retransmission time) and then resends the frame.

Note: You should change the default value of this command only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain clients and authentication servers.

Beginning in privileged EXEC mode, follow these steps to change the amount of time that the switch waits for client notification:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 dot1x timeout tx-period</td>
<td>Set the number of seconds that the switch waits for a</td>
</tr>
<tr>
<td></td>
<td>response to an EAP-request/identity frame from the client</td>
</tr>
<tr>
<td></td>
<td>before resending the request.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show dot1x</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default retransmission time, use the no dot1x timeout tx-period global configuration command.

This example shows how to set 60 as the number of seconds that the switch waits for a response to an EAP-request/identity frame from the client before resending the request:

Switch(config)# dot1x timeout tx-period 60

Setting the Switch-to-Client Frame-Retransmission Number

In addition to changing the switch-to-client retransmission time, you can change the number of times that the switch sends an EAP-request/identity frame (assuming no response is received) to the client before restarting the authentication process.

Note: You should change the default value of this command only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain clients and authentication servers.
Beginning in privileged EXEC mode, follow these steps to set the switch-to-client frame-retransmission number:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>dot1x max-req count</td>
</tr>
<tr>
<td></td>
<td>Set the number of times that the switch sends an EAP-request/identity frame to the client before restarting the authentication process. The range is 1 to 10; the default is 2.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>show dot1x</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default retransmission number, use the **no dot1x max-req** global configuration command.

This example shows how to set 5 as the number of times that the switch sends an EAP-request/identity request before restarting the authentication process:

```
Switch(config)# dot1x max-req 5
```

Enabling Multiple Hosts

You can attach multiple hosts to a single 802.1X-enabled port as shown in Figure 9-3 on page 9-8. In this mode, only one of the attached hosts must be authorized for all hosts to be granted network access. If the port becomes unauthorized (re-authentication fails or an EAPOL-logoff message is received), all attached clients are denied access to the network.

With the multiple-hosts mode enabled, you can use 802.1X to authenticate the port and port security to manage network access for all MAC addresses, including that of the client.

Beginning in privileged EXEC mode, follow these steps to allow multiple hosts (clients) and port security on an 802.1X-authorized port that has the **dot1x port-control** interface configuration command set to **auto**.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Enter interface configuration mode, and specify the interface to which multiple hosts are indirectly attached.</td>
</tr>
<tr>
<td>Step 3</td>
<td>dot1x multiple-hosts</td>
</tr>
<tr>
<td></td>
<td>Allow multiple hosts (clients) and port security on an 802.1X-authorized port.</td>
</tr>
<tr>
<td></td>
<td>Make sure that the dot1x port-control interface configuration command set is set to auto for the specified interface.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show dot1x interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable multiple hosts on the port, use the **no dot1x multiple-hosts** interface configuration command.
This example shows how to enable 802.1X on Fast Ethernet interface 0/1 and to allow multiple hosts:

```
Switch(config)# interface fastethernet0/1
Switch(config-if)# dot1x port-control auto
Switch(config-if)# dot1x multiple-hosts
```

Resetting the 802.1X Configuration to the Default Values

Beginning in privileged EXEC mode, follow these steps to reset the 802.1X configuration to the default values:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>dot1x default</td>
<td>Reset the configurable 802.1X parameters to the default values.</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>show dot1x</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Displaying 802.1X Statistics and Status

To display 802.1X statistics for all interfaces, use the `show dot1x statistics` privileged EXEC command. To display 802.1X statistics for a specific interface, use the `show dot1x statistics interface interface-id` privileged EXEC command.

To display the 802.1X administrative and operational status for the switch, use the `show dot1x` privileged EXEC command. To display the 802.1X administrative and operational status for a specific interface, use the `show dot1x interface interface-id` privileged EXEC command.

For detailed information about the fields in these displays, refer to the command reference for this release.
Configuring Interface Characteristics

This chapter describes the types of interfaces on a Catalyst 3550 switch and how to configure them. The chapter has these sections:

- Understanding Interface Types, page 10-1
- Using the Interface Command, page 10-7
- Configuring Layer 2 Interfaces, page 10-11
- Configuring Layer 3 Interfaces, page 10-18
- Monitoring and Maintaining the Interfaces, page 10-19

For complete syntax and usage information for the commands used in this chapter, refer to the switch command reference for this release and the online *Cisco IOS Interface Command Reference for Release 12.1.*

Understanding Interface Types

This section describes the different types of interfaces supported by the switch with references to chapters that contain more detailed information about configuring these interface types. The rest of the chapter describes configuration procedures for physical interface characteristics.

These sections are included:

- Port-Based VLANs, page 10-2
- Switch Ports, page 10-2
- Switch Virtual Interfaces, page 10-4
- Routed Ports, page 10-4
- EtherChannel Port Groups, page 10-5
- Connecting Interfaces, page 10-5
Port-Based VLANs

A VLAN is a switched network that is logically segmented by function, team, or application, without regard to the physical location of the users. For more information about VLANs, see Chapter 11, “Configuring VLANs.” Packets received on a port are forwarded only to ports that belong to the same VLAN as the receiving port. Network devices in different VLANs cannot communicate with one another without a Layer 3 device to route traffic between the VLANs.

VLAN partitions provide hard firewalls for traffic in the VLAN, and each VLAN has its own MAC address table. A VLAN comes into existence when a local port is configured to be associated with the VLAN, when the VLAN Trunking Protocol (VTP) learns of its existence from a neighbor on a trunk, or when a user creates a VLAN.

To configure normal-range VLANs (VLAN IDs 1 to 1005), use the `vlan vlan-id` global configuration command to enter config-vlan mode or the `vlan database` privileged EXEC command to enter VLAN configuration mode. The VLAN configurations for VLAN IDs 1 to 1005 are saved in the VLAN database. To configure extended-range VLANs (VLAN IDs 1006 to 4094), you must use config-vlan mode with VTP mode set to transparent. Extended-range VLANs are not added to the VLAN database. When VTP mode is transparent, the VTP and VLAN configuration is saved in the switch running configuration, and you can save it in the switch startup configuration file by entering the `copy running-config startup-config` privileged EXEC command.

Add ports to a VLAN by using the `switchport` interface configuration commands:

- Identify the interface.
- For a trunk port, set trunk characteristics, and if desired, define the VLANs to which it can belong.
- For an access port, set and define the VLAN to which it belongs.
- For a tunnel port, set and define the VLAN ID for the customer-specific VLAN tag. See Chapter 14, “Configuring 802.1Q and Layer 2 Protocol Tunneling.”

Switch Ports

Switch ports are Layer 2-only interfaces associated with a physical port. A switch port can be an access port, a trunk port, or a tunnel port. You can configure a port as an access port or trunk port or let the Dynamic Trunking Protocol (DTP) operate on a per-port basis to determine if a switch port should be an access port or a trunk port by negotiating with the port on the other end of the link. You must manually configure tunnel ports as part of an asymmetric link connected to an 802.1Q trunk port. Switch ports are used for managing the physical interface and associated Layer 2 protocols and do not handle routing or bridging.

Configure switch ports by using the `switchport` interface configuration commands. For detailed information about configuring access port and trunk port characteristics, see Chapter 11, “Configuring VLANs.” For more information about tunnel ports, see Chapter 14, “Configuring 802.1Q and Layer 2 Protocol Tunneling.”
Access Ports

An access port belongs to and carries the traffic of only one VLAN (unless it is configured as a voice VLAN port). Traffic is received and sent in native formats with no VLAN tagging. Traffic arriving on an access port is assumed to belong to the VLAN assigned to the port. If an access port receives a tagged packet (Inter-Switch Link [ISL] or 802.1Q tagged) for the VLAN assigned to the port, the packet is forwarded. If the port receives a tagged packet for another VLAN, the packet is dropped, the source address is not learned, and the frame is counted in the No destination statistic.

Two types of access ports are supported:

- Static access ports are manually assigned to a VLAN.
- VLAN membership of dynamic access ports is learned through incoming packets. By default, a dynamic access port is a member of no VLAN, and forwarding to and from the port is enabled only when the VLAN membership of the port is discovered. Dynamic access ports on the switch are assigned to a VLAN by a VLAN Membership Policy Server (VMPS). The VMPS can be a Catalyst 6000 series switch; the Catalyst 3550 switch does not support the function of a VMPS.

You can also configure an access port with an attached Cisco IP Phone to use one VLAN for voice traffic and another VLAN for data traffic from a device attached to the phone. For more information about voice VLAN ports, see Chapter 13, “Configuring Voice VLAN.”

Trunk Ports

A trunk port carries the traffic of multiple VLANs and by default is a member of all VLANs in the VLAN database. Two types of trunk ports are supported:

- In an ISL trunk port, all received packets are expected to be encapsulated with an ISL header, and all transmitted packets are sent with an ISL header. Native (non-tagged) frames received from an ISL trunk port are dropped.
- An IEEE 802.1Q trunk port supports simultaneous tagged and untagged traffic. An 802.1Q trunk port is assigned a default Port VLAN ID (PVID), and all untagged traffic travels on the port default PVID. All untagged traffic and tagged traffic with a NULL VLAN ID are assumed to belong to the port default PVID. A packet with a VLAN ID equal to the outgoing port default PVID is sent untagged. All other traffic is sent with a VLAN tag.

Although by default, a trunk port is a member of every VLAN known to the VTP, you can limit VLAN membership by configuring an allowed list of VLANs for each trunk port. The list of allowed VLANs does not affect any other port but the associated trunk port. By default, all possible VLANs (VLAN ID 1 to 4094) are in the allowed list. A trunk port can only become a member of a VLAN if VTP knows of the VLAN and the VLAN is in the enabled state. If VTP learns of a new, enabled VLAN and the VLAN is in the allowed list for a trunk port, the trunk port automatically becomes a member of that VLAN and traffic is forwarded to and from the trunk port for that VLAN. If VTP learns of a new, enabled VLAN that is not in the allowed list for a trunk port, the port does not become a member of the VLAN, and no traffic for the VLAN is forwarded to or from the port.

Note

VLAN 1 cannot be excluded from the allowed list.

For more information about trunk ports, see Chapter 11, “Configuring VLANs.”
Tunnel Ports

Tunnel ports are used in 802.1Q tunneling to segregate the traffic of customers in a service provider network from other customers who appear to be on the same VLAN. You configure an asymmetric link from a tunnel port on a service provider edge switch to an 802.1Q trunk port on the customer switch. Packets entering the tunnel port on the edge switch, already 802.1Q-tagged with the customer VLANs, are encapsulated with another layer of 802.1Q tag (called the metro tag) containing a VLAN ID unique in the service provider network, for each customer. The double-tagged packets go through the service-provider network keeping the original customer VLANs separate from those of other customers. At the outbound interface, also a tunnel port, the metro tag is removed, and the original VLAN numbers from the customer network are retrieved.

Tunnel ports cannot be trunk ports or access ports and must belong to a VLAN unique for each customer. For more information about tunnel ports, see Chapter 14, “Configuring 802.1Q and Layer 2 Protocol Tunneling.”

Switch Virtual Interfaces

A switch virtual interface (SVI) represents a VLAN of switch ports as one interface to the routing or bridging function in the system. Only one SVI can be associated with a VLAN, but you need to configure an SVI for a VLAN only when you wish to route between VLANs, fallback-bridge nonroutable protocols between VLANs, or to provide IP host connectivity to the switch. By default, an SVI is created for the default VLAN (VLAN 1) to permit remote switch administration. Additional SVIs must be explicitly configured. In Layer 2 mode, SVIs provide IP host connectivity only to the system; in Layer 3 mode, you can configure routing across SVIs.

SVIs are created the first time that you enter the `vlan interface configuration` command for a VLAN interface. The VLAN corresponds to the VLAN tag associated with data frames on an ISL or 802.1Q encapsulated trunk or the VLAN ID configured for an access port. Configure a VLAN interface for each VLAN for which you want to route traffic, and assign it an IP address. For more information, see the “Configuring IP Addressing on Layer 3 Interfaces” section on page 30-4.

Note
When you create an SVI, it does not become active until it is associated with a physical port.

SVIs support routing protocols and bridging configurations. For more information about configuring IP routing, see Chapter 30, “Configuring IP Unicast Routing,” Chapter 33, “Configuring IP Multicast Routing,” and Chapter 35, “Configuring Fallback Bridging.”

Note
The standard multilayer software image (SMI) supports static routing and the Routing Information Protocol (RIP). To use SVIs for full Layer 3 routing or for fallback bridging, you must have the enhanced multilayer software image (EMI) installed on your switch.

Routed Ports

A routed port is a physical port that acts like a port on a router; it does not have to be connected to a router. A routed port is not associated with a particular VLAN, as is an access port. A routed port behaves like a regular router interface, except that it does not support VLAN subinterfaces. Routed ports can be configured with a Layer 3 routing protocol.
Configuring routed ports by putting the interface into Layer 3 mode with the `no switchport` interface configuration command. Then assign an IP address to the port, enable routing, and assign routing protocol characteristics by using the `ip routing` and `router protocol` global configuration commands.

Entering a `no switchport` interface configuration command shuts the interface down and then re-enables it, which might generate messages on the device to which the interface is connected.

The number of routed ports and SVIs that you can configure is not limited by software; however, the interrelationship between this number and the number of other features being configured might have an impact on CPU utilization because of hardware limitations. For more information about feature combinations, see the “Optimizing System Resources for User-Selected Features” section on page 7-27.

For more information about IP unicast and multicast routing and routing protocols, see Chapter 30, “Configuring IP Unicast Routing” and Chapter 33, “Configuring IP Multicast Routing.”

EtherChannel Port Groups

EtherChannel port groups provide the ability to treat multiple switch ports as one switch port. These port groups act as a single logical port for high-bandwidth connections between switches or between switches and servers. An EtherChannel balances the traffic load across the links in the channel. If a link within the EtherChannel fails, traffic previously carried over the failed link changes to the remaining links. You can group multiple trunk ports into one logical trunk port, group multiple access ports into one logical access port, group multiple tunnel ports into one logical tunnel port, or group multiple routed ports into one logical routed port. Most protocols operate over either single ports or aggregated switch ports and do not recognize the physical ports within the port group. Exceptions are the DTP, the Cisco Discovery Protocol (CDP), and the Port Aggregation Protocol (PAgP), which operate only on physical ports.

When you configure an EtherChannel, you create a port-channel logical interface and assign an interface to the EtherChannel. For Layer 3 interfaces, you manually create the logical interface by using the `interface port-channel` global configuration command. For Layer 2 interfaces, the logical interface is dynamically created. For both Layer 3 and 2 interfaces, you manually assign an interface to the EtherChannel by using the `channel-group` interface configuration command. This command binds the physical and logical ports together. For more information, see Chapter 29, “Configuring EtherChannels.”

Connecting Interfaces

Devices within a single VLAN can communicate directly through any switch. Ports in different VLANs cannot exchange data without going through a routing device or routed interface.

With a standard Layer 2 switch, ports in different VLANs have to exchange information through a router. In the configuration shown in Figure 10-1, when Host A in VLAN 20 sends data to Host B in VLAN 30, it must go from Host A to the switch, to the router, back to the switch, and then to Host B.
By using the Catalyst 3550 with routing enabled, when you configure VLAN 20 and VLAN 30 each with an SVI to which an IP address is assigned, packets can be sent from Host A to Host B directly through the Catalyst 3550 switch with no need for an external router (Figure 10-2).

The Catalyst 3550 switch with the enhanced multilayer software image supports two methods of forwarding traffic between interfaces: routing and fallback bridging; the standard software image supports only basic routing (static routing and RIP). Whenever possible, to maintain high performance, forwarding is done by switch hardware. However, only IP version 4 packets with Ethernet II encapsulation can be routed in hardware. All other types of traffic can be fallback bridged by hardware.

- The routing function can be enabled on all SVIs and routed ports. The Catalyst 3550 switches route only IP traffic. When IP routing protocol parameters and address configuration are added to an SVI or routed port, any IP traffic received from these ports is routed. For more information, see Chapter 30, “Configuring IP Unicast Routing,” Chapter 33, “Configuring IP Multicast Routing,” and Chapter 34, “Configuring MSDP.”
• Fallback bridging forwards traffic that the switch with the enhanced multilayer software image does not route or traffic belonging to a nonroutable protocol, such as DECnet. Fallback bridging connects multiple VLANs into one bridge domain by bridging between two or more SVIs or routed ports. When configuring fallback bridging, you assign SVIs or routed ports to bridge groups with each SVI or routed port assigned to only one bridge group. All interfaces in the same group belong to the same bridge domain. For more information, see Chapter 35, “Configuring Fallback Bridging.”

Using the Interface Command

The switch supports these interface types:
• Physical ports—including switch ports and routed ports
• VLANs—switch virtual interfaces
• Port-channels—EtherChannel of interfaces

You can also configure a range of interfaces (see the “Configuring a Range of Interfaces” section on page 10-8).

To configure a physical interface (port), enter interface configuration mode, and specify the interface type, slot, and number.
• Type—Fast Ethernet (fastethernet or fa) for 10/100 Ethernet or Gigabit Ethernet (gigabitethernet or gi)
• Slot—The slot number on the switch (always 0 on this switch).
• Port number—The interface number on the switch. The port numbers always begin at 1, starting at the left when facing the front of the switch, for example, fastethernet 0/1, fastethernet 0/2. If there is more than one media type (for example, 10/100 ports and Gigabit Ethernet ports), the port number starts again with the second media: gigabitethernet 0/1, gigabitethernet 0/2.

You can identify physical interfaces by physically checking the interface location on the switch. You can also use the IOS show privileged EXEC commands to display information about a specific interface or all the interfaces on the switch. The remainder of this chapter primarily provides physical interface configuration procedures.

Procedures for Configuring Interfaces

These general instructions apply to all interface configuration processes.

Step 1 Enter the configure terminal command at the privileged EXEC prompt:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) #
```

Step 2 Enter the interface global configuration command. Identify the interface type and the number of the connector. In this example, Gigabit Ethernet interface 0/1 is selected:

```
Switch(config)# interface gigabitethernet0/1
Switch(config-if)#
```
Chapter 10 Configuring Interface Characteristics

Using the Interface Command

Note You do not need to add a space between the interface type and interface number. For example, in the preceding line, you can specify either `gigabitethernet 0/1`, `gigabitethernet0/1`, `gi 0/1`, or `gi0/1`.

Step 3 Follow each `interface` command with the interface configuration commands your particular interface requires. The commands you enter define the protocols and applications that will run on the interface. The commands are collected and applied to the interface when you enter another interface command or enter `end` to return to privileged EXEC mode.

You can also configure a range of interfaces by using the `interface range` or `interface range macro` global configuration commands. Interfaces configured in a range must be the same type and must be configured with the same feature options.

Step 4 After you configure an interface, verify its status by using the `show` privileged EXEC commands listed in the “Monitoring and Maintaining the Interfaces” section on page 10-19.

Enter the `show interfaces` privileged EXEC command to see a list of all interfaces on or configured for the switch. A report is provided for each interface that the device supports or for the specified interface:

Configuring a Range of Interfaces

You can use the `interface range` global configuration command to configure multiple interfaces with the same configuration parameters. When you enter the interface range configuration mode, all command parameters that you enter are attributed to all interfaces within that range until you exit this mode.

Beginning in privileged EXEC mode, follow these steps to configure a range of interfaces with the same parameters:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface range `{port-range</td>
<td>macro macro_name}`</td>
</tr>
<tr>
<td></td>
<td>• You can use the <code>interface range</code> command to configure up to five port ranges or a previously defined macro.</td>
</tr>
<tr>
<td></td>
<td>• The <code>macro</code> variable is explained in the “Configuring and Using Interface Range Macros” section on page 10-10.</td>
</tr>
<tr>
<td></td>
<td>• Each comma-separated <code>port-range</code> must consist of the same port type. You do not need to enter spaces before or after the comma.</td>
</tr>
<tr>
<td></td>
<td>• When you define a range, the space between the first port and the hyphen is required.</td>
</tr>
<tr>
<td>Step 3</td>
<td>You can now use the normal configuration commands to apply the configuration parameters to all interfaces in the range.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show interfaces <code>[interface-id]</code></td>
<td>Verify the configuration of the interfaces in the range.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
When using the **interface range** global configuration command, note these guidelines:

- **Valid entries for** `port-range`:
 - `vlan vlan-ID - vlan-ID`, where VLAN ID is from 1 to 4094
 - `fastethernet slot[{first port} - {last port}]`, where slot is 0
 - `gigabitethernet slot[{first port} - {last port}]`, where slot is 0
 - `port-channel port-channel-number - port-channel-number`, where `port-channel-number` is from 1 to 64

- You must add a space between the interface numbers and the hyphen when using the `interface range` command. For example, the command `interface range fastethernet 0/1 - 5` is a valid range; the command `interface range fastethernet 0/1-5` is not a valid range.

- The `interface range` command works only with VLAN interfaces that have been configured with the `interface vlan` command (the `show running-config` privileged EXEC command displays the configured VLAN interfaces). VLAN interfaces not displayed by the `show running-config` command cannot be used with the `interface range` command.

- All interfaces in a range must be the same type; that is, all Fast Ethernet ports, all Gigabit Ethernet ports, all EtherChannel ports, or all SVIs.

This example shows how to use the `interface range` global configuration command to enable Fast Ethernet interfaces 0/1 to 0/5:

```
Switch# configure terminal
Switch(config)# interface range fastethernet0/1 - 5
Switch(config-if-range)# no shutdown
```

This example shows how to use a comma to add different interface type strings to the range to enable all Fast Ethernet interfaces in the range 0/1 to 0/3 and Gigabit Ethernet interfaces 0/1 and 0/2:

```
Switch# configure terminal
Switch(config)# interface range fastethernet0/1 - 3, gigabitethernet0/1 - 2
Switch(config-if-range)# no shutdown
```
If you enter multiple configuration commands while you are in interface range mode, each command is executed as it is entered. The commands are not batched together and executed after you exit interface range mode. If you exit interface range configuration mode while the commands are being executed, some commands might not be executed on all interfaces in the range. Wait until the command prompt reappears before exiting interface range configuration mode.

Configuring and Using Interface Range Macros

You can create an interface range macro to automatically select a range of interfaces for configuration. Before you can use the macro keyword in the interface range macro global configuration command string, you must use the define interface-range global configuration command to define the macro.

Beginning in privileged EXEC mode, follow these steps to define an interface range macro:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| Step 2 | define interface-range macro_name interface-range Define the interface-range macro, and save it in NVRAM.
 • The macro_name is a 32-character maximum character string.
 • A macro can contain up to five comma-separated interface ranges. You do not need to enter spaces before or after the comma.
 • Each interface-range must consist of the same port type. |
| Step 3 | interface range macro macro_name Select the interface range to be configured using the values saved in the interface-range macro called macro_name.
You can now use the normal configuration commands to apply the configuration to all interfaces in the defined macro. |
| Step 4 | end Return to privileged EXEC mode. | |
| Step 5 | show running-config | include define Show the defined interface range macro configuration. |
| Step 6 | copy running-config startup-config (Optional) Save your entries in the configuration file. |

Use the no define interface-range macro_name global configuration command to delete a macro.

When using the define interface-range global configuration command, note these guidelines:

- Valid entries for interface-range:
 - **vlan** vlan-ID - vlan-ID, where VLAN ID is from 1 to 4094
 - **fastethernet** slot/{first port} - {last port}, where slot is 0
 - **gigabitethernet** slot/{first port} - {last port}, where slot is 0
 - **port-channel** port-channel-number - port-channel-number, where port-channel-number is from 1 to 64.
- You must add a space between the interface numbers and the hyphen when entering an interface-range. For example, **fastethernet 0/1 - 5** is a valid range; **fastethernet 0/1-5** is not a valid range.
The VLAN interfaces (SVIs) must have been configured with the `interface vlan` command. The `show running-config` privileged EXEC command displays the configured VLAN interfaces. VLAN interfaces not displayed by the `show running-config` command cannot be used as `interface-ranges`.

All interfaces in a range must be the same type; that is, all Fast Ethernet ports, all Gigabit Ethernet ports, all EtherChannel ports, or all VLANs, but you can combine multiple interface types in a macro.

This example shows how to define an interface-range macro named `enet_list` to select Fast Ethernet ports 1 to 4 and to verify the macro configuration:

```
Switch# configure terminal
Switch(config)# define interface-range enet_list fastethernet0/1 - 4
Switch(config)# end
Switch# show running-config | include define
define interface-range enet_list FastEthernet0/1 - 4
```

This example shows how to create a multiple-interface macro named `macro1`:

```
Switch# configure terminal
Switch(config)# define interface-range macro1 gigabitethernet0/1 - 2, fastethernet0/5 - 7
Switch(config)# end
Switch#
```

This example shows how to enter interface range configuration mode for the interface-range macro `enet_list`:

```
Switch# configure terminal
Switch(config)# interface range macro enet_list
Switch(config-if-range)#
```

This example shows how to delete the interface-range macro `enet_list` and to verify that it has been deleted.

```
Switch# configure terminal
Switch(config)# no define interface-range enet_list
Switch# show run | include define
```

Configuring Layer 2 Interfaces

These sections describe the default interface configuration and the optional features that you can configure on most physical interfaces:

- **Default Layer 2 Ethernet Interface Configuration**, page 10-12
- **Configuring Interface Speed and Duplex Mode**, page 10-13
- **Configuring IEEE 802.3X Flow Control**, page 10-15
- **Adding a Description for an Interface**, page 10-17

Caution

If the interface is in Layer 3 mode, after entering interface configuration mode, you must enter the `switchport` interface configuration command without any parameters to put the interface into Layer 2 mode. This shuts down the interface and then re-enables it, which might generate messages on the device to which the interface is connected. Furthermore, when you use this command to put the interface into Layer 2 mode, you are deleting any Layer 3 characteristics configured on the interface.
Default Layer 2 Ethernet Interface Configuration

Table 10-1 shows the Layer 2 Ethernet interface default configuration. For more details on the VLAN parameters listed in the table, see Chapter 11, “Configuring VLANs.” For details on controlling traffic to the port, see Chapter 20, “Configuring Port-Based Traffic Control.”

Table 10-1 Default Layer 2 Ethernet Interface Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating mode</td>
<td>Layer 2 or switching mode (\texttt{switchport} command).</td>
</tr>
<tr>
<td>Allowed VLAN range</td>
<td>VLANs 1 – 4094.</td>
</tr>
<tr>
<td>Default VLAN (for access ports)</td>
<td>VLAN 1.</td>
</tr>
<tr>
<td>Native VLAN (for 802.1Q trunks)</td>
<td>VLAN 1.</td>
</tr>
<tr>
<td>VLAN trunking</td>
<td>Switchport mode dynamic desirable (supports DTP).</td>
</tr>
<tr>
<td>Port enable state</td>
<td>All ports are enabled.</td>
</tr>
<tr>
<td>Port description</td>
<td>None defined.</td>
</tr>
<tr>
<td>Speed</td>
<td>Autonegotiate.</td>
</tr>
<tr>
<td>Duplex mode</td>
<td>Autonegotiate.</td>
</tr>
<tr>
<td>Flow control</td>
<td>Flow control is set to \textit{off} for \texttt{receive} and \textit{desired} for \texttt{send} for Gigabit Ethernet ports. For 10/100 Mb/s ports, \texttt{send} is always \textit{off}.</td>
</tr>
<tr>
<td>EtherChannel (PAgP)</td>
<td>Disabled on all Ethernet ports. See Chapter 29, “Configuring EtherChannels.”</td>
</tr>
<tr>
<td>Port blocking (unknown multicast and unknown unicast traffic)</td>
<td>Disabled (not blocked). See the “Configuring Port Blocking” section on page 20-6.</td>
</tr>
<tr>
<td>Broadcast, multicast, and unicast storm control</td>
<td>Disabled. See the “Default Storm Control Configuration” section on page 20-3.</td>
</tr>
<tr>
<td>Protected port</td>
<td>Disabled. See the “Configuring Protected Ports” section on page 20-5.</td>
</tr>
<tr>
<td>Port security</td>
<td>Disabled. See the “Default Port Security Configuration” section on page 20-9.</td>
</tr>
<tr>
<td>Port Fast</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>
Configuring Interface Speed and Duplex Mode

Ethernet interfaces on the switch operate in 10, 100, or 1000 Mbps and in either full- or half-duplex mode. In full-duplex mode, two stations can send and receive at the same time. When packets can flow in both directions simultaneously, effective Ethernet bandwidth doubles to 20 Mbps for 10-Mbps interfaces, to 200 Mbps for Fast Ethernet interfaces, and to 2 Gbps for Gigabit interfaces. Full-duplex communication is often an effective solution to collisions, which are major constrictions in Ethernet networks. Normally, 10-Mbps ports operate in half-duplex mode, which means that stations can either receive or send.

You can configure interface speed on Fast Ethernet (10/100-Mbps) and Gigabit Ethernet (10/100/1000-Mbps) interfaces; you cannot configure speed on Gigabit Interface Converter (GBIC) interfaces. You can configure duplex mode on any Fast Ethernet or Gigabit Ethernet interfaces that are not set to autonegotiate; you cannot configure duplex mode on GBIC interfaces.

Note

You cannot configure speed or duplex mode on Gigabit Interface Converter (GBIC) ports, but for certain types of GBICs, you can configure speed to not negotiate (noneg otiate) if connected to a device that does not support autonegotiation.

These sections describe how to configure the interface speed and duplex mode:

- Configuration Guidelines, page 10-13
- Setting the Interface Speed and Duplex Parameters, page 10-14

Configuration Guidelines

When configuring an interface speed and duplex mode, note these guidelines:

- If both ends of the line support autonegotiation, we highly recommend the default setting of autonegotiation.
- If one interface supports autonegotiation and the other end does not, configure duplex and speed on both interfaces; do not use the auto setting on the supported side.
- 100BASE-FX ports operate only at 100 Mbps in either full- or half-duplex mode and do not support autonegotiation.
- GigaStack-to-GigaStack cascade connections operate in half-duplex mode, and GigaStack-to-GigaStack point-to-point connections operate in full-duplex mode.
- When STP is enabled and a port is reconfigured, the switch can take up to 30 seconds to check for loops. The port LED is amber while STP reconfigures.

Caution

Changing the interface speed and duplex mode configuration might shut down and re-enable the interface during the reconfiguration.
Setting the Interface Speed and Duplex Parameters

Beginning in privileged EXEC mode, follow these steps to set the speed and duplex mode for a physical interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Enter interface configuration mode and the physical interface identification.</td>
</tr>
<tr>
<td>speed {10</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Note The 1000 keyword is available only for 10/100/1000 Mbps ports. 100BASE-FX ports operate only at 100 Mbps. GBIC module ports operate only at 1000 Mbps. The nonegotiate keyword is available only for 1000BASE-SX, -LX, and -ZX GBIC ports.</td>
</tr>
<tr>
<td>duplex {auto</td>
<td>full</td>
</tr>
<tr>
<td></td>
<td>Note 100BASE-FX ports operate only in full-duplex mode.</td>
</tr>
<tr>
<td></td>
<td>Note This keyword is not available on GBIC ports.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show interfaces interface-id</td>
<td>Display the interface speed and duplex mode configuration.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the no speed and no duplex interface configuration commands to return the interface to the default speed and duplex settings (autonegotiate). To return all interface settings to the defaults, use the default interface interface-id interface configuration command.

This example shows how to set the interface speed to 10 Mbps and the duplex mode to half on FastEthernet interface 0/3:

```
Switch# configure terminal
Switch(config)# interface fastethernet0/3
Switch(config-if)# speed 10
Switch(config-if)# duplex half
```

Configuring Inline Power on the Catalyst 3550-24PWR Ports

The Catalyst 3550-24PWR switch automatically supplies inline power to connected Cisco IP Phones and Cisco Aironet Access Points if it senses no power on the circuit. If there is power on the circuit, the switch does not supply it. You can also configure the Catalyst 3550-24PWR switch to never supply power to these devices and to disable the inline-power detection.

Note

This feature is only supported on the Catalyst 3550-24PWR switch.

Cisco IP Phones and access points can also be connected to an AC power source and supply their own power.
For information about configuring a switch port to forward IP voice traffic to and from connected Cisco IP Phones, see the “Configuring a Port to Connect to a Cisco 7960 IP Phone” section on page 13-3.

Beginning in privileged EXEC mode, follow these steps to enable the inline-power on an inline-power capable port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface</td>
<td>Enter interface configuration mode, and enter the port to be configured.</td>
</tr>
<tr>
<td>Step 3 power inline auto</td>
<td>Automatically detect and enable inline power on the port. This is the default.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show power inline interface</td>
<td>Verify the change.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To permanently disable inline-power on a port, use the `power inline never` interface configuration command.

Configuring IEEE 802.3X Flow Control

Flow control enables connected Ethernet ports to control traffic rates during congestion by allowing congested nodes to pause link operation at the other end. If one port experiences congestion and cannot receive any more traffic, it notifies the other port to stop sending until the condition clears. When the local device detects any congestion at its end, it can notify the link partner or the remote device of the congestion by sending a pause frame. Upon receipt of a pause frame, the remote device stops sending any data packets, which prevents any loss of data packets during the congestion period.

> **Note**
> You must not configure both IEEE 802.3X flowcontrol and quality of service (QoS) on a switch. Before configuring flowcontrol on an interface, use the `no mls qos` global configuration command to disable QoS on the switch.

Flow control can be implemented in two forms, symmetric and asymmetric. The symmetric implementation is suitable for point-to-point links, and asymmetric is suitable for hub-to-end node connections, where it is desirable for the hub to pause the end system, but not vice-versa. You use the `flowcontrol` interface configuration command to set the interface’s ability to receive and send pause frames to `on`, `off`, or `desired`. The default state for Gigabit Ethernet ports is `receive off` and `send desired`. The default state for Fast Ethernet ports is `receive off` and `send off`.

> **Note**
> On Catalyst 3550 switches, Gigabit Ethernet ports are capable of receiving and sending pause frames; Fast Ethernet ports can only receive pause frames. Therefore, for Fast Ethernet ports, only the conditions described with `send off` are applicable.

These rules apply to flow control settings on the device:

- **receive on** (or **desired**) and **send on**: Flow control operates in both directions; both the local and the remote devices can send pause frames to show link congestion.
- **receive on** (or **desired**) and **send desired**: The port can receive pause frames and can send pause frames if the attached device supports flow control.
• **receive on** (or **desired**) and **send off**: The port cannot send pause frames but can operate with an attached device that is required to or can send pause frames; the port can receive pause frames.

• **receive off** and **send on**: The port sends pause frames if the remote device supports flow control but cannot receive pause frames from the remote device.

• **receive off** and **send desired**: The port cannot receive pause frames but can send pause frames if the attached device supports flow control.

• **receive off** and **send off**: Flow control does not operate in either direction. In case of congestion, no indication is given to the link partner, and no pause frames are sent or received by either device.

Note

For details on the command settings and the resulting flow control resolution on local and remote ports, refer to the **flowcontrol** interface configuration command in the command reference for this release.

Beginning in privileged EXEC mode, follow these steps to configure flow control on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>no mls qos</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>flowcontrol {receive</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show interfaces interface-id</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable flow control, use the **flowcontrol receive off** and **flowcontrol send off** interface configuration commands.

This example shows how to turn off all flow control on Gigabit Ethernet interface 0/1:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# flowcontrol receive off
Switch(config-if)# flowcontrol send off
Switch(config-if)# end
```
Adding a Description for an Interface

You can add a description about an interface to help you remember its function. The description appears in the output of these commands: show configuration, show running-config, and show interfaces.

Beginning in privileged EXEC mode, follow these steps to add a description for an interface:

Use the no description interface configuration command to delete the description.

This example shows how to add a description on Fast Ethernet interface 0/4 and to verify the description:

```
Switch# config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface fastethernet0/4
Switch(config-if)# description Connects to Marketing
Switch(config-if)# end
Switch# show interfaces fastethernet0/4 description
Interface Status Protocol Description
Fa0/4 up down Connects to Marketing
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and enter the interface for which you are adding a description.</td>
</tr>
<tr>
<td>Step 3 description string</td>
<td>Add a description (up to 240 characters) for an interface.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show interfaces interface-id description</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td>or show running-config</td>
<td></td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Configuring Layer 3 Interfaces

The Catalyst 3550 supports three types of Layer 3 interfaces:

- **SVIs**: You should configure SVIs for any VLANs for which you want to route traffic. SVIs are created when you enter a VLAN ID following the `interface vlan` global configuration command. To delete an SVI, use the `no interface vlan` global configuration command.

 Note
 When you create an SVI, it does not become active until it is associated with a physical port. For information about assigning Layer 2 ports to VLANs, see Chapter 11, “Configuring VLANs.”

- **Layer 3 EtherChannel ports**: EtherChannel interfaces made up of routed ports. EtherChannel port interfaces are described in Chapter 29, “Configuring EtherChannels.”

- **Routed ports**: Routed ports are physical ports configured to be in Layer 3 mode by using the `no switchport` interface configuration command.

 Note
 A Layer 3 switch can have an IP address assigned to each routed port and SVI. The number of routed ports and SVIs that you can configure is not limited by software; however, the interrelationship between this number and the number of other features being configured might have an impact on CPU utilization because of hardware limitations. For more information about feature combinations, see the “Optimizing System Resources for User-Selected Features” section on page 7-27.

All Layer 3 interfaces require an IP address to route traffic. The following procedure shows how to configure an interface as a Layer 3 interface and how to assign an IP address to an interface.

Note
If the physical port is in Layer 2 mode (the default), you must enter the `no switchport` interface configuration command to put the interface into Layer 3 mode. Entering a `no switchport` command disables and then re-enables the interface, which might generate messages on the device to which the interface is connected.

Beginning in privileged EXEC mode, follow these steps to configure a Layer 3 interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>`interface {{ fastethernet</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>no switchport</code> For physical ports only, enter Layer 3 mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>ip address ip_address subnet_mask</code> Configure the IP address and IP subnet.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>no shutdown</code> Enable the interface.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
To remove an IP address from an interface, use the `no ip address` interface configuration command.

This example shows how to configure an interface as a routed port and to assign it an IP address:

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet0/2
Switch(config-if)# no switchport
Switch(config-if)# ip address 192.20.135.21 255.255.255.0
Switch(config-if)# no shutdown
Switch(config-if)# end

This is an example of output from the `show ip interface` privileged EXEC command for the interface:

Switch# show ip interface gigabitethernet0/2
GigabitEthernet0/2 is up, line protocol is up
 Internet address is 192.20.135.21/24
 Broadcast address is 255.255.255.255
 Address determined by setup command
 MTU is 1500 bytes
 Helper address is not set
 Directed broadcast forwarding is disabled

<output truncated>

Monitoring and Maintaining the Interfaces

You can perform the tasks in these sections to monitor and maintain interfaces:

- Monitoring Interface and Controller Status, page 10-19
- Clearing and Resetting Interfaces and Counters, page 10-21
- Shutting Down and Restarting the Interface, page 10-22

Monitoring Interface and Controller Status

Commands entered at the privileged EXEC prompt display information about the interface, including the version of the software and the hardware, the controller status, and statistics about the interfaces. Table 10-2 lists some of these interface monitoring commands. (You can display the full list of `show` commands by using the `show ?` command at the privileged EXEC prompt.) These commands are fully described in the *Cisco IOS Interface Command Reference for Release 12.1*.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interfaces [interface-id]</code></td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td><code>show ip interface [interface-id]</code></td>
<td></td>
</tr>
<tr>
<td><code>show running-config interface [interface-id]</code></td>
<td></td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Chapter 10 Configuring Interface Characteristics

Table 10-2 show Commands for Interfaces

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interfaces [interface-id]</td>
<td>Display the status and configuration of all interfaces or a specific interface.</td>
</tr>
<tr>
<td>show interfaces [interface-id] capabilities [module {module-number}]</td>
<td>Display the capabilities of an interface. If you do not specify a module, the capabilities for all ports on the switch are displayed.</td>
</tr>
<tr>
<td>show interfaces interface-id status [err-disabled]</td>
<td>Display interface status or a list of interfaces in error-disabled state.</td>
</tr>
<tr>
<td>show interfaces [interface-id] switchport</td>
<td>Display administrative and operational status of switching (nonrouting) ports. You can use this command to determine if a port is in routing or switching mode.</td>
</tr>
<tr>
<td>show interfaces [interface-id] description</td>
<td>Display the description configured on an interface or all interfaces and the interface status.</td>
</tr>
<tr>
<td>show ip interface [interface-id]</td>
<td>Display the usability status of all interfaces configured for IP or the specified interface.</td>
</tr>
<tr>
<td>show running-config interface [interface-id]</td>
<td>Display the running configuration in RAM for the interface.</td>
</tr>
<tr>
<td>show version</td>
<td>Display the hardware configuration, software version, the names and sources of configuration files, and the boot images.</td>
</tr>
</tbody>
</table>

This example shows how to display the status of all interfaces:

```
Switch# show interfaces status

       Port       Name         Status  Vlan       Duplex     Speed  Type
          Gi0/1    connected   routed  a-full  a-100     10/100/1000Base TX
          Gi0/2  wce server 20.20.2    disabled  routed   auto    auto  10/100/1000Base TX
          Gi0/3    ip wccp web-cache  notconnect  routed   auto    auto  10/100/1000Base TX
          Gi0/4    notconnect    routed  auto    auto     10/100/1000Base TX
          Gi0/5    notconnect    routed  auto    auto     10/100/1000Base TX
          Gi0/6    disabled      routed  auto    auto     10/100/1000Base TX
          Gi0/7    disabled      routed  auto    auto     10/100/1000Base TX
          Gi0/8    disabled      routed  auto    auto     10/100/1000Base TX
          Gi0/9    notconnect    routed  auto    auto     10/100/1000Base TX
          Gi0/10  notconnect    routed  auto    auto     10/100/1000Base TX
          Gi0/11  disabled      routed  auto    auto     10/100/1000Base TX
          Gi0/12  notconnect    routed  auto    auto     unknown
```

This example shows how to display the status of switching port Fast Ethernet 0/1:

```
Switch# show interfaces fastethernet 0/1 switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: static access
Operational Mode: down
Administrative Trunking Encapsulation: dot1q
Negotiation of Trunking: Off
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001

Protected: false
Unknown unicast blocked: disabled
Unknown multicast blocked: disabled
```
Voice VLAN: dot1p (Inactive)
Appliance trust: 5

This example shows how to display the running configuration of Fast Ethernet interface 0/2:

Switch# show running-config interface fastethernet0/2
Building configuration...

Current configuration : 131 bytes
!
interface FastEthernet0/2
 switchport mode access
 switchport protected
 no ip address
 mls qos cos 7
 mls qos cos override
 end

For additional examples of the show interfaces privileged EXEC command, refer to the command reference for this release.

Clearing and Resetting Interfaces and Counters

Table 10-3 lists the privileged EXEC mode clear commands that you can use to clear counters and reset interfaces.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear counters [interface-id]</td>
<td>Clear interface counters.</td>
</tr>
<tr>
<td>clear interface interface-id</td>
<td>Reset the hardware logic on an interface.</td>
</tr>
<tr>
<td>clear line [number</td>
<td>console 0</td>
</tr>
</tbody>
</table>

To clear the interface counters shown by the show interfaces privileged EXEC command, use the clear counters privileged EXEC command. The clear counters command clears all current interface counters from the interface unless optional arguments are specified to clear only a specific interface type from a specific interface number.

Note

The clear counters privileged EXEC command does not clear counters retrieved by using Simple Network Management Protocol (SNMP), but only those seen with the show interface privileged EXEC command.

This example shows how to clear and reset the counters on Fast Ethernet interface 0/5:

Switch# clear counters fastethernet0/5
Clear "show interface" counters on this interface [confirm] y
Switch# *Sep 30 08:42:55: %CLEAR-5-COUNTERS: Clear counter on interface FastEthernet0/5 by vty1 (171.69.115.10)
Use the clear interface or clear line privileged EXEC command to clear and reset an interface or serial line. Under most circumstances, you do not need to clear the hardware logic on interfaces or serial lines. This example shows how to clear and reset Fast Ethernet interface 0/5:

Switch# clear interface fastethernet0/5

Shutting Down and Restarting the Interface

Shutting down an interface disables all functions on the specified interface and marks the interface as unavailable on all monitoring command displays. This information is communicated to other network servers through all dynamic routing protocols. The interface is not mentioned in any routing updates.

Beginning in privileged EXEC mode, follow these steps to shut down an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface {vlan vlan-id}</td>
<td>[(fastethernet</td>
</tr>
<tr>
<td>Step 3 shutdown</td>
<td>Shut down an interface.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entry.</td>
</tr>
</tbody>
</table>

Use the no shutdown interface configuration command to restart the interface.

This example shows how to shut down Fast Ethernet interface 0/5:

Switch# configure terminal
Switch(config)# interface fastethernet0/5
Switch(config-if)# shutdown
Switch(config-if)#
*Sep 30 08:33:47: %LINK-5-CHANGED: Interface FastEthernet0/5, changed state to a administratively down

This example shows how to re-enable Fast Ethernet interface 0/5:

Switch# configure terminal
Switch(config)# interface fastethernet0/5
Switch(config-if)# no shutdown
Switch(config-if)#
*Sep 30 08:36:00: %LINK-3-UPDOWN: Interface FastEthernet0/5, changed state to up

To verify that an interface is disabled, enter the show interfaces privileged EXEC command. A disabled interface is shown as administratively down in the show interface command display.
Configuring VLANs

This chapter describes how to configure normal-range VLANs (VLAN IDs 1 to 1005) and extended-range VLANs (VLAN IDs 1006 to 4094) on your Catalyst 3550 switch. It includes information about VLAN modes and the VLAN Membership Policy Server (VMPS).

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

The chapter includes these sections:

- Understanding VLANs, page 11-1
- Configuring Normal-Range VLANs, page 11-4
- Configuring Extended-Range VLANs, page 11-12
- Displaying VLANs, page 11-15
- Configuring VLAN Trunks, page 11-16
- Configuring VMPS, page 11-27

Understanding VLANs

A VLAN is a switched network that is logically segmented by function, project team, or application, without regard to the physical locations of the users. VLANs have the same attributes as physical LANs, but you can group end stations even if they are not physically located on the same LAN segment. Any switch port can belong to a VLAN, and unicast, broadcast, and multicast packets are forwarded and flooded only to end stations in the VLAN. Each VLAN is considered a logical network, and packets destined for stations that do not belong to the VLAN must be forwarded through a router or bridge as shown in Figure 11-1. Because a VLAN is considered a separate logical network, it contains its own bridge Management Information Base (MIB) information and can support its own implementation of spanning tree. See Chapter 15, “Configuring STP” and Chapter 16, “Configuring RSTP and MSTP.”

Before you create VLANs, you must decide whether to use VLAN Trunking Protocol (VTP) to maintain global VLAN configuration for your network. For more information on VTP, see Chapter 12, “Configuring VTP.”
Figure 11-1 shows an example of VLANs segmented into logically defined networks.

VLANs are often associated with IP subnetworks. For example, all the end stations in a particular IP subnet belong to the same VLAN. Interface VLAN membership on the switch is assigned manually on an interface-by-interface basis. When you assign switch interfaces to VLANs by using this method, it is known as interface-based, or static, VLAN membership.

Traffic between VLANs must be routed or fallback bridged. A Catalyst 3550 switch can route traffic between VLANs by using switch virtual interfaces (SVIs). An SVI must be explicitly configured and assigned an IP address to route traffic between VLANs. For more information, see the “Switch Virtual Interfaces” section on page 10-4 and the “Configuring Layer 3 Interfaces” section on page 10-18.

Supported VLANs

The Catalyst 3550 switch supports 1005 VLANs in VTP client, server, and transparent modes. VLANs are identified with a number from 1 to 4094. VLAN IDs 1002 through 1005 are reserved for Token Ring and FDDI VLANs. VTP only learns normal-range VLANs, with VLAN IDs 1 to 1005; VLAN IDs greater than 1005 are extended-range VLANs and are not stored in the VLAN database. The switch must be in VTP transparent mode when you create VLAN IDs from 1006 to 4094.

The switch supports per-VLAN spanning tree (PVST) and per-VLAN rapid spanning tree (PVRST) with a maximum of 128 spanning-tree instances. One spanning-tree instance is allowed per VLAN. See the “Normal-Range VLAN Configuration Guidelines” section on page 11-5 for more information about the number of spanning-tree instances and the number of VLANs. The switch supports both Inter-Switch Link (ISL) and IEEE 802.1Q trunking methods for sending VLAN traffic over Ethernet ports.
VLAN Port Membership Modes

You configure a port to belong to a VLAN by assigning a membership mode that determines the kind of traffic the port carries and the number of VLANs to which it can belong. Table 11-1 lists the membership modes and membership and VTP characteristics.

<table>
<thead>
<tr>
<th>Membership Mode</th>
<th>VLAN Membership Characteristics</th>
<th>VTP Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static-access</td>
<td>A static-access port can belong to one VLAN and is manually assigned to that VLAN. For more information, see the “Assigning Static-Access Ports to a VLAN” section on page 11-11.</td>
<td>VTP is not required. If you do not want VTP to globally propagate information, set the VTP mode to transparent to disable VTP. To participate in VTP, there must be at least one trunk port on the switch connected to a trunk port of a second switch.</td>
</tr>
<tr>
<td>Trunk (ISL or IEEE 802.1Q)</td>
<td>A trunk port is a member of all VLANs by default, including extended-range VLANs, but membership can be limited by configuring the allowed-VLAN list. You can also modify the pruning-eligible list to block flooded traffic to VLANs on trunk ports that are included in the list. For information about configuring trunk ports, see the “Configuring an Ethernet Interface as a Trunk Port” section on page 11-19.</td>
<td>VTP is recommended but not required. VTP maintains VLAN configuration consistency by managing the addition, deletion, and renaming of VLANs on a network-wide basis. VTP exchanges VLAN configuration messages with other switches over trunk links.</td>
</tr>
<tr>
<td>Dynamic access</td>
<td>A dynamic-access port can belong to one normal-range VLAN (VLAN ID 1 to 1005) and is dynamically assigned by a VMPS. The VMPS can be a Catalyst 5000 or Catalyst 6000 series switch, for example, but never a Catalyst 3550 switch. You can have dynamic-access ports and trunk ports on the same switch, but you must connect the dynamic-access port to an end station and not to another switch. For configuration information, see the “Configuring Dynamic AccessPorts on VMPS Clients” section on page 11-31.</td>
<td>VTP is required. Configure the VMPS and the client with the same VTP domain name. You can change the reconfirmation interval and retry count on the VMPS client switch.</td>
</tr>
<tr>
<td>Voice VLAN</td>
<td>A voice VLAN port is an access port attached to a Cisco IP Phone, configured to use one VLAN for voice traffic and another VLAN for data traffic from a device attached to the phone. For more information about voice VLAN ports, see Chapter 13, “Configuring Voice VLAN.”</td>
<td>VTP is not required; it has no affect on voice VLAN.</td>
</tr>
<tr>
<td>Tunnel (dot1q-tunnel)</td>
<td>Tunnel ports are used for 802.1Q tunneling to maintain customer VLAN integrity across a service provider network. You configure a tunnel port on an edge switch in the service provider network and connect it to an 802.1Q trunk port on a customer interface, creating an asymmetric link. A tunnel port belongs to a single VLAN that is dedicated to tunneling. For more information about tunnel ports, see Chapter 14, “Configuring 802.1Q and Layer 2 Protocol Tunneling.”</td>
<td>VTP is not required. You manually assign the tunnel port to a VLAN by using the <code>switchport access vlan</code> interface configuration command.</td>
</tr>
</tbody>
</table>
For more detailed definitions of the modes and their functions, see Table 11-4 on page 11-17.

When a port belongs to a VLAN, the switch learns and manages the addresses associated with the port on a per-VLAN basis. For more information, see the “Managing the MAC Address Table” section on page 7-20.

Configuring Normal-Range VLANs

Normal-range VLANs are VLANs with VLAN IDs 1 to 1005. If the switch is in VTP server or transparent mode, you can add, modify or remove configurations for VLANs 2 to 1001 in the VLAN database. (VLAN IDs 1 and 1002 to 1005 are automatically created and cannot be removed.)

Note

When the switch is in VTP transparent mode, you can also create extended-range VLANs (VLANs with IDs from 1006 to 4094), but these VLANs are not saved in the VLAN database. See the “Configuring Extended-Range VLANs” section on page 11-12.

Configurations for VLAN IDs 1 to 1005 are written to the file `vlan.dat` (VLAN database), and you can display them by entering the `show vlan` privileged EXEC command. The `vlan.dat` file is stored in nonvolatile RAM (NVRAM).

Caution

You can cause inconsistency in the VLAN database if you attempt to manually delete the `vlan.dat` file. If you want to modify the VLAN configuration, use the commands described in these sections and in the command reference for this release. To change the VTP configuration, see Chapter 12, “Configuring VTP.”

You use the interface configuration mode to define the port membership mode and to add and remove ports from VLANs. The results of these commands are written to the running-configuration file, and you can display the file by entering the `show running-config` privileged EXEC command.

You can set these parameters when you create a new normal-range VLAN or modify an existing VLAN in the VLAN database:

- VLAN ID
- VLAN name
- VLAN type (Ethernet, Fiber Distributed Data Interface [FDDI], FDDI network entity title [NET], TrBRF, or TrCRF, Token Ring, Token Ring-Net)
- VLAN state (active or suspended)
- Maximum transmission unit (MTU) for the VLAN
- Security Association Identifier (SAID)
- Bridge identification number for TrBRF VLANs
- Ring number for FDDI and TrCRF VLANs
- Parent VLAN number for TrCRF VLANs
- Spanning Tree Protocol (STP) type for TrCRF VLANs
- VLAN number to use when translating from one VLAN type to another
Note

This section does not provide configuration details for most of these parameters. For complete information on the commands and parameters that control VLAN configuration, refer to the command reference for this release.

This section includes information about these topics about normal-range VLANs:

- Token Ring VLANs, page 11-5
- Normal-Range VLAN Configuration Guidelines, page 11-5
- VLAN Configuration Mode Options, page 11-6
- Saving VLAN Configuration, page 11-7
- Default Ethernet VLAN Configuration, page 11-7
- Creating or Modifying an Ethernet VLAN, page 11-8
- Deleting a VLAN, page 11-10
- Assigning Static-Access Ports to a VLAN, page 11-11

Token Ring VLANs

Although the switch does not support Token Ring connections, a remote device such as a Catalyst 5000 series switch with Token Ring connections could be managed from one of the supported switches. Switches running VTP version 2 advertise information about these Token Ring VLANs:

- Token Ring TrBRF VLANs
- Token Ring TrCRF VLANs

For more information on configuring Token Ring VLANs, refer to the Catalyst 5000 Series Software Configuration Guide.

Normal-Range VLAN Configuration Guidelines

Follow these guidelines when creating and modifying normal-range VLANs in your network:

- The switch supports 1005 VLANs in VTP client, server, and transparent modes. Normal-range VLANs are identified with a number between 1 and 1001. VLAN numbers 1002 through 1005 are reserved for Token Ring and FDDI VLANs.

- VLAN configuration for VLANs 1 to 1005 are always saved in the VLAN database. If VTP mode is transparent, VTP and VLAN configuration is also saved in the switch running configuration file.

- The switch also supports VLAN IDs 1006 through 4094 in VTP transparent mode (VTP disabled). These are extended-range VLANs and configuration options are limited. Extended-range VLANs are not saved in the VLAN database. See the “Configuring Extended-Range VLANs” section on page 11-12.

- Before you can create a VLAN, the switch must be in VTP server mode or VTP transparent mode. If the switch is a VTP server, you must define a VTP domain or VTP will not function.

- The switch does not support Token Ring or FDDI media. The switch does not forward FDDI, FDDI-Net, TrCRF, or TrBRF traffic, but it does propagate the VLAN configuration through VTP.
The switch supports 128 spanning-tree instances. If a switch has more active VLANs than supported spanning-tree instances, spanning tree can be enabled on 128 VLANs and is disabled on the remaining VLANs. If you have already used all available spanning-tree instances on a switch, adding another VLAN anywhere in the VTP domain creates a VLAN on that switch that is not running spanning-tree. If you have the default allowed list on the trunk ports of that switch (which is to allow all VLANs), the new VLAN is carried on all trunk ports. Depending on the topology of the network, this could create a loop in the new VLAN that would not be broken, particularly if there are several adjacent switches that all have run out of spanning-tree instances. You can prevent this possibility by setting allowed lists on the trunk ports of switches that have used up their allocation of spanning-tree instances.

If the number of VLANs on the switch exceeds the number of supported spanning tree instances, we recommend that you configure the IEEE 802.1S Multiple STP (MSTP) on your switch to map multiple VLANs to a single STP instance. For more information about MSTP, see Chapter 16, “Configuring RSTP and MSTP.”

VLAN Configuration Mode Options

You can configure normal-range VLANs (with VLAN IDs 1 to 1005) by using these two configuration modes:

- **VLAN Configuration in config-vlan Mode**, page 11-6

 You access config-vlan mode by entering the `vlan vlan-id` global configuration command.

- **VLAN Configuration in VLAN Configuration Mode**, page 11-6

 You access VLAN database configuration mode by entering the `vlan database` privileged EXEC command.

VLAN Configuration in config-vlan Mode

To access config-vlan mode, enter the `vlan` global configuration command with a VLAN ID. Enter a new VLAN ID to create a VLAN or with an existing VLAN ID to modify the VLAN. You can use the default VLAN configuration (Table 11-2) or enter multiple commands to configure the VLAN. For more information about commands available in this mode, refer to the `vlan` global configuration command description in the command reference for this release. When you have finished the configuration, you must exit config-vlan mode for the configuration to take effect. To display the VLAN configuration, enter the `show vlan` privileged EXEC command.

You must use this config-vlan mode when creating extended-range VLANs (VLAN IDs greater than 1005). See the “Configuring Extended-Range VLANs” section on page 11-12.

VLAN Configuration in VLAN Configuration Mode

To access VLAN configuration mode, enter the `vlan database` privileged EXEC command. Then enter the `vlan` command with a new VLAN ID to create a VLAN or with an existing VLAN ID to modify the VLAN. You can use the default VLAN configuration (Table 11-2) or enter multiple commands to configure the VLAN. For more information about keywords available in this mode, refer to the `vlan` VLAN configuration command description in the command reference for this release. When you have finished the configuration, you must enter `apply` or `exit` for the configuration to take effect. When you enter the `exit` command, it applies all commands and updates the VLAN database. VTP messages are sent to other switches in the VTP domain, and the privileged EXEC mode prompt appears.
Saving VLAN Configuration

The configurations of VLAN IDs 1 to 1005 are always saved in the VLAN database (vlan.dat file). If VTP mode is transparent, they are also saved in the switch running configuration file and you can enter the `copy running-config startup-config` privileged EXEC command to save the configuration in the startup configuration file. You can use the `show running-config vlan` privileged EXEC command to display the switch running configuration file. To display the VLAN configuration, enter the `show vlan` privileged EXEC command.

When you save VLAN and VTP information (including extended-range VLAN configuration information) in the startup configuration file and reboot the switch, the switch configuration is determined as follows:

- If the VTP mode is transparent in the startup configuration, and the VLAN database and the VTP domain name from the VLAN database matches that in the startup configuration file, the VLAN database is ignored (cleared), and the VTP and VLAN configurations in the startup configuration file are used. The VLAN database revision number remains unchanged in the VLAN database.
- If the VTP mode or domain name in the startup configuration does not match the VLAN database, the domain name and VTP mode and configuration for the first 1005 VLANs use the VLAN database information.
- If VTP mode is server, the domain name and VLAN configuration for the first 1005 VLANs use the VLAN database information.
- If the switch is running IOS Release 12.1(9)EA1 or later and you use an older startup configuration file to boot up the switch, the configuration file does not contain VTP or VLAN information, and the switch uses the VLAN database configurations.
- If the switch is running an IOS release earlier than 12.1(9)EA1 and you use a startup configuration file from IOS Release 12.1(9)EA1 or later to boot up the switch, the image on the switch does not recognize the VLAN and VTP configurations in the startup configuration file, so the switch uses the VLAN database configuration.

⚠️ Caution ⚠️

If the VLAN database configuration is used at startup and the startup configuration file contains extended-range VLAN configuration, this information is lost when the system boots up.

Default Ethernet VLAN Configuration

Table 11-2 shows the default configuration for Ethernet VLANs.

Note

The switch supports Ethernet interfaces exclusively. Because FDDI and Token Ring VLANs are not locally supported, you only configure FDDI and Token Ring media-specific characteristics for VTP global advertisements to other switches.
Chapter 11 Configuring VLANs

Configuring Normal-Range VLANs

Creating or Modifying an Ethernet VLAN

Each Ethernet VLAN in the VLAN database has a unique, 4-digit ID that can be a number from 1 to 1001. VLAN IDs 1002 to 1005 are reserved for Token Ring and FDDI VLANs. To create a normal-range VLAN to be added to the VLAN database, assign a number and name to the VLAN.

Note
When the switch is in VTP transparent mode, you can assign VLAN IDs greater than 1006, but they are not added to the VLAN database. See the “Configuring Extended-Range VLANs” section on page 11-12.

For the list of default parameters that are assigned when you add a VLAN, see the “Configuring Normal-Range VLANs” section on page 11-4.

Beginning in privileged EXEC mode, follow these steps to use config-vlan mode to create or modify an Ethernet VLAN:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>vlan vlan-id</td>
<td>Enter a VLAN ID, and enter config-vlan mode. Enter a new VLAN ID to create a VLAN, or enter an existing VLAN ID to modify a VLAN.</td>
</tr>
</tbody>
</table>

Note
The available VLAN ID range for this command is 1 to 4094. For information about adding VLAN IDs greater than 1005 (extended-range VLANs), see the “Configuring Extended-Range VLANs” section on page 11-12.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Range</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>1</td>
<td>1 to 4094.</td>
<td></td>
</tr>
<tr>
<td>VLAN name</td>
<td>VLANxxxx, where xxxx represents four numeric digits (including leading zeros) equal to the VLAN ID number</td>
<td>No range</td>
<td>Extended-range VLANs (VLAN IDs 1006 to 4094) are not saved in the VLAN database.</td>
</tr>
<tr>
<td>802.10 SAID</td>
<td>100001 (100000 plus the VLAN ID)</td>
<td>1–4294967294</td>
<td></td>
</tr>
<tr>
<td>MTU size</td>
<td>1500</td>
<td>1500–18190</td>
<td></td>
</tr>
<tr>
<td>Translational bridge 1</td>
<td>0</td>
<td>0–1005</td>
<td></td>
</tr>
<tr>
<td>Translational bridge 2</td>
<td>0</td>
<td>0–1005</td>
<td></td>
</tr>
<tr>
<td>VLAN state</td>
<td>active</td>
<td>active, suspend</td>
<td></td>
</tr>
<tr>
<td>Remote SPAN</td>
<td>disabled</td>
<td>enabled, disabled</td>
<td></td>
</tr>
</tbody>
</table>

Table 11-2 Ethernet VLAN Defaults and Ranges
Configuring Normal-Range VLANs

To return the VLAN name to the default settings, use the `no vlan name`, `no vlan mtu`, or `no remote span` config-vlan commands.

This example shows how to use config-vlan mode to create Ethernet VLAN 20, name it `test20`, and add it to the VLAN database:

```
Switch# configure terminal
Switch(config)# vlan 20
Switch(config-vlan)# name test20
Switch(config-vlan)# end
```

Beginning in privileged EXEC mode, follow these steps to use VLAN configuration mode to create or modify an Ethernet VLAN:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>vlan database</code></td>
<td>Enter VLAN database configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td><code>vlan vlan-id name vlan-name</code></td>
<td>Add an Ethernet VLAN by assigning a number to it. The range is 1 to 1001; do not enter leading zeros. If no name is entered for the VLAN, the default is to append the <code>vlan-id</code> with leading zeros to the word VLAN. For example, VLAN0004 is a default VLAN name for VLAN 4.</td>
</tr>
<tr>
<td>3</td>
<td><code>vlan vlan-id mtu mtu-size</code></td>
<td>(Optional) To modify a VLAN, identify the VLAN and change a characteristic, such as the MTU size.</td>
</tr>
<tr>
<td>4</td>
<td><code>exit</code></td>
<td>Update the VLAN database, propagate it throughout the administrative domain, and return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>`show vlan {name vlan-name</td>
<td>id vlan-id}`</td>
</tr>
<tr>
<td>6</td>
<td><code>copy running-config startup config</code></td>
<td>(Optional) If the switch is in VTP transparent mode, the VLAN configuration is saved in the running configuration file as well as in the VLAN database. This saves the configuration in the switch startup configuration file.</td>
</tr>
</tbody>
</table>
Chapter 11 Configuring VLANs

Converting Normal-Range VLANs

Note
You cannot configure an RSPAN VLAN in VLAN database configuration mode.

To return the VLAN name to the default settings, use the `no vlan vlan-id name` or `no vlan vlan-id mtu` VLAN configuration command.

This example shows how to use VLAN database configuration mode to create Ethernet VLAN 20, name it `test20`, and add it to the VLAN database:

```
Switch# vlan database
Switch(vlan)# vlan 20 name test20
Switch(vlan)# exit
APPLY completed.
Exiting....
Switch#
```

Deleting a VLAN

When you delete a VLAN from a switch that is in VTP server mode, the VLAN is removed from the VLAN database for all switches in the VTP domain. When you delete a VLAN from a switch that is in VTP transparent mode, the VLAN is deleted only on that specific switch.

You cannot delete the default VLANs for the different media types: Ethernet VLAN 1 and FDDI or Token Ring VLANs 1002 to 1005.

Caution
When you delete a VLAN, any ports assigned to that VLAN become inactive. They remain associated with the VLAN (and thus inactive) until you assign them to a new VLAN.

Beginning in privileged EXEC mode, follow these steps to delete a VLAN on the switch by using global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>no vlan vlan-id</td>
</tr>
<tr>
<td></td>
<td>Remove the VLAN by entering the VLAN ID.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>show vlan brief</td>
</tr>
<tr>
<td></td>
<td>Verify the VLAN removal.</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup config</td>
</tr>
<tr>
<td></td>
<td>(Optional) If the switch is in VTP transparent mode, the VLAN configuration is saved in the running configuration file as well as in the VLAN database. This saves the configuration in the switch startup configuration file.</td>
</tr>
</tbody>
</table>

To delete a VLAN in VLAN database configuration mode, use the `vlan database` privileged EXEC command to enter VLAN database configuration mode and the `no vlan vlan-id` VLAN configuration command.
Assigning Static-Access Ports to a VLAN

You can assign a static-access port to a VLAN without having VTP globally propagate VLAN configuration information by disabling VTP (VTP transparent mode). If you are assigning a port on a cluster member switch to a VLAN, first use the `rcommand` privileged EXEC command to log in to the member switch.

Note

If you assign an interface to a VLAN that does not exist, the new VLAN is created. (See the "Creating or Modifying an Ethernet VLAN" section on page 11-8.)

Beginning in privileged EXEC mode, follow these steps to assign a port to a VLAN in the VLAN database:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport mode access</td>
</tr>
<tr>
<td>Step 4</td>
<td>switchport access vlan vlan-id</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show running-config interface interface-id</td>
</tr>
<tr>
<td>Step 7</td>
<td>show interfaces interface-id switchport</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return an interface to its default configuration, use the `default interface interface-id` interface configuration command.

This example shows how to configure Fast Ethernet interface 0/1 as an access port in VLAN 2:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.  
Switch(config)# interface fastethernet0/1  
Switch(config-if)# switchport mode access  
Switch(config-if)# switchport access vlan 2  
Switch(config-if)# end  
Switch#
```
Configuring Extended-Range VLANs

When the switch is in VTP transparent mode (VTP disabled), you can create extended-range VLANs (in the range 1006 to 4094). Extended-range VLANs enable service providers to extend their infrastructure to a greater number of customers. The extended-range VLAN IDs are allowed for any switchport commands that allow VLAN IDs. You always use config-vlan mode (accessed by entering the `vlan vlan-id` global configuration command) to configure extended-range VLANs. The extended range is not supported in VLAN database configuration mode (accessed by entering the `vlan database` privileged EXEC command).

Extended-range VLAN configurations are not stored in the VLAN database, but because VTP mode is transparent, they are stored in the switch running configuration file, and you can save the configuration in the startup configuration file by using the `copy running-config startup-config` privileged EXEC command.

Note

Although the switch supports 4094 VLAN IDs, see the “Supported VLANs” section on page 11-2 for the actual number of VLANs supported.

This section includes this information about extended-range VLANs:

- Default VLAN Configuration, page 11-12
- Extended-Range VLAN Configuration Guidelines, page 11-12
- Creating an Extended-Range VLAN, page 11-13
- Creating an Extended-Range VLAN with an Internal VLAN ID, page 11-14

Default VLAN Configuration

See Table 11-2 on page 11-8 for the default configuration for Ethernet VLANs. You can change only the MTU size on extended-range VLANs; all other characteristics must remain at the default state.

Extended-Range VLAN Configuration Guidelines

Follow these guidelines when creating extended-range VLANs:

- To add an extended-range VLAN, you must use the `vlan vlan-id` global configuration command and access config-vlan mode. You cannot add extended-range VLANs in VLAN database configuration mode (accessed by entering the `vlan database` privileged EXEC command).
- VLAN IDs in the extended range are not saved in the VLAN database and are not recognized by VTP.
- You cannot include extended-range VLANs in the pruning eligible range.
- The switch must be in VTP transparent mode when you create extended-range VLANs. If VTP mode is server or client, an error message is generated, and the extended-range VLAN is rejected.
- You can set the VTP mode to transparent in global configuration mode or in VLAN database configuration mode. See the “Disabling VTP (VTP Transparent Mode)” section on page 12-11. You should save this configuration to the startup configuration so that the switch will boot up in VTP transparent mode. Otherwise, you will lose extended-range VLAN configuration if the switch resets.
VLANs in the extended range are not supported by VQP. They cannot be configured by VMPS.

- STP is enabled by default on extended-range VLANs, but you can disable it by using the no spanning-tree vlan vlan-id global configuration command. When the maximum number of spanning-tree instances (128) are on the switch, spanning tree is disabled on any newly created VLANs. If the number of VLANs on the switch exceeds the maximum number of spanning tree instances, we recommend that you configure the IEEE 802.1S Multiple STP (MSTP) on your switch to map multiple VLANs to a single STP instance. For more information about MSTP, see Chapter 16, “Configuring RSTP and MSTP.”

- Each routed port on a Catalyst 3550 switch creates an internal VLAN for its use. These internal VLANs use extended-range VLAN numbers, and the internal VLAN ID cannot be used for an extended-range VLAN. If you try to create an extended-range VLAN with a VLAN ID that is already allocated as an internal VLAN, an error message is generated, and the command is rejected.
 - Because internal VLAN IDs are in the lower part of the extended range, we recommend that you create extended-range VLANs beginning from the highest number (4094) and moving to the lowest (1006) to reduce the possibility of using an internal VLAN ID.
 - Before configuring extended-range VLANs, enter the show vlan internal usage privileged EXEC command to see which VLANs have been allocated as internal VLANs.
 - If necessary, you can shut down the routed port assigned to the internal VLAN, which frees up the internal VLAN, and then create the extended-range VLAN and re-enable the port, which then uses another VLAN as its internal VLAN. See the “Creating an Extended-Range VLAN with an Internal VLAN ID” section on page 11-14.

Creating an Extended-Range VLAN

You create an extended-range VLAN in global configuration mode by entering the vlan global configuration command with a VLAN ID from 1006 to 4094. This command accesses the config-vlan mode. The extended-range VLAN has the default Ethernet VLAN characteristics (see Table 11-2) and the MTU size is the only parameter you can change. Refer to the description of the vlan global configuration command in the command reference for defaults of all parameters. If you enter an extended-range VLAN ID when the switch is not in VTP transparent mode, an error message is generated when you exit from config-vlan mode, and the extended-range VLAN is not created.

Extended-range VLANs are not saved in the VLAN database; they are saved in the switch running configuration file. You can save the extended-range VLAN configuration in the switch startup configuration file by using the copy running-config startup-config privileged EXEC command.

Note

Before you create an extended-range VLAN, you can verify that the VLAN ID is not used internally by entering the show vlan internal usage privileged EXEC command. If the VLAN ID is used internally and you want to free it up, go to the “Creating an Extended-Range VLAN with an Internal VLAN ID” section on page 11-14 before creating the extended-range VLAN.

Beginning in privileged EXEC mode, follow these steps to create an extended-range VLAN:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>vtp mode transparent</td>
<td>Configure the switch for VTP transparent mode, disabling VTP.</td>
</tr>
</tbody>
</table>
Configuring Extended-Range VLANs

Chapter 11 Configuring VLANs

To delete an extended-range VLAN, use the `no vlan vlan-id` global configuration command.

The procedure for assigning static-access ports to an extended-range VLAN is the same as for normal-range VLANs. See the “Assigning Static-Access Ports to a VLAN” section on page 11-11.

This example shows how to create a new extended-range VLAN with all default characteristics, enter config-vlan mode, and save the new VLAN in the switch startup configuration file:

```plaintext
Switch(config)# vtp mode transparent
Switch(config)# vlan 2000
Switch(config-vlan)# end
Switch# copy running-config startup config
```

Creating an Extended-Range VLAN with an Internal VLAN ID

If you enter an extended-range VLAN ID that is already assigned to an internal VLAN, an error message is generated, and the extended-range VLAN is rejected. To manually free an internal VLAN ID, you must temporarily shut down the routed port that is using the internal VLAN ID.

Beginning in privileged EXEC mode, follow these steps to release a VLAN ID that is assigned to an internal VLAN and to create an extended-range VLAN with that ID:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 show vlan internal usage</td>
<td>Display the VLAN IDs being used internally by the switch. If the VLAN ID that you want to use is an internal VLAN, the display shows the routed port that is using the VLAN ID. Enter that port number in Step 3.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 3 interface interface-id</td>
<td>Enter the interface ID for the routed port that is using the VLAN ID.</td>
</tr>
<tr>
<td>Step 4 shutdown</td>
<td>Shut down the port to free the internal VLAN ID.</td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 6 vtp mode transparent</td>
<td>Set the VTP mode to transparent for creating extended-range VLANs.</td>
</tr>
<tr>
<td>Step 7 vlan vlan-id</td>
<td>Enter the new extended-range VLAN ID, and enter config-vlan mode.</td>
</tr>
</tbody>
</table>
Displaying VLANs

Use the `show vlan` privileged EXEC command to display a list of all VLANs on the switch, including extended-range VLANs. The display includes VLAN status, ports, and configuration information. To view normal-range VLANs in the VLAN database (1 to 1005) use the `show VLAN configuration` command (accessed by entering the `vlan database` privileged EXEC command). For a list of the VLAN IDs on the switch, use the `show running-config vlan` privileged EXEC command, optionally entering a VLAN ID range.

Table 11-3 lists the commands for monitoring VLANs.

Table 11-3 VLAN Monitoring Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Command Mode</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show vlan [id vlan-id]</code></td>
<td>Privileged EXEC</td>
<td>Display parameters for all VLANs on the switch or the specified VLAN on the switch.</td>
</tr>
<tr>
<td><code>show running-config vlan</code></td>
<td>Privileged EXEC</td>
<td>Display all or a range of VLANs on the switch.</td>
</tr>
<tr>
<td><code>show interfaces [vlan vlan-id]</code></td>
<td>Privileged EXEC</td>
<td>Display characteristics for all interfaces or for the specified VLAN configured on the switch.</td>
</tr>
<tr>
<td><code>show current [vlan-id]</code></td>
<td>VLAN configuration</td>
<td>Display status of all or the specified VLAN in the VLAN database.</td>
</tr>
<tr>
<td><code>show vlan</code></td>
<td>VLAN configuration</td>
<td>Display status of VLANs in the VLAN database.</td>
</tr>
</tbody>
</table>

For more details about the `show` command options and explanations of output fields, refer to the command reference for this release.
Configuring VLAN Trunks

These sections describe how VLAN trunks function on the switch:

- Trunking Overview, page 11-16
- Encapsulation Types, page 11-18
- Default Layer 2 Ethernet Interface VLAN Configuration, page 11-18

Trunking Overview

A trunk is a point-to-point link between one or more Ethernet switch interfaces and another networking device such as a router or a switch. Fast Ethernet and Gigabit Ethernet trunks carry the traffic of multiple VLANs over a single link, and you can extend the VLANs across an entire network.

Two trunking encapsulations are available on all Ethernet interfaces:

- Inter-Switch Link (ISL)—ISL is Cisco-proprietary trunking encapsulation.
- 802.1Q—802.1Q is industry-standard trunking encapsulation.

Figure 11-2 shows a network of switches that are connected by ISL trunks.

Figure 11-2 Switches in an ISL Trunking Environment

You can configure a trunk on a single Ethernet interface or on an EtherChannel bundle. For more information about EtherChannel, see Chapter 29, “Configuring EtherChannels.”

Ethernet trunk interfaces support different trunking modes (see Table 11-4). You can set an interface as trunking or nontrunking or to negotiate trunking with the neighboring interface. To autonegotiate trunking, the interfaces must be in the same VTP domain.

Trunk negotiation is managed by the Dynamic Trunking Protocol (DTP), which is a Point-to-Point Protocol. However, some internetworking devices might forward DTP frames improperly, which could cause misconfigurations.
To avoid this, you should configure interfaces connected to devices that do not support DTP to not forward DTP frames, that is, to turn off DTP.

- If you do not intend to trunk across those links, use the `switchport mode access` interface configuration command to disable trunking.
- To enable trunking to a device that does not support DTP, use the `switchport mode trunk` and `switchport nonegotiate` interface configuration commands to cause the interface to become a trunk but to not generate DTP frames.

Note

On GigaStack GBICs, dynamic trunking is only supported when only one port of a GigaStack GBIC is being used. If trunking is required on a GigaStack GBIC where both ports are in use, use the `switchport mode trunk` and `switchport nonegotiate` interface configuration commands on both GBIC interfaces to cause the interfaces to become trunks.

You can also specify whether the trunk uses ISL or 802.1Q encapsulation or if the encapsulation type is autonegotiated. The DTP supports autonegotiation of both ISL and 802.1Q trunks.

Note

Tunnel ports do not support DTP. See Chapter 14, “Configuring 802.1Q and Layer 2 Protocol Tunneling,” for more information on tunnel ports.

<table>
<thead>
<tr>
<th>Table 11-4 Layer 2 Interface Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
</tr>
<tr>
<td>switchport mode access</td>
</tr>
<tr>
<td>switchport mode dynamic desirable</td>
</tr>
<tr>
<td>switchport mode dynamic auto</td>
</tr>
<tr>
<td>switchport mode trunk</td>
</tr>
<tr>
<td>switchport nonegotiate</td>
</tr>
<tr>
<td>switchport mode dot1q-tunnel</td>
</tr>
</tbody>
</table>
Encapsulation Types

Table 11-5 lists the Ethernet trunk encapsulation types and keywords.

Table 11-5 Ethernet Trunk Encapsulation Types

<table>
<thead>
<tr>
<th>Encapsulation</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>switchport trunk encapsulation isl</td>
<td>Specifies ISL encapsulation on the trunk link.</td>
</tr>
<tr>
<td>switchport trunk encapsulation dot1q</td>
<td>Specifies 802.1Q encapsulation on the trunk link.</td>
</tr>
<tr>
<td>switchport trunk encapsulation negotiate</td>
<td>Specifies that the interface negotiate with the neighboring interface to become an ISL (preferred) or 802.1Q trunk, depending on the configuration and capabilities of the neighboring interface.</td>
</tr>
</tbody>
</table>

Note

The switch does not support Layer 3 trunks; you cannot configure subinterfaces or use the `encapsulation` keyword on Layer 3 interfaces. The switch does support Layer 2 trunks and Layer 3 VLAN interfaces, which provide equivalent capabilities.

The trunking mode, the trunk encapsulation type, and the hardware capabilities of the two connected interfaces determine whether a link becomes an ISL or 802.1Q trunk.

802.1Q Configuration Considerations

802.1Q trunks impose these limitations on the trunking strategy for a network:

- In a network of Cisco switches connected through 802.1Q trunks, the switches maintain one instance of spanning tree for each VLAN allowed on the trunks. Non-Cisco devices might support one spanning-tree instance for all VLANs.

 When you connect a Cisco switch to a non-Cisco device through an 802.1Q trunk, the Cisco switch combines the spanning-tree instance of the VLAN of the trunk with the spanning-tree instance of the non-Cisco 802.1Q switch. However, spanning-tree information for each VLAN is maintained by Cisco switches separated by a cloud of non-Cisco 802.1Q switches. The non-Cisco 802.1Q cloud separating the Cisco switches is treated as a single trunk link between the switches.

- Make sure the native VLAN for an 802.1Q trunk is the same on both ends of the trunk link. If the native VLAN on one end of the trunk is different from the native VLAN on the other end, spanning-tree loops might result.

- Disabling spanning tree on the native VLAN of an 802.1Q trunk without disabling spanning tree on every VLAN in the network can potentially cause spanning-tree loops. We recommend that you leave spanning tree enabled on the native VLAN of an 802.1Q trunk or disable spanning tree on every VLAN in the network. Make sure your network is loop-free before disabling spanning tree.

Default Layer 2 Ethernet Interface VLAN Configuration

Table 11-6 shows the default Layer 2 Ethernet interface VLAN configuration.
Configuring VLAN Trunks

Configuring an Ethernet Interface as a Trunk Port

Because trunk ports send and receive VTP advertisements, to use VTP you must ensure that at least one trunk port is configured on the switch and that this trunk port is connected to the trunk port of a second switch. Otherwise, the switch cannot receive any VTP advertisements.

This section includes these procedures for configuring an Ethernet interface as a trunk port on the switch:

- Interaction with Other Features, page 11-19
- Defining the Allowed VLANs on a Trunk, page 11-21
- Changing the Pruning-Eligible List, page 11-22
- Configuring the Native VLAN for Untagged Traffic, page 11-22

Note

By default, an interface is in Layer 2 mode. The default mode for Layer 2 interfaces is **switchport mode dynamic desirable**. If the neighboring interface supports trunking and is configured to allow trunking, the link is a Layer 2 trunk or, if the interface is in Layer 3 mode, it becomes a Layer 2 trunk when you enter the `switchport` interface configuration command. By default, trunks negotiate encapsulation. If the neighboring interface supports ISL and 802.1Q encapsulation and both interfaces are set to negotiate the encapsulation type, the trunk uses ISL encapsulation.

Interaction with Other Features

Trunking interacts with other features in these ways:

- A trunk port cannot be a secure port.
- A trunk port cannot be a tunnel port.
- Trunk ports can be grouped into EtherChannel port groups, but all trunks in the group must have the same configuration. When a group is first created, all ports follow the parameters set for the first port to be added to the group. If you change the configuration of one of these parameters, the switch propagates the setting you entered to all ports in the group:
 - allowed-VLAN list
 - STP port priority for each VLAN
 - STP Port Fast setting
 - trunk status: if one port in a port group ceases to be a trunk, all ports cease to be trunks.

Table 11-6 Default Layer 2 Ethernet Interface VLAN Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface mode</td>
<td>switchport mode dynamic desirable</td>
</tr>
<tr>
<td>Trunk encapsulation</td>
<td>switchport trunk encapsulation negotiate</td>
</tr>
<tr>
<td>Allowed VLAN range</td>
<td>VLANs 1 to 4094</td>
</tr>
<tr>
<td>VLAN range eligible for pruning</td>
<td>VLANs 2 to 1001</td>
</tr>
<tr>
<td>Default VLAN (for access ports)</td>
<td>VLAN 1</td>
</tr>
<tr>
<td>Native VLAN (for 802.1Q trunks)</td>
<td>VLAN 1</td>
</tr>
</tbody>
</table>
• We recommend that you configure no more than 24 trunk ports in PVST mode and no more than 40 trunk ports in MST mode.

• If you try to enable 802.1X on a trunk port, an error message appears, and 802.1X is not enabled. If you try to change the mode of an 802.1X-enabled port to trunk, the port mode is not changed.

• A port in dynamic mode can negotiate with its neighbor to become a trunk port. If you try to enable 802.1X on a dynamic port, an error message appears, and 802.1X is not enabled. If you try to change the mode of an 802.1X-enabled port to dynamic, the port mode is not changed.

Configuring a Trunk Port

Beginning in privileged EXEC mode, follow these steps to configure a port as an ISL or 802.1Q trunk port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport trunk encapsulation {isl</td>
</tr>
<tr>
<td>Step 4</td>
<td>switchport mode {dynamic {auto</td>
</tr>
<tr>
<td>Step 5</td>
<td>switchport access vlan vlan-id</td>
</tr>
<tr>
<td>Step 6</td>
<td>switchport trunk native vlan vlan-id</td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
</tr>
<tr>
<td>Step 8</td>
<td>show interfaces interface-id switchport</td>
</tr>
<tr>
<td>Step 9</td>
<td>show interfaces interface-id trunk</td>
</tr>
<tr>
<td>Step 10</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return an interface to its default configuration, use the default interface interface-id interface configuration command. To reset all trunking characteristics of a trunking interface to the defaults, use the no switchport trunk interface configuration command. To disable trunking, use the switchport mode access interface configuration command to configure the port as a static-access port.

This example shows how to configure the Fast Ethernet interface 0/4 as an 802.1Q trunk. The example assumes that the neighbor interface is configured to support 802.1Q trunking.
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface fastethernet0/4
Switch(config-if)# switchport mode dynamic desirable
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# end

Defining the Allowed VLANs on a Trunk

By default, a trunk port sends traffic to and receives traffic from all VLANs. All VLAN IDs, 1 to 4094, are allowed on each trunk. However, you can remove VLANs from the allowed list, preventing traffic from those VLANs from passing over the trunk. To restrict the traffic a trunk carries, use the switchport trunk allowed vlan remove vlan-list interface configuration command to remove specific VLANs from the allowed list.

Note You cannot remove VLAN 1 or VLANs 1002 to 1005 from the allowed VLAN list.

A trunk port can become a member of a VLAN if the VLAN is enabled, if VTP knows of the VLAN, and if the VLAN is in the allowed list for the port. When VTP detects a newly enabled VLAN and the VLAN is in the allowed list for a trunk port, the trunk port automatically becomes a member of the enabled VLAN. When VTP detects a new VLAN and the VLAN is not in the allowed list for a trunk port, the trunk port does not become a member of the new VLAN.

Beginning in privileged EXEC mode, follow these steps to modify the allowed list of an ISL or 802.1Q trunk:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode and the port to be configured.</td>
</tr>
<tr>
<td>Step 3 switchport mode trunk</td>
<td>Configure the interface as a VLAN trunk port.</td>
</tr>
<tr>
<td>Step 4 switchport trunk allowed vlan</td>
<td>(Optional) Configure the list of VLANs allowed on the trunk.</td>
</tr>
<tr>
<td></td>
<td>add</td>
</tr>
<tr>
<td></td>
<td>all</td>
</tr>
<tr>
<td></td>
<td>except</td>
</tr>
<tr>
<td></td>
<td>remove</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 show interfaces interface-id switchport</td>
<td>Verify your entries in the Trunking VLANs Enabled field of the display.</td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default allowed VLAN list of all VLANs, use the no switchport trunk allowed vlan interface configuration command.

This example shows how to remove VLAN 2 from the allowed VLAN list:

Switch(config)# interface fastethernet0/1
Configuring VLAN Trunks

Switch(config-if)# switchport trunk allowed vlan remove 2

Switch(config-if)# end

Switch#

Changing the Pruning-Eligible List

The pruning-eligible list applies only to trunk ports. Each trunk port has its own eligibility list. VTP pruning must be enabled for this procedure to take effect. The “Enabling VTP Pruning” section on page 12-13 describes how to enable VTP pruning.

Beginning in privileged EXEC mode, follow these steps to remove VLANs from the pruning-eligible list on a trunk port:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and select the trunk port for which VLANs should be pruned.</td>
</tr>
<tr>
<td>3</td>
<td>switchport trunk pruning vlan {add</td>
<td>except</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>show interfaces interface-id switchport</td>
<td>Verify your entries in the Pruning VLANs Enabled field of the display.</td>
</tr>
<tr>
<td>6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default pruning-eligible list of all VLANs, use the **no switchport trunk pruning vlan** interface configuration command.

Configuring the Native VLAN for Untagged Traffic

A trunk port configured with 802.1Q tagging can receive both tagged and untagged traffic. By default, the switch forwards untagged traffic in the native VLAN configured for the port. The native VLAN is VLAN 1 by default.

Note

The native VLAN can be assigned any VLAN ID.

For information about 802.1Q configuration issues, see the “802.1Q Configuration Considerations” section on page 11-18.
Beginning in privileged EXEC mode, follow these steps to configure the native VLAN on an 802.1Q trunk:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and define the interface that is</td>
</tr>
<tr>
<td>Step 3 switchport trunk native vlan vlan-id</td>
<td>Configure the VLAN that is sending and receiving untagged traffic</td>
</tr>
<tr>
<td></td>
<td>on the trunk port. For vlan-id, the range is 1 to 4094.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show interfaces interface-id switchport</td>
<td>Verify your entries in the Trunking Native Mode VLAN field.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default native VLAN, VLAN 1, use the no switchport trunk native vlan interface configuration command.

If a packet has a VLAN ID that is the same as the outgoing port native VLAN ID, the packet is sent untagged; otherwise, the switch sends the packet with a tag.

Load Sharing Using STP

Load sharing divides the bandwidth supplied by parallel trunks connecting switches. To avoid loops, STP normally blocks all but one parallel link between switches. Using load sharing, you divide the traffic between the links according to which VLAN the traffic belongs.

You configure load sharing on trunk ports by using STP port priorities or STP path costs. For load sharing using STP port priorities, both load-sharing links must be connected to the same switch. For load sharing using STP path costs, each load-sharing link can be connected to the same switch or to two different switches. For more information about STP, see Chapter 15, “Configuring STP.”
Load Sharing Using STP Port Priorities

When two ports on the same switch form a loop, the STP port priority setting determines which port is enabled and which port is in a blocking state. You can set the priorities on a parallel trunk port so that the port carries all the traffic for a given VLAN. The trunk port with the higher priority (lower values) for a VLAN is forwarding traffic for that VLAN. The trunk port with the lower priority (higher values) for the same VLAN remains in a blocking state for that VLAN. One trunk port sends or receives all traffic for the VLAN.

Figure 11-3 shows two trunks connecting supported switches. In this example, the switches are configured as follows:

- VLANs 8 through 10 are assigned a port priority of 10 on Trunk 1.
- VLANs 3 through 6 retain the default port priority of 128 on Trunk 1.
- VLANs 3 through 6 are assigned a port priority of 10 on Trunk 2.
- VLANs 8 through 10 retain the default port priority of 128 on Trunk 2.

In this way, Trunk 1 carries traffic for VLANs 8 through 10, and Trunk 2 carries traffic for VLANs 3 through 6. If the active trunk fails, the trunk with the lower priority takes over and carries the traffic for all of the VLANs. No duplication of traffic occurs over any trunk port.

Figure 11-3 Load Sharing by Using STP Port Priorities

Beginning in privileged EXEC mode, follow these steps to configure the network shown in Figure 11-3.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode on Switch 1.</td>
</tr>
<tr>
<td>Step 2 vtp domain domain-name</td>
<td>Configure a VTP administrative domain.</td>
</tr>
<tr>
<td></td>
<td>The domain name can be from 1 to 32 characters.</td>
</tr>
<tr>
<td>Step 3 vtp mode server</td>
<td>Configure Switch 1 as the VTP server.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show vtp status</td>
<td>Verify the VTP configuration on both Switch 1 and Switch 2.</td>
</tr>
<tr>
<td></td>
<td>In the display, check the VTP Operating Mode and the VTP Domain Name fields.</td>
</tr>
<tr>
<td>Step 6 show vlan</td>
<td>Verify that the VLANs exist in the database on Switch 1.</td>
</tr>
<tr>
<td>Step 7 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 8 interface fastethernet 0/1</td>
<td>Enter interface configuration mode, and define Fast Ethernet port 0/1 as the interface to be configured as a trunk.</td>
</tr>
</tbody>
</table>
You can configure parallel trunks to share VLAN traffic by setting different path costs on a trunk and associating the path costs with different sets of VLANs. The VLANs keep the traffic separate. Because no loops exist, STP does not disable the ports, and redundancy is maintained in the event of a lost link.

In Figure 11-4, Trunk ports 1 and 2 are 100BASE-T ports. The path costs for the VLANs are assigned as follows:

- VLANs 2 through 4 are assigned a path cost of 30 on Trunk port 1.
- VLANs 8 through 10 retain the default 100BASE-T path cost on Trunk port 1 of 19.
- VLANs 8 through 10 are assigned a path cost of 30 on Trunk port 2.

Command Purpose

| Step 9 | switchport trunk encapsulation {isl | dot1q | negotiate} | Configure the port to support ISL or 802.1Q encapsulation or to negotiate with the neighboring interface. You must configure each end of the link with the same encapsulation type. |
|--------|-----------------|---|
| Step 10 | switchport mode trunk | Configure the port as a trunk port. |
| Step 11 | end | Return to privilege EXEC mode. |
| Step 12 | show interfaces fastethernet0/1 switchport | Verify the VLAN configuration. |
| Step 13 | Repeat Steps 7 through 11 on Switch 1 for Fast Ethernet port 0/2. |
| Step 14 | Repeat Steps 7 through 11 on Switch 2 to configure the trunk ports on Fast Ethernet ports 0/1 and 0/2. |
| Step 15 | show vlan | When the trunk links come up, VTP passes the VTP and VLAN information to Switch 2. Verify that Switch 2 has learned the VLAN configuration. |
| Step 16 | configure terminal | Enter global configuration mode on Switch 1. |
| Step 17 | interface fastethernet0/1 | Enter interface configuration mode, and define the interface to set the STP port priority. |
| Step 18 | spanning-tree vlan 8 port-priority 10 | Assign the port priority of 10 for VLAN 8. |
| Step 19 | spanning-tree vlan 9 port-priority 10 | Assign the port priority of 10 for VLAN 9. |
| Step 20 | spanning-tree vlan 10 port-priority 10 | Assign the port priority of 10 for VLAN 10. |
| Step 21 | exit | Return to global configuration mode. |
| Step 22 | interface fastethernet0/2 | Enter interface configuration mode, and define the interface to set the STP port priority. |
| Step 23 | spanning-tree vlan 3 port-priority 10 | Assign the port priority of 10 for VLAN 3. |
| Step 24 | spanning-tree vlan 4 port-priority 10 | Assign the port priority of 10 for VLAN 4. |
| Step 25 | spanning-tree vlan 5 port-priority 10 | Assign the port priority of 10 for VLAN 5. |
| Step 26 | spanning-tree vlan 6 port-priority 10 | Assign the port priority of 10 for VLAN 6. |
| Step 27 | end | Return to privileged EXEC mode. |
| Step 28 | show running-config | Verify your entries. |
| Step 29 | copy running-config startup-config | (Optional) Save your entries in the configuration file. |
- VLANs 2 through 4 retain the default 100BASE-T path cost on Trunk port 2 of 19.

Figure 11-4 Load-Sharing Trunks with Traffic Distributed by Path Cost

Beginning in privileged EXEC mode, follow these steps to configure the network shown in Figure 11-4:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface fastethernet 0/1</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport trunk encapsulation {isl</td>
</tr>
<tr>
<td>Step 4</td>
<td>switchport mode trunk</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
</tr>
<tr>
<td>Step 8</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 9</td>
<td>show vlan</td>
</tr>
<tr>
<td>Step 10</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 11</td>
<td>interface fastethernet 0/1</td>
</tr>
<tr>
<td>Step 12</td>
<td>spanning-tree vlan 2 cost 30</td>
</tr>
<tr>
<td>Step 13</td>
<td>spanning-tree vlan 3 cost 30</td>
</tr>
<tr>
<td>Step 14</td>
<td>spanning-tree vlan 4 cost 30</td>
</tr>
<tr>
<td>Step 15</td>
<td>end</td>
</tr>
</tbody>
</table>
Configuring VMPS

The switch cannot be a VMPS server but can act as a client to the VMPS and communicate with it through the VLAN Query Protocol (VQP). VMPS dynamically assigns dynamic access port VLAN membership.

This section includes this information about configuring VMPS:

- “Understanding VMPS” section on page 11-27
- “Default VMPS Configuration” section on page 11-30
- “VMPS Configuration Guidelines” section on page 11-30
- “Configuring the VMPS Client” section on page 11-31
- “Monitoring the VMPS” section on page 11-33
- “Troubleshooting Dynamic Port VLAN Membership” section on page 11-34
- “VMPS Configuration Example” section on page 11-34

Understanding VMPS

When the VMPS receives a VQP request from a client switch, it searches its database for a MAC-address-to-VLAN mapping. The server response is based on this mapping and whether or not the server is in secure mode. Secure mode determines whether the server shuts down the port when a VLAN is not allowed on it or just denies the port access to the VLAN.

In response to a request, the VMPS takes one of these actions:

- If the assigned VLAN is restricted to a group of ports, the VMPS verifies the requesting port against this group and responds as follows:
 - If the VLAN is allowed on the port, the VMPS sends the VLAN name to the client in response.
 - If the VLAN is not allowed on the port and the VMPS is not in secure mode, the VMPS sends an access-denied response.
 - If the VLAN is not allowed on the port and the VMPS is in secure mode, the VMPS sends a port-shutdown response.
- If the VLAN in the database does not match the current VLAN on the port and active hosts exist on the port, the VMPS sends an access-denied or a port-shutdown response, depending on the secure mode of the VMPS.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 16 Repeat Steps 9 through 11 on Switch 1 interface Fast Ethernet 0/2, and set the spanning-tree path cost to 30 for VLANs 8, 9, and 10.</td>
<td></td>
</tr>
<tr>
<td>Step 17 exit</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 18 show running-config</td>
<td>Verify your entries. In the display, verify that the path costs are set correctly for interfaces Fast Ethernet 0/1 and 0/2.</td>
</tr>
<tr>
<td>Step 19 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
If the switch receives an *access-denied* response from the VMPS, it continues to block traffic from the MAC address to or from the port. The switch continues to monitor the packets directed to the port and sends a query to the VMPS when it identifies a new address. If the switch receives a *port-shutdown* response from the VMPS, it disables the port. The port must be manually re-enabled by using the CLI, CMS, or SNMP.

You can also use an explicit entry in the configuration table to deny access to specific MAC addresses for security reasons. If you enter the *none* keyword for the VLAN name, the VMPS sends an *access-denied* or *port-shutdown* response, depending on the VMPS secure mode setting.

Dynamic Port VLAN Membership

A dynamic (nontrunking) port on the switch can belong to only one VLAN, with a VLAN ID from 1 to 1005. When the link comes up, the switch does not forward traffic to or from this port until the VMPS provides the VLAN assignment. The VMPS receives the source MAC address from the first packet of a new host connected to the dynamic port and attempts to match the MAC address to a VLAN in the VMPS database.

If there is a match, the VMPS sends the VLAN number for that port. If the client switch was not previously configured, it uses the domain name from the first VTP packet it receives on its trunk port from the VMPS. If the client switch was previously configured, it includes its domain name in the query packet to the VMPS to obtain its VLAN number. The VMPS verifies that the domain name in the packet matches its own domain name before accepting the request and responds to the client with the assigned VLAN number for the client. If there is no match, the VMPS either denies the request or shuts down the port (depending on the VMPS secure mode setting).

Multiple hosts (MAC addresses) can be active on a dynamic port if they are all in the same VLAN; however, the VMPS shuts down a dynamic port if more than 20 hosts are active on the port.

If the link goes down on a dynamic port, the port returns to an isolated state and does not belong to a VLAN. Any hosts that come online through the port are checked again through the VQP with the VMPS before the port is assigned to a VLAN.

VMPS Database Configuration File

The VMPS contains a database configuration file that you create. This ASCII text file is stored on a switch-accessible TFTP server that functions as a server for VMPS. The file contains VMPS information, such as the domain name, the fallback VLAN name, and the MAC-address-to-VLAN mapping. The switch cannot act as the VMPS, but you can use a Catalyst 5000 or Catalyst 6000 series switch as the VMPS.

You can configure a fallback VLAN name. If you connect a device with a MAC address that is not in the database, the VMPS sends the fallback VLAN name to the client. If you do not configure a fallback VLAN and the MAC address does not exist in the database, the VMPS sends an *access-denied* response. If the VMPS is in secure mode, it sends a *port-shutdown* response.

Whenever port names are used in the VMPS database configuration file, the server must use the switch convention for naming ports. For example, Fa0/4 is fixed Fast Ethernet port number 4. If the switch is a cluster member, the command switch adds the name of the switch before the type. For example, *es3%Fa0/4* refers to fixed Fast Ethernet port 4 on member switch 3. When port names are required, these naming conventions must be followed in the VMPS database configuration file when it is configured to support a cluster.

This example shows an example of a VMPS database configuration file as it appears on a Catalyst 6000 series switch. The file has these characteristics:

- The security mode is open.
- The default is used for the fallback VLAN.
- MAC address-to-VLAN name mappings—The MAC address of each host and the VLAN to which each host belongs is defined.
- Port groups are defined.
- VLAN groups are defined.
- VLAN port policies are defined for the ports associated with restricted VLANs.

```
!VMPS File Format, version 1.1
! Always begin the configuration file with
! the word "VMPS"
!
!vmps domain <domain-name>
! The VMPS domain must be defined.
!vmps mode {open | secure}
! The default mode is open.
!vmps fallback <vlan-name>
!vmps no-domain-req { allow | deny }
!
! The default value is allow.
vmps domain DSBU
vmps mode open
vmps fallback default
vmps no-domain-req deny
!
!
!MAC Addresses
!
vmps-mac-addrs
!
! address <addr> vlan-name <vlan_name>
!
address 0012.2233.4455 vlan-name hardware
address 0000.6509.a080 vlan-name hardware
address aabb.ccdd.eeff vlan-name Green
address 1223.5678.9abc vlan-name ExecStaff
address fedc.ba98.7654 vlan-name --NONE--
address fedc.ba23.1245 vlan-name Purple
!
!
!Port Groups
!
vmps-port-group <group-name>
!
! device <device-id> { port <port-name> | all-ports }
!
vmps-port-group WiringCloset1
  device 198.92.30.32 port 0/2
  device 172.20.26.141 port 0/8
vmps-port-group "Executive Row"
  device 198.4.254.222 port 0/2
  device 198.4.254.222 port 0/3
  device 198.4.254.223 all-ports
!
!
!VLAN groups
!
vmps-vlan-group <group-name>
!
! vlan-name <vlan-name>
!
vmps-vlan-group Engineering
vlan-name hardware
vlan-name software
!
```
Configuring VMPS

Configuring VMPS

```
! VLAN port Policies
!
vmps-port-policies {vlan-name <vlan_name> | vlan-group <group-name> }
! { port-group <group-name> | device <device-id> port <port-name> }
!
vmps-port-policies vlan-group Engineering
  port-group WiringCloset1
vmps-port-policies vlan-name Green
  device 198.92.30.32 port 0/8
vmps-port-policies vlan-name Purple
  device 198.4.254.22 port 0/2
  port-group "Executive Row"
```

Default VMPS Configuration

Table 11-7 shows the default VMPS and dynamic port configuration on client switches.

Table 11-7 Default VMPS Client and Dynamic Port Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMPS domain server</td>
<td>None</td>
</tr>
<tr>
<td>VMPS reconfirm interval</td>
<td>60 minutes</td>
</tr>
<tr>
<td>VMPS server retry count</td>
<td>3</td>
</tr>
<tr>
<td>Dynamic ports</td>
<td>None configured</td>
</tr>
</tbody>
</table>

VMPS Configuration Guidelines

These guidelines and restrictions apply to dynamic access port VLAN membership:

- You should configure the VMPS before you configure ports as dynamic.
- The communication between a cluster of switches and VMPS is managed by the command switch and includes port-naming conventions that are different from standard port names. For the cluster-based port-naming conventions, see the “VMPS Database Configuration File” section on page 11-28.
- When you configure a port as a dynamic access port, the spanning-tree Port Fast feature is automatically enabled for that port. The Port Fast mode accelerates the process of bringing the port into the forwarding state.
- 802.1X ports cannot be configured as dynamic access ports. If you try to enable 802.1X on a dynamic-access (VQP) port, an error message appears, and 802.1X is not enabled. If you try to change an 802.1X-enabled port to dynamic VLAN assignment, an error message appears, and the VLAN configuration is not changed.
- Trunk ports cannot be dynamic access ports, but you can enter the `switchport access vlan dynamic` interface configuration command for a trunk port. In this case, the switch retains the setting and applies it if the port is later configured as an access port.

 You must turn off trunking on the port before the dynamic access setting takes effect.
- Dynamic access ports cannot be monitor ports.
- Secure ports cannot be dynamic access ports. You must disable port security on a port before it becomes dynamic.
• Dynamic access ports cannot be members of an EtherChannel group.
• Port channels cannot be configured as dynamic access ports.
• A dynamic access port can participate in fallback bridging.
• The VTP management domain of the VMPS client and the VMPS server must be the same.
• VQP does not support extended-range VLANs (VLAN IDs higher than 1006). Extended-range VLANs cannot be configured by VMPS.
• The VLAN configured on the VMPS server should not be a voice VLAN.

Configuring the VMPS Client

You configure dynamic VLANs by using the VMPS (server). The switch can be a VMPS client; it cannot be a VMPS server.

Entering the IP Address of the VMPS

You must first enter the IP address of the server to configure the switch as a client.

Note

If the VMPS is being defined for a cluster of switches, enter the address on the command switch.

Beginning in privileged EXEC mode, follow these steps to enter the IP address of the VMPS:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>vmps server ipaddress primary</td>
<td>Enter the IP address of the switch acting as the primary VMPS server.</td>
</tr>
<tr>
<td>Step 3</td>
<td>vmps server ipaddress</td>
<td>Enter the IP address of the switch acting as a secondary VMPS server. You can enter up to three secondary server addresses.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show vmps</td>
<td>Verify your entries in the VMPS Domain Server field of the display.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Note
The switch port that is connected to the VMPS server cannot be a dynamic access port. It can be either a static access port or a trunk port. See the “Configuring an Ethernet Interface as a Trunk Port” section on page 11-19.

Configuring Dynamic Access Ports on VMPS Clients

If you are configuring a port on a cluster member switch as a dynamic port, first use the `rcommand` privileged EXEC command to log into the member switch.

Caution

Dynamic port VLAN membership is for end stations or hubs connected to end stations. Connecting dynamic access ports to other switches can cause a loss of connectivity.
Beginning in privileged EXEC mode, follow these steps to configure a dynamic access port on a VMPS client switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Enter interface configuration mode and the switch port that is connected to the end station.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport mode access</td>
</tr>
<tr>
<td></td>
<td>Set the port to access mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>switchport access vlan dynamic</td>
</tr>
<tr>
<td></td>
<td>Configure the port as eligible for dynamic VLAN membership.</td>
</tr>
<tr>
<td></td>
<td>The dynamic access port must be connected to an end station.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>show interfaces interface-id switchport</td>
</tr>
<tr>
<td></td>
<td>Verify your entries in the Operational Mode field of the display.</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return an interface to its default configuration, use the default interface interface-id interface configuration command. To return an interface to its default switchport mode (dynamic desirable), use the no switchport mode interface configuration command. To reset the access mode to the default VLAN for the switch, use the no switchport access interface configuration command.

Note

When you configure a dynamic access port by using the switchport access vlan dynamic interface configuration command, the port might allow unauthorized users to access network resources if the interface changes from access mode to trunk mode through the DTP negotiation. The workaround is to configure the port as a static access port.

Reconfirming VLAN Memberships

Beginning in privileged EXEC mode, follow these steps to confirm the dynamic port VLAN membership assignments that the switch has received from the VMPS:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>vmps reconfirm</td>
</tr>
<tr>
<td></td>
<td>Reconfirm dynamic port VLAN membership.</td>
</tr>
<tr>
<td>Step 2</td>
<td>show vmps</td>
</tr>
<tr>
<td></td>
<td>Verify the dynamic VLAN reconfirmation status.</td>
</tr>
</tbody>
</table>

Changing the Reconfirmation Interval

VMPS clients periodically reconfirm the VLAN membership information received from the VMPS. You can set the number of minutes after which reconfirmation occurs.

If you are configuring a member switch in a cluster, this parameter must be equal to or greater than the reconfirmation setting on the command switch. You must also first use the rcommand privileged EXEC command to log into the member switch.
Beginning in privileged EXEC mode, follow these steps to change the reconfirmation interval:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>vmps reconfirm minutes</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show vmps</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the no vmps reconfirm global configuration command.

Changing the Retry Count

Beginning in privileged EXEC mode, follow these steps to change the number of times that the switch attempts to contact the VMPS before querying the next server:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>vmps retry count</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show vmps</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the no vmps retry global configuration command.

Monitoring the VMPS

You can display information about the VMPS by using the show vmps privileged EXEC command. The switch displays this information about the VMPS:

- **VMPS VQP Version**: The version of VQP used to communicate with the VMPS. The switch queries the VMPS that is using VQP version 1.
- **Reconfirm Interval**: The number of minutes the switch waits before reconfirming the VLAN-to-MAC-address assignments.
- **Server Retry Count**: The number of times VQP resends a query to the VMPS. If no response is received after this many tries, the switch starts to query the secondary VMPS.
VMPS domain server: The IP address of the configured VLAN membership policy servers. The switch sends queries to the one marked current. The one marked primary is the primary server.

VMPS Action: The result of the most recent reconfirmation attempt. A reconfirmation attempt can occur automatically when the reconfirmation interval expired, or you can force it by entering the vmps reconfirm privileged EXEC command or its CMS or SNMP equivalent.

This is an example of output for the show vmps privileged EXEC command:

```
Switch# show vmps
VQP Client Status:
-------------------
VMPS VQP Version: 1
Reconfirm Interval: 60 min
Server Retry Count: 3
VMPS domain server: 172.20.128.86 (primary, current)
172.20.128.87
Reconfirmation status
---------------------
VMPS Action: No Dynamic Port
```

Troubleshooting Dynamic Port VLAN Membership

The VMPS shuts down a dynamic port under these conditions:

- The VMPS is in secure mode, and it does not allow the host to connect to the port. The VMPS shuts down the port to prevent the host from connecting to the network.
- More than 20 active hosts reside on a dynamic port.

To re-enable a disabled dynamic port, enter the no shutdown interface configuration command.

VMPS Configuration Example

Figure 11-5 shows a network with a VMPS server switch and VMPS client switches with dynamic ports. In this example, these assumptions apply:

- The VMPS server and the VMPS client are separate switches.
- The Catalyst 6000 series Switch 1 is the primary VMPS server.
- The Catalyst 6000 series Switch 3 and Switch 10 are secondary VMPS servers.
- End stations are connected to the Catalyst 3550 clients, Switch 2 and Switch 9.
- The database configuration file is stored on the TFTP server with the IP address 172.20.22.7.
Figure 11-5 Dynamic Port VLAN Membership Configuration

Primary VMPS
Server 1

Secondary VMPS
Server 2

Secondary VMPS
Server 3

End
station 2

Catalyst 6000 series

Catalyst 6000 series

Catalyst 3550 switch

Catalyst 3550 switch

End
station 1

Dynamic-access port

Dynamic-access port

Trunk port or
static-access port

Trunk port or
static-access port

TFTP server

172.20.22.7

Switch 1

Switch 2

Switch 3

Switch 4

Switch 5

Switch 6

Switch 7

Switch 8

Switch 9

Switch 10

Client

Client

172.20.26.150

172.20.26.151

172.20.26.152

172.20.26.153

172.20.26.154

172.20.26.155

172.20.26.156

172.20.26.157

172.20.26.158

172.20.26.159

172.20.26.150

172.20.26.151

172.20.26.152

172.20.26.153

172.20.26.154

172.20.26.155

172.20.26.156

172.20.26.157

172.20.26.158

172.20.26.159

T runk link

T runk port or
static-access port

T runk port or
static-access port

Ethernet segment

Router

Switch 10

Switch 9

Switch 8

Switch 7

Switch 6

Switch 5

Switch 4

Switch 3

172.20.22.7

TFTP server
Configuring VTP

This chapter describes how to use the VLAN Trunking Protocol (VTP) and the VLAN database for managing VLANs on your Catalyst 3550 switch.

Note

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

The chapter includes these sections:

- Understanding VTP, page 12-1
- Configuring VTP, page 12-6
- Monitoring VTP, page 12-15

Understanding VTP

VTP is a Layer 2 messaging protocol that maintains VLAN configuration consistency by managing the addition, deletion, and renaming of VLANs on a network-wide basis. VTP minimizes misconfigurations and configuration inconsistencies that can cause several problems, such as duplicate VLAN names, incorrect VLAN-type specifications, and security violations.

Before you create VLANs, you must decide whether to use VTP in your network. Using VTP, you can make configuration changes centrally on one or more switches and have those changes automatically communicated to all the other switches in the network. Without VTP, you cannot send information about VLANs to other switches. VTP configuration information is saved in the VTP VLAN database.

VTP only learns about normal-range VLANs (VLAN IDs 1 to 1005). Extended-range VLANs (VLAN IDs greater than 1005) are not supported by VTP or stored in the VTP VLAN database.

This section contains information about these VTP parameters:

- The VTP Domain, page 12-2
- VTP Modes, page 12-3
- VTP Advertisements, page 12-3
- VTP Version 2, page 12-4
- VTP Pruning, page 12-4
The VTP Domain

A VTP domain (also called a VLAN management domain) consists of one switch or several interconnected switches under the same administrative responsibility sharing the same VTP domain name. A switch can be in only one VTP domain. You make global VLAN configuration changes for the domain by using the command-line interface (CLI), Cluster Management Suite (CMS) software, or Simple Network Management Protocol (SNMP).

By default, the switch is in VTP no-management-domain state until it receives an advertisement for a domain over a trunk link (a link that carries the traffic of multiple VLANs) or until you configure a domain name. Until the management domain name is specified or learned, you cannot create or modify VLANs on a VTP server, and VLAN information is not propagated over the network.

If the switch receives a VTP advertisement over a trunk link, it inherits the management domain name and the VTP configuration revision number. The switch then ignores advertisements with a different domain name or an earlier configuration revision number.

Caution

Before adding a VTP client switch to a VTP domain, always verify that its VTP configuration revision number is *lower* than the configuration revision number of the other switches in the VTP domain. Switches in a VTP domain always use the VLAN configuration of the switch with the highest VTP configuration revision number. If you add a switch that has a revision number higher than the revision number in the VTP domain, it can erase all VLAN information from the VTP server and VTP domain. See the “Adding a VTP Client Switch to a VTP Domain” section on page 12-14 for the procedure for verifying and resetting the VTP configuration revision number.

When you make a change to the VLAN configuration on a VTP server, the change is propagated to all switches in the VTP domain. VTP advertisements are sent over all IEEE trunk connections, including Inter-Switch Link (ISL) and IEEE 802.1Q. VTP maps VLANs dynamically across multiple LAN types with unique names and internal index associates. Mapping eliminates excessive device administration required from network administrators.

If you configure a switch for VTP transparent mode, you can create and modify VLANs, but the changes are not sent to other switches in the domain, and they affect only the individual switch. However, configuration changes made when the switch is in this mode are saved in the switch running configuration and can be saved to the switch startup configuration file.

For domain name and password configuration guidelines, see the “VTP Configuration Guidelines” section on page 12-8.
VTP Modes

You can configure a supported switch to be in one of the VTP modes listed in Table 12-1.

Table 12-1 VTP Modes

<table>
<thead>
<tr>
<th>VTP Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTP server</td>
<td>In VTP server mode, you can create, modify, and delete VLANs and specify other configuration parameters (such as the VTP version) for the entire VTP domain. VTP servers advertise their VLAN configurations to other switches in the same VTP domain and synchronize their VLAN configurations with other switches based on advertisements received over trunk links. In VTP server mode, VLAN configurations are saved in nonvolatile RAM (NVRAM). VTP server is the default mode.</td>
</tr>
<tr>
<td>VTP client</td>
<td>A VTP client behaves like a VTP server, but you cannot create, change, or delete VLANs on a VTP client. In VTP client mode, VLAN configurations are not saved in NVRAM.</td>
</tr>
<tr>
<td>VTP transparent</td>
<td>VTP transparent switches do not participate in VTP. A VTP transparent switch does not advertise its VLAN configuration and does not synchronize its VLAN configuration based on received advertisements. However, in VTP version 2, transparent switches do forward VTP advertisements that they receive from other switches from their trunk interfaces. You can create, modify, and delete VLANs on a switch in VTP transparent mode. The switch must be in VTP transparent mode when you create extended-range VLANs. See the “Configuring Extended-Range VLANs” section on page 11-12. When the switch is in VTP transparent mode, the VTP and VLAN configurations are saved in NVRAM, but they are not advertised to other switches. In this mode, VTP mode and domain name are saved in the switch running configuration and you can save this information in the switch startup configuration file by entering the <code>copy running-config startup-config</code> privileged EXEC command.</td>
</tr>
</tbody>
</table>

VTP Advertisements

Each switch in the VTP domain sends periodic global configuration advertisements from each trunk port to a reserved multicast address. Neighboring switches receive these advertisements and update their VTP and VLAN configurations as necessary.

Note Because trunk ports send and receive VTP advertisements, you must ensure that at least one trunk port is configured on the switch and that this trunk port is connected to the trunk port of a second switch. Otherwise, the switch cannot receive any VTP advertisements. For more information on trunk ports, see the “Configuring VLAN Trunks” section on page 11-16.

VTP advertisements distribute this global domain information:

- VTP domain name
- VTP configuration revision number
- Update identity and update timestamp
- MD5 digest VLAN configuration, including maximum transmission unit (MTU) size for each VLAN.
- Frame format
VTP advertisements distribute this VLAN information for each configured VLAN:

- VLAN IDs (ISL and 802.1Q)
- VLAN name
- VLAN type
- VLAN state
- Additional VLAN configuration information specific to the VLAN type

VTP Version 2

If you use VTP in your network, you must decide whether to use version 1 or version 2. By default, VTP operates in version 1.

VTP version 2 supports these features not supported in version 1:

- Token Ring support—VTP version 2 supports Token Ring Bridge Relay Function (TrBRF) and Token Ring Concentrator Relay Function (TrCRF) VLANs. For more information about Token Ring VLANs, see the “Configuring Normal-Range VLANs” section on page 11-4.
- Unrecognized Type-Length-Value (TLV) support—A VTP server or client propagates configuration changes to its other trunks, even for TLVs it is not able to parse. The unrecognized TLV is saved in NVRAM when the switch is operating in VTP server mode.
- Version-Dependent Transparent Mode—In VTP version 1, a VTP transparent switch inspects VTP messages for the domain name and version and forwards a message only if the version and domain name match. Because VTP version 2 supports only one domain, it forwards VTP messages in transparent mode without inspecting the version and domain name.
- Consistency Checks—In VTP version 2, VLAN consistency checks (such as VLAN names and values) are performed only when you enter new information through the CLI, the Cluster Management Software (CMS), or SNMP. Consistency checks are not performed when new information is obtained from a VTP message or when information is read from NVRAM. If the MD5 digest on a received VTP message is correct, its information is accepted.

VTP Pruning

VTP pruning increases network available bandwidth by restricting flooded traffic to those trunk links that the traffic must use to reach the destination devices. Without VTP pruning, a switch floods broadcast, multicast, and unknown unicast traffic across all trunk links within a VTP domain even though receiving switches might discard them. VTP pruning is disabled by default.

VTP pruning blocks unneeded flooded traffic to VLANs on trunk ports that are included in the pruning-eligible list. Only VLANs included in the pruning-eligible list can be pruned. By default, VLANs 2 through 1001 are pruning eligible switch trunk ports. If the VLANs are configured as pruning-ineligible, the flooding continues. VTP pruning is supported with VTP version 1 and version 2.

Figure 12-1 shows a switched network without VTP pruning enabled. Port 1 on Switch 1 and Port 2 on Switch 4 are assigned to the Red VLAN. If a broadcast is sent from the host connected to Switch 1, Switch 1 floods the broadcast and every switch in the network receives it, even though Switches 3, 5, and 6 have no ports in the Red VLAN.
Figure 12-1 Flooding Traffic without VTP Pruning

Figure 12-2 shows a switched network with VTP pruning enabled. The broadcast traffic from Switch 1 is not forwarded to Switches 3, 5, and 6 because traffic for the Red VLAN has been pruned on the links shown (Port 5 on Switch 2 and Port 4 on Switch 4).

Figure 12-2 Optimized Flooded Traffic with VTP Pruning

Enabling VTP pruning on a VTP server enables pruning for the entire management domain. Making VLANs pruning-eligible or pruning-ineligible affects pruning eligibility for those VLANs on that device only (not on all switches in the VTP domain). See the “Enabling VTP Pruning” section on page 12-13. VTP pruning takes effect several seconds after you enable it. VTP pruning does not prune traffic from VLANs that are pruning-ineligible. VLAN 1 and VLANs 1002 to 1005 are always pruning-ineligible; traffic from these VLANs cannot be pruned. Extended-range VLANs (VLAN IDs higher than 1005) are also pruning-ineligible.
VTP pruning is not designed to function in VTP transparent mode. If one or more switches in the network are in VTP transparent mode, you should do one of these:

- Turn off VTP pruning in the entire network.
- Turn off VTP pruning by making all VLANs on the trunk of the switch upstream to the VTP transparent switch pruning ineligible.

To configure VTP pruning on an interface, use the `switchport trunk pruning vlan` interface configuration command (see the “Changing the Pruning-Eligible List” section on page 11-22). VTP pruning operates when an interface is trunking. You can set VLAN pruning-eligibility, whether or not VTP pruning is enabled for the VTP domain, whether or not any given VLAN exists, and whether or not the interface is currently trunking.

Configuring VTP

This section includes guidelines and procedures for configuring VTP. These sections are included:

- Default VTP Configuration, page 12-6
- VTP Configuration Options, page 12-7
- VTP Configuration Guidelines, page 12-8
- Configuring a VTP Server, page 12-9
- Configuring a VTP Client, page 12-10
- Disabling VTP (VTP Transparent Mode), page 12-11
- Enabling VTP Version 2, page 12-12
- Enabling VTP Pruning, page 12-13
- Adding a VTP Client Switch to a VTP Domain, page 12-14

Default VTP Configuration

Table 12-2 shows the default VTP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTP domain name</td>
<td>Null.</td>
</tr>
<tr>
<td>VTP mode</td>
<td>Server.</td>
</tr>
<tr>
<td>VTP version 2 enable state</td>
<td>Version 2 is disabled.</td>
</tr>
<tr>
<td>VTP password</td>
<td>None.</td>
</tr>
<tr>
<td>VTP pruning</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>
VTP Configuration Options

You can configure VTP by using these configuration modes.

- VTP Configuration in Global Configuration Mode, page 12-7
- VTP Configuration in VLAN Configuration Mode, page 12-7

You access VLAN configuration mode by entering the `vlan database` privileged EXEC command. For detailed information about `vtp` commands, refer to the command reference for this release.

VTP Configuration in Global Configuration Mode

You can use the `vtp` global configuration command to set the VTP password, the version, the VTP file name, the interface providing updated VTP information, the domain name, and the mode, and to disable or enable pruning. For more information about available keywords, refer to the command descriptions in the command reference for this release. The VTP information is saved in the VTP VLAN database. When VTP mode is transparent, the VTP domain name and mode are also saved in the switch running configuration file, and you can save it in the switch startup configuration file by entering the `copy running-config startup-config` privileged EXEC command. You must use this command if you want to save VTP mode as transparent, even if the switch resets.

When you save VTP information in the switch startup configuration file and reboot the switch, the switch configuration is determined as follows:

- If the VTP mode is transparent in the startup configuration and the VLAN database and the VTP domain name from the VLAN database matches that in the startup configuration file, the VLAN database is ignored (cleared), and the VTP and VLAN configurations in the startup configuration file are used. The VLAN database revision number remains unchanged in the VLAN database.
- If the VTP mode or domain name in the startup configuration do not match the VLAN database, the domain name and VTP mode and configuration for the first 1005 VLANs use the VLAN database information.
- If the switch is running IOS Release 12.1(9)EA1 or later and you use an older configuration file to boot up the switch, the configuration file does not contain VTP or VLAN information, and the switch uses the VLAN database configurations.
- If the switch is running an IOS release earlier than 12.1(9)EA1 on the switch and you use a configuration file from IOS Release 12.1(9)EA1 or later to boot up the switch, the image on the switch does not recognize VLAN and VTP configurations in the configuration file, so the switch uses the VLAN database configuration.

VTP Configuration in VLAN Configuration Mode

You can configure all VTP parameters in VLAN configuration mode, which you access by entering the `vlan database` privileged EXEC command. For more information about available keywords, refer to the `vtp` VLAN configuration command description in the command reference for this release. When you enter the `exit` command in VLAN configuration mode, it applies all the commands that you entered and updates the VLAN database. VTP messages are sent to other switches in the VTP domain, and the privileged EXEC mode prompt appears.

If VTP mode is transparent, the domain name and the mode (transparent) are saved in the switch running configuration, and you can save this information in the switch startup configuration file by entering the `copy running-config startup-config` privileged EXEC command.
VTP Configuration Guidelines

These sections describe guidelines you should follow when implementing VTP in your network.

Domain Names

When configuring VTP for the first time, you must always assign a domain name. You must configure all switches in the VTP domain with the same domain name. Switches in VTP transparent mode do not exchange VTP messages with other switches, and you do not need to configure a VTP domain name for them.

Note

If NVRAM and DRAM storage is sufficient, all switches in a VTP domain should be in VTP server mode.

Caution

Do not configure a VTP domain if all switches are operating in VTP client mode. If you configure the domain, it is impossible to make changes to the VLAN configuration of that domain. Make sure that you configure at least one switch in the VTP domain for VTP server mode.

Passwords

You can configure a password for the VTP domain, but it is not required. If you do configure a domain password, all domain switches must share the same password and you must configure the password on each switch in the management domain. Switches without a password or with the wrong password reject VTP advertisements.

If you configure a VTP password for a domain, a switch that is booted without a VTP configuration does not accept VTP advertisements until you configure it with the correct password. After the configuration, the switch accepts the next VTP advertisement that uses the same password and domain name in the advertisement.

If you are adding a new switch to an existing network with VTP capability, the new switch learns the domain name only after the applicable password has been configured on it.

Caution

When you configure a VTP domain password, the management domain does not function properly if you do not assign a management domain password to each switch in the domain.

VTP Version

Follow these guidelines when deciding which VTP version to implement:

- All switches in a VTP domain must run the same VTP version.
- A VTP version 2-capable switch can operate in the same VTP domain as a switch running VTP version 1 if version 2 is disabled on the version 2-capable switch (version 2 is disabled by default).
- Do not enable VTP version 2 on a switch unless all of the switches in the same VTP domain are version-2-capable. When you enable version 2 on a switch, all of the version-2-capable switches in the domain enable version 2. If there is a version 1-only switch, it does not exchange VTP information with switches with version 2 enabled.
If there are TrBRF and TrCRF Token Ring networks in your environment, you must enable VTP version 2 for Token Ring VLAN switching to function properly. To run Token Ring and Token Ring-Net, disable VTP version 2.

Configuration Requirements

When you configure VTP, you must configure a trunk port so that the switch can send and receive VTP advertisements. For more information, see the “Configuring VLAN Trunks” section on page 11-16.

If you are configuring VTP on a cluster member switch to a VLAN, use the `rcommand` privileged EXEC command to log into the member switch. For more information about the command, refer to the command reference for this release.

If you are configuring extended-range VLANs on the switch, the switch must be in VTP transparent mode.

Configuring a VTP Server

When a switch is in VTP server mode, you can change the VLAN configuration and have it propagated throughout the network.

Note

If extended-range VLANs are configured on the switch, you cannot change VTP mode to server. You receive an error message, and the configuration is not allowed.

Beginning in privileged EXEC mode, follow these steps to configure the switch as a VTP server:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>vtp mode server</td>
</tr>
<tr>
<td></td>
<td>Configure the switch for VTP server mode (the default).</td>
</tr>
<tr>
<td>Step 3</td>
<td>vtp domain domain-name</td>
</tr>
<tr>
<td></td>
<td>Configure the VTP administrative-domain name. The name can be from</td>
</tr>
<tr>
<td></td>
<td>1 to 32 characters. All switches operating in VTP server or client</td>
</tr>
<tr>
<td></td>
<td>mode under the same administrative responsibility must be configured</td>
</tr>
<tr>
<td></td>
<td>with the same domain name.</td>
</tr>
<tr>
<td>Step 4</td>
<td>vtp password password</td>
</tr>
<tr>
<td></td>
<td>(Optional) Set the password for the VTP domain. The password can be</td>
</tr>
<tr>
<td></td>
<td>from 8 to 64 characters.</td>
</tr>
<tr>
<td></td>
<td>If you configure a VTP password, the VTP domain does not function</td>
</tr>
<tr>
<td></td>
<td>properly if you do not assign the same password to each switch in the</td>
</tr>
<tr>
<td></td>
<td>domain.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>show vtp status</td>
</tr>
<tr>
<td></td>
<td>Verify your entries in the VTP Operating Mode and the VTP Domain Name</td>
</tr>
<tr>
<td></td>
<td>fields of the display.</td>
</tr>
</tbody>
</table>

When you configure a domain name, it cannot be removed; you can only reassign a switch to a different domain.

To return the switch to a no-password state, use the `no vtp password` global configuration command.
This example shows how to use global configuration mode to configure the switch as a VTP server with the domain name eng_group and the password mypassword:

```
Switch# config terminal
Switch(config)# vtp mode server
Switch(config)# vtp domain eng_group
Switch(config)# vtp password mypassword
Switch(config)# end
```

You can also use VLAN configuration mode to configure VTP parameters. Beginning in privileged EXEC mode, follow these steps to use VLAN configuration mode to configure the switch as a VTP server:

```
Switch# vlan database
Switch(vlan)# vtp server
Switch(vlan)# vtp domain eng_group
Switch(vlan)# vtp password mypassword
Switch(vlan)# exit
APPLY completed.
Exiting....
```

Configuring a VTP Client

When a switch is in VTP client mode, you cannot change its VLAN configuration. The client switch receives VTP updates from a VTP server in the VTP domain and then modifies its configuration accordingly.
Chapter 12 Configuring VTP

Configuring VTP

Note

If extended-range VLANs are configured on the switch, you cannot change VTP mode to client. You receive an error message, and the configuration is not allowed.

Caution

If all switches are operating in VTP client mode, do not configure a VTP domain name. If you do, it is impossible to make changes to the VLAN configuration of that domain. Therefore, make sure you configure at least one switch as a VTP server.

Beginning in privileged EXEC mode, follow these steps to configure the switch as a VTP client:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: vtp mode client</td>
<td>Configure the switch for VTP client mode. The default setting is VTP server.</td>
</tr>
<tr>
<td>Step 3: vtp domain domain-name</td>
<td>(Optional) Enter the VTP administrative-domain name. The name can be from 1 to 32 characters. This should be the same domain name as the VTP server. All switches operating in VTP server or client mode under the same administrative responsibility must be configured with the same domain name.</td>
</tr>
<tr>
<td>Step 4: vtp password password</td>
<td>(Optional) Enter the password for the VTP domain.</td>
</tr>
<tr>
<td>Step 5: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6: show vtp status</td>
<td>Verify your entries in the VTP Operating Mode and the VTP Domain Name fields of the display.</td>
</tr>
</tbody>
</table>

Use the **no vtp mode** global configuration command to return the switch to VTP server mode. To return the switch to a no-password state, use the **no vtp password** global configuration command. When you configure a domain name, it cannot be removed; you can only reassign a switch to a different domain.

Note

You can also configure a VTP client by using the **vlan database** privileged EXEC command to enter VLAN configuration mode and entering the **vtp client** command, similar to the second procedure under “Configuring a VTP Server” section on page 12-9. Use the **no vtp client** VLAN configuration command to return the switch to VTP server mode or the **no vtp password** VLAN configuration command to return the switch to a no-password state. When you configure a domain name, it cannot be removed; you can only reassign a switch to a different domain.

Disabling VTP (VTP Transparent Mode)

When you configure the switch for VTP transparent mode, you disable VTP on the switch. The switch does not send VTP updates and does not act on VTP updates received from other switches. However, a VTP transparent switch running VTP version 2 does forward received VTP advertisements on all of its trunk links.
Chapter 12 Configuring VTP

Configuring VTP

Note Before you create extended-range VLANs (VLAN IDs 1006 to 4094), you must set VTP mode to transparent by using the `vtp mode transparent` global configuration command. Save this configuration to the startup configuration so that the switch boots up in VTP transparent mode. Otherwise, you lose the extended-range VLAN configuration if the switch resets and boots up in VTP server mode (the default).

Beginning in privileged EXEC mode, follow these steps to configure VTP transparent mode and save the VTP configuration in the switch startup configuration file:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 vtp mode transparent</td>
<td>Configure the switch for VTP transparent mode (disable VTP).</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show vtp status</td>
<td>Verify your entries in the VTP Operating Mode and the VTP Domain Name fields of the display.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save the configuration in the startup configuration file.</td>
</tr>
</tbody>
</table>

To return the switch to VTP server mode, use the `no vtp mode` global configuration command.

Note If extended-range VLANs are configured on the switch, you cannot change VTP mode to server. You receive an error message, and the configuration is not allowed.

Note You can also configure VTP transparent mode by using the `vlan database` privileged EXEC command to enter VLAN configuration mode and by entering the `vtp transparent` command, similar to the second procedure under the “Configuring a VTP Server” section on page 12-9. Use the `no vtp transparent` VLAN configuration command to return the switch to VTP server mode. If extended-range VLANs are configured on the switch, you cannot change VTP mode to server. You receive an error message, and the configuration is not allowed.

Enabling VTP Version 2

VTP version 2 is disabled by default on VTP version 2-capable switches. When you enable VTP version 2 on a switch, every VTP version 2-capable switch in the VTP domain enables version 2. You can only configure the version on switches in VTP server or transparent mode.

Caution VTP version 1 and VTP version 2 are not interoperable on switches in the same VTP domain. Every switch in the VTP domain must use the same VTP version. Do not enable VTP version 2 unless every switch in the VTP domain supports version 2.
Configuring VTP

In TrCRF and TrBRF Token ring environments, you must enable VTP version 2 for Token Ring VLAN switching to function properly. For Token Ring and Token Ring-Net media, VTP version 2 must be disabled.

For more information on VTP version configuration guidelines, see the “VTP Version” section on page 12-8.

Beginning in privileged EXEC mode, follow these steps to enable VTP version 2:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 vtp version 2</td>
<td>Enable VTP version 2 on the switch. VTP version 2 is disabled by default on VTP version 2-capable switches.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show vtp status</td>
<td>Verify that VTP version 2 is enabled in the VTP V2 Mode field of the display.</td>
</tr>
</tbody>
</table>

To disable VTP version 2, use the `no vtp version` global configuration command.

Note

You can also enable VTP version 2 by using the `vlan database` privileged EXEC command to enter VLAN configuration mode and entering the `vtp v2-mode` VLAN configuration command. To disable VTP version 2, use the `no vtp v2-mode` VLAN configuration command.

Enabling VTP Pruning

Pruning increases available bandwidth by restricting flooded traffic to those trunk links that the traffic must use to access the destination devices. You can only enable VTP pruning on a switch in VTP server mode.

Beginning in privileged EXEC mode, follow these steps to enable VTP pruning in the VTP domain:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 vtp pruning</td>
<td>Enable pruning in the VTP administrative domain. By default, pruning is disabled. You need to enable pruning on only one switch in VTP server mode.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show vtp status</td>
<td>Verify your entries in the VTP Pruning Mode field of the display.</td>
</tr>
</tbody>
</table>

To disable VTP pruning, use the `no vtp pruning` global configuration command.

Note

You can also enable VTP pruning by using the `vlan database` privileged EXEC command to enter VLAN configuration mode and entering the `vtp pruning` VLAN configuration command. To disable VTP pruning, use the `no vtp pruning` VLAN configuration command.
Pruning is supported with VTP version 1 and version 2. If you enable pruning on the VTP server, it is enabled for the entire VTP domain.

Only VLANs included in the pruning-eligible list can be pruned. By default, VLANs 2 through 1001 are pruning eligible on trunk ports. Reserved VLANs and extended-range VLANs cannot be pruned. To change the pruning-eligible VLANs, see the “Changing the Pruning-Eligible List” section on page 11-22.

Adding a VTP Client Switch to a VTP Domain

Before adding a VTP client to a VTP domain, always verify that its VTP configuration revision number is lower than the configuration revision number of the other switches in the VTP domain. Switches in a VTP domain always use the VLAN configuration of the switch with the highest VTP configuration revision number. If you add a switch that has a revision number higher than the revision number in the VTP domain, it can erase all VLAN information from the VTP server and VTP domain.

Beginning in privileged EXEC mode, follow these steps to verify and reset the VTP configuration revision number on a switch before adding it to a VTP domain:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>show vtp status</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>vtp domain domain-name</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show vtp status</td>
</tr>
<tr>
<td>Step 6</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 7</td>
<td>vtp domain domain-name</td>
</tr>
<tr>
<td>Step 8</td>
<td>end</td>
</tr>
<tr>
<td>Step 9</td>
<td>show vtp status</td>
</tr>
</tbody>
</table>

You can also change the VTP domain name by entering the `vlan database` privileged EXEC command to enter VLAN configuration mode and by entering the `vtp domain domain-name` command. In this mode, you must enter the `exit` command to update VLAN information and return to privileged EXEC mode.

After resetting the configuration revision number, add the switch to the VTP domain.
You can use the `vtp mode transparent` global configuration command or the `vtp transparent` VLAN configuration command to disable VTP on the switch, and then change its VLAN information without affecting the other switches in the VTP domain.

Monitoring VTP

You monitor VTP by displaying VTP configuration information: the domain name, the current VTP revision, and the number of VLANs. You can also display statistics about the advertisements sent and received by the switch.

Table 12-3 shows the privileged EXEC commands for monitoring VTP activity.

Table 12-3 VTP Monitoring Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show vtp status</code></td>
<td>Display the VTP switch configuration information.</td>
</tr>
<tr>
<td><code>show vtp counters</code></td>
<td>Display counters about VTP messages that have been sent and received.</td>
</tr>
</tbody>
</table>

This is an example of output from the `show vtp status` privileged EXEC command:

```
Switch# show vtp status
VTP Version                     : 2
Configuration Revision          : 25
Maximum VLANs supported locally : 1005
Number of existing VLANs        : 69
VTP Operating Mode              : Server
VTP Domain Name                 : test
VTP Pruning Mode                : Disabled
VTP V2 Mode                     : Disabled
VTP Traps Generation            : Disabled
MD5 digest                      : 0x59 0xBA 0x92 0xA4 0x74 0xD5 0x42 0x29
Configuration last modified by 0.0.0.0 at 3-1-93 00:18:42
Local updater ID is 10.1.1.59 on interface Vl1 (lowest numbered VLAN interface found)
```

This is an example of output from the `show vtp counters` privileged EXEC command:

```
Switch# show vtp counters
VTP statistics:
Summary advertisements received : 20
Subset advertisements received   : 0
Request advertisements received  : 0
Summary advertisements transmitted: 11
Subset advertisements transmitted: 0
Request advertisements transmitted: 0
Number of config revision errors : 0
Number of config digest errors   : 0
Number of V1 summary errors     : 0

VTP pruning statistics:

Trunk     Join Transmitted Join Received Summary advts received from non-pruning-capable device
---------- ----------- ----------- ---------------------------------------------
          ----------- ----------- ----------------- --------------------------
Configuring Voice VLAN

This chapter describes how to configure the voice VLAN feature on your Catalyst 3550 switch. Voice VLAN is referred to as an auxiliary VLAN in the Catalyst 6000 family switch documentation.

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter consists of these sections:

- Understanding Voice VLAN, page 13-1
- Configuring Voice VLAN, page 13-2
- Displaying Voice VLAN, page 13-6

Understanding Voice VLAN

The voice VLAN feature enables access ports to carry IP voice traffic from an IP phone. The switch can connect to a Cisco 7960 IP Phone and carry IP voice traffic. Because the sound quality of an IP phone call can deteriorate if the data is unevenly sent, the switch supports quality of service (QoS) based on IEEE 802.1P class of service (CoS). QoS uses classification and scheduling to send network traffic from the switch in a predictable manner. For more information on QoS, see Chapter 28, “Configuring QoS.” The Cisco 7960 IP Phone is a configurable device, and you can configure it to forward traffic with an 802.1P priority. You can configure the switch to trust or override the traffic priority assigned by an IP Phone.

The Cisco 7960 IP Phone contains an integrated three-port 10/100 switch as shown in Figure 13-1. The ports provide dedicated connections to these devices:

- Port 1 connects to the switch or other voice-over-IP (VoIP) device.
- Port 2 is an internal 10/100 interface that carries the IP phone traffic.
- Port 3 (access port) connects to a PC or other device.
Figure 13-1 shows one way to connect a Cisco 7960 IP Phone.

Figure 13-1  Cisco 7960 IP Phone Connected to a Switch

When the IP Phone connects to the switch, the access port (PC-to-telehone jack) of the IP phone can connect to a PC. Packets to and from the PC and to or from the IP phone share the same physical link to the switch and the same switch port. For deployment examples that use voice VLANs, refer to the “Network Configuration Examples” section on page 1-8.

Configuring Voice VLAN

This section describes how to configure voice VLAN on access ports. It contains this configuration information:

- Default Voice VLAN Configuration, page 13-2
- Voice VLAN Configuration Guidelines, page 13-3
- Configuring a Port to Connect to a Cisco 7960 IP Phone, page 13-3

Default Voice VLAN Configuration

The voice VLAN feature is disabled by default.

When the voice VLAN feature is enabled, all untagged traffic is sent according to the default CoS priority of the port.

The default CoS value is 0 for incoming traffic.

The CoS value is not trusted for 802.1P or 802.1Q tagged traffic.

The IP Phone overrides the priority of all incoming traffic (tagged and untagged) and sets the CoS value to 0.
Voice VLAN Configuration Guidelines

These are the voice VLAN configuration guidelines:

- You should configure voice VLAN on switch access ports.
- Before you enable voice VLAN, we recommend that you enable QoS on the switch by entering the `mls qos` global configuration command and configure the port trust state to trust by entering the `mls qos trust cos` interface configuration command.
- The Port Fast feature is automatically enabled when voice VLAN is configured. When you disable voice VLAN, the Port Fast feature is not automatically disabled.
- When you enable port security on an interface that is also configured with a voice VLAN, you must set the maximum allowed secure addresses on the port to at least two secure addresses. If any type of port security is enabled on the access VLAN, dynamic port security is automatically enabled on the voice VLAN. You cannot configure port security on a per-VLAN basis.
- You cannot configure static secure or sticky secure MAC addresses on a voice VLAN.
- Voice VLAN ports can also be these port types:
  - Dynamic access port. See the “Configuring Dynamic Access Ports on VMPS Clients” section on page 11-31 for more information.
  - Secure port. See the “Configuring Port Security” section on page 20-7 for more information.
  - 802.1X authenticated port. See the “Voice VLAN Ports” section on page 9-5 for more information.
  - Protected port. See the “Configuring Protected Ports” section on page 20-5 for more information.

Configuring a Port to Connect to a Cisco 7960 IP Phone

Because a Cisco 7960 IP Phone also supports a connection to a PC or other device, a port connecting the switch to a Cisco 7960 IP Phone can carry mixed traffic.

You can configure the port to carry voice traffic in one of these ways:
- Configuring Ports to Carry Voice Traffic in 802.1Q Frames, page 13-4
- Configuring Ports to Carry Voice Traffic in 802.1P Priority-Tagged Frames, page 13-4

You can configure the IP phone to carry data traffic in one of these ways:
- Overriding the CoS Priority of Incoming Data Frames, page 13-5
- Configuring the IP Phone to Trust the CoS Priority of Incoming Data Frames, page 13-6
Configuring Voice VLAN

Beginning in privileged EXEC mode, follow these steps to configure a port to carry voice traffic in 802.1Q frames for a specific VLAN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>mls qos</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>mls qos trust cos</td>
</tr>
<tr>
<td>Step 5</td>
<td>switchport voice vlan vlan-id</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
</tr>
<tr>
<td>Step 7</td>
<td>show interfaces interface-id</td>
</tr>
<tr>
<td>Step 7</td>
<td>switchport</td>
</tr>
<tr>
<td>Step 7</td>
<td>show running-config interface interface-id</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To remove voice VLAN, use the no switchport voice vlan interface configuration command or the switchport voice vlan none interface configuration command.

Configuring Ports to Carry Voice Traffic in 802.1P Priority-Tagged Frames

Beginning in privileged EXEC mode, follow these steps to configure a port to instruct the IP phone to give voice traffic a higher priority and to forward all traffic through the native VLAN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>mls qos</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>mls qos trust cos</td>
</tr>
<tr>
<td>Step 5</td>
<td>switchport voice vlan dot1p</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
</tr>
</tbody>
</table>
Chapter 13      Configuring Voice VLAN

Configuring Voice VLAN

To return the port to its default setting, use the `no switchport voice vlan` interface configuration command.

**Overriding the CoS Priority of Incoming Data Frames**

You can connect a PC or other data device to a Cisco 7960 IP Phone port. The PC can generate packets with an assigned CoS value. You can configure the switch to override the priority of frames arriving on the IP phone port from connected devices.

Beginning in privileged EXEC mode, follow these steps to override the CoS priority received from the nonvoice port on the Cisco 7960 IP Phone:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td>Enter interface configuration mode, and specify the interface connected to the IP phone.</td>
</tr>
<tr>
<td><code>switchport priority extend cos value</code></td>
<td>Set the IP phone access port to override the priority received from the PC or the attached device. The CoS value is a number from 0 to 7. Seven is the highest priority. The default is 0.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>show interfaces interface-id switchport</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the `no switchport priority extend` interface configuration command or the `switchport priority extend cos 0` interface configuration command to return the port to its default setting.
Configuring the IP Phone to Trust the CoS Priority of Incoming Data Frames

You can connect a PC or other data device to a Cisco 7960 IP Phone port. The PC can generate packets with an assigned CoS value. You can configure the switch to trust the priority of frames arriving on the IP phone port from connected devices.

Beginning in privileged EXEC mode, follow these steps to trust the CoS priority received from the nonvoice port on the Cisco 7960 IP Phone:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Enter interface configuration mode, and specify the interface connected to the IP phone.</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport priority extend trust</td>
</tr>
<tr>
<td></td>
<td>Set the IP phone access port to trust the priority received from the PC or the attached device.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show interfaces interface-id switchport</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the port to its default setting, use the **no switchport priority extend** interface configuration command or the **switchport priority extend cos 0** interface configuration command.

Displaying Voice VLAN

To display voice VLAN for an interface, use the **show interfaces interface-id switchport** privileged EXEC command.

For detailed information about the fields in the display, refer to the command reference for this release.
Virtual private networks (VPNs) provide enterprise-scale connectivity on a shared infrastructure, often Ethernet-based, with the same security, prioritization, reliability, and manageability requirements of private networks. Tunneling is a feature designed for service providers who carry traffic of multiple customers across their networks and are required to maintain the VLAN and Layer 2 protocol configurations of each customer without impacting the traffic of other customers. The Catalyst 3550 switch supports 802.1Q tunneling and Layer 2 protocol tunneling.

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter contains these sections:

- Understanding 802.1Q Tunneling, page 14-1
- Configuring 802.1Q Tunneling, page 14-4
- Understanding Layer 2 Protocol Tunneling, page 14-7
- Configuring Layer 2 Protocol Tunneling, page 14-9
- Monitoring and Maintaining Tunneling Status, page 14-12

### Understanding 802.1Q Tunneling

Business customers of service providers often have specific requirements for VLAN IDs and the number of VLANs to be supported. The VLAN ranges required by different customers in the same service-provider network might overlap, and traffic of customers through the infrastructure might be mixed. Assigning a unique range of VLAN IDs to each customer would restrict customer configurations and could easily exceed the VLAN limit of 4096 of the 802.1Q specification.

Using the 802.1Q tunneling feature, service providers can use a single VLAN to support customers who have multiple VLANs. Customer VLAN IDs are preserved and traffic from different customers is segregated within the service-provider infrastructure even when they appear to be on the same VLAN. The 802.1Q tunneling expands VLAN space by using a VLAN-in-VLAN hierarchy and tagging the tagged packets. A port configured to support 802.1Q tunneling is called a tunnel port. When you configure tunneling, you assign a tunnel port to a VLAN that is dedicated to tunneling. Each customer requires a separate VLAN, but that VLAN supports all of the customer’s VLANs.
Customer traffic tagged in the normal way with appropriate VLAN IDs come from an 802.1Q trunk port on the customer device and into a tunnel port on the service-provider edge switch. The link between the customer device and the edge switch is an asymmetric link because one end is configured as an 802.1Q trunk port and the other end is configured as a tunnel port. You assign the tunnel port interface to an access VLAN ID unique to each customer. See Figure 14-1.

**Figure 14-1  802.1Q Tunnel Ports in a Service-Provider Network**

![Diagram of 802.1Q tunnel ports in a service-provider network](image)

Packets coming from the customer trunk port into the tunnel port on the service-provider edge switch are normally 802.1Q-tagged with the appropriate VLAN ID. The tagged packets remain intact inside the switch and, when they exit the trunk port into the service-provider network, are encapsulated with another layer of an 802.1Q tag (called the metro tag) that contains the VLAN ID unique to the customer. The original 802.1Q tag from the customer is preserved in the encapsulated packet. Therefore, packets entering the service-provider infrastructure are double-tagged, with the outer tag containing the customer's access VLAN ID, and the inner VLAN ID being the VLAN of the incoming traffic.

When the double-tagged packet enters another trunk port in a service-provider core switch, the outer tag is stripped as the packet is processed inside the switch. When the packet exits another trunk port on the same core switch, the same metro tag is again added to the packet. Figure 14-2 shows the structure of the double-tagged packet.
When the packet enters the trunk port of the service-provider egress switch, the outer tag is again stripped as the packet is processed internally on the switch. However, the metro tag is not added when it is sent out the tunnel port on the edge switch into the customer network, and the packet is sent as a normal 802.1Q-tagged frame to preserve the original VLAN numbers in the customer network.

In Figure 14-1, Customer A was assigned VLAN 30, and Customer B was assigned VLAN 40. Packets entering the edge switch tunnel ports with 802.1Q tags are double-tagged when they enter the service-provider network, with the outer tag containing VLAN ID 30 or 40, appropriately, and the inner tag containing the original VLAN number, for example, VLAN 100. Even if both Customers A and B have VLAN 100 in their networks, the traffic remains segregated within the service-provider network because the outer tag is different. With 802.1Q tunneling, each customer controls its own VLAN numbering space, which is independent of the VLAN numbering space used by other customers and the VLAN numbering space used by the service-provider network.

At the outbound tunnel port, the original VLAN numbers on the customer’s network are recovered. It is possible to have multiple levels of tunneling and tagging, but the switch supports only one level in this release.

If the traffic coming from a customer network is not tagged (native VLAN frames), these packets are bridged or routed as if they were normal packets. All packets entering the service-provider network through a tunnel port on an edge switch are treated as untagged packets, whether they are untagged or already tagged with 802.1Q headers. The packets are encapsulated with the metro tag VLAN ID (set to the access VLAN of the tunnel port) when they are sent through the service-provider network on an 802.1Q trunk port. The priority field on the metro tag is set to the interface class of service (CoS) priority configured on the tunnel port (the default is zero if none is configured).
Chapter 14  Configuring 802.1Q and Layer 2 Protocol Tunneling

Configuring 802.1Q Tunneling

This section includes this information about configuring 802.1Q tunneling:

- Default 802.1Q Tunneling Configuration, page 14-4
- 802.1Q Tunneling Configuration Guidelines, page 14-4
- 802.1Q Tunneling and Other Features, page 14-5
- Configuring an 802.1Q Tunneling Port, page 14-6

Default 802.1Q Tunneling Configuration

By default, 802.1Q tunneling is disabled because the default switchport mode is dynamic desirable. Tagging of 802.1Q native VLAN packets on all 802.1Q trunk ports is also disabled.

802.1Q Tunneling Configuration Guidelines

When you configure 802.1Q tunneling, you should always use asymmetrical links for traffic going in or out of a tunnel and dedicate one VLAN for each tunnel. You should also be aware of configuration requirements for native VLANs and maximum transmission units (MTUs).

Native VLANs

When configuring 802.1Q tunneling on an edge switch, you must use 802.1Q trunk ports for sending out packets into the service-provider network. However, packets going through the core of the service-provider network might be carried through 802.1Q trunks, ISL trunks, or nontrunking links. When 802.1Q trunks are used in these core switches, the native VLANs of the 802.1Q trunks must not match any native VLAN of the nontrunking (tunneling) port on the same switch because traffic on the native VLAN would not be tagged on the 802.1Q transmitting trunk port.

See Figure 14-3. VLAN 40 is configured as the native VLAN for the 802.1Q trunk port from Customer A at the ingress edge switch in the service-provider network (Switch 2). Switch 1 of Customer A sends a tagged packet on VLAN 30 to the ingress tunnel port of Switch 2 in the service-provider network, which belongs to access VLAN 40. Because the access VLAN of the tunnel port (VLAN 40) is the same as the native VLAN of the edge switch trunk port (VLAN 40), the metro tag is not added to tagged packets received from the tunnel port. The packet carries only the VLAN 30 tag through the service-provider network to the trunk port of the egress edge switch (Switch 3) and is misdirected through the egress switch tunnel port to Customer B.

These are some ways to solve this problem:

- Use ISL trunks between core switches in the service-provider network. Although customer interfaces connected to edge switches must be 802.1Q trunks, we recommend using ISL trunks for connecting switches in the core layer.

- Configure the edge switch so that all packets going out an 802.1Q trunk, including the native VLAN, are tagged by using the `vlan dot1q tag native` global configuration command. If the switch is configured to tag native VLAN packets on all 802.1Q trunks, the switch accepts untagged packets, but sends only tagged packets.

- Ensure that the native VLAN ID on the edge switch trunk port is not within the customer VLAN range. For example, if the trunk port carries traffic of VLANs 100 to 200, assign the native VLAN a number outside that range.
Configuring 802.1Q and Layer 2 Protocol Tunneling

**Figure 14-3 Potential Problem with 802.1Q Tunneling and Native VLANs**

**System MTU**

The default system MTU for traffic on the Catalyst 3550 switch is 1500 bytes. You can configure the switch to support frames larger than 1500 bytes by using the `system mtu` global configuration command. Because the 802.1Q tunneling feature increases the frame size by 4 bytes when the metro tag is added, you must configure all switches in the service-provider network to be able to process maximum frames by increasing the switch system MTU size to at least 1504 bytes. The maximum allowable system MTU for Catalyst 3550 Gigabit Ethernet switches is 2000 bytes; the maximum system MTU for Fast Ethernet switches is 1546 bytes.

**802.1Q Tunneling and Other Features**

Although 802.1Q tunneling works well for Layer 2 packet switching, there are incompatibilities with some Layer 2 features and with Layer 3 switching.

- A tunnel port cannot be a routed port.
- IP routing is not supported on a VLAN that includes 802.1Q ports. Packets received from a tunnel port are forwarded based only on Layer 2 information. If routing is enabled on the switch virtual interface (SVI) that includes tunnel ports, untagged IP packets received from the tunnel port are recognized and routed by the switch. This allows the customer to access the internet through its native VLAN. If this access is not required, you should not configure SVIs on VLANs that include tunnel ports.
Configuring 802.1Q and Layer 2 Protocol Tunneling

Chapter 14

Configuring 802.1Q and Layer 2 Protocol Tunneling

- Fallback bridging is not supported on tunnel ports. Because all 802.1Q-tagged packets received from a tunnel port are treated as non-IP packets, if fallback bridging is enabled on VLANs that have tunnel ports configured, IP packets would be improperly bridged across VLANs. Therefore, you must not enable fallback bridging on VLANs with tunnel ports.

- Tunnel ports do not support IP access control lists (ACLs).

- Layer 3 quality of service (QoS) ACLs and other QoS features related to Layer 3 information are not supported on tunnel ports. MAC-based QoS is supported on tunnel ports.

- EtherChannel port groups are compatible with tunnel ports as long as the 802.1Q configuration is consistent within an EtherChannel port group.

- Port Aggregation Protocol (PAgP), Link Aggregation Control Protocol (LACP), and UniDirectional Link Detection (UDLD) are supported on 802.1Q tunnel ports.

- Dynamic Trunking Protocol (DTP) is not compatible with 802.1Q tunneling because you must manually configure asymmetric links with tunnel ports and trunk ports.

- Loopback detection is supported on 802.1Q tunnel ports.

- When a port is configured as an 802.1Q tunnel port, spanning-tree bridge protocol data unit (BPDU) filtering is automatically enabled on the interface. Cisco Discovery Protocol (CDP) is automatically disabled on the interface.

### Configuring an 802.1Q Tunneling Port

Beginning in privileged EXEC mode, follow these steps to configure a port as an 802.1Q tunnel port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>interface interface-id</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>switchport access vlan vlan-id</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>switchport mode dot1q-tunnel</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>exit</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>vlan dot1q tag native</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>show dot1q-tunnel</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>show vlan dot1q tag native</td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the no switchport mode dot1q-tunnel interface configuration command to return the port to the default state of dynamic desirable. Use the no vlan dot1q tag native global configuration command to disable tagging of native VLAN packets.
This example shows how to configure an interface as a tunnel port, enable tagging of native VLAN packets, and verify the configuration. In this configuration, the VLAN ID for the customer connected to Gigabit Ethernet interface 7 is VLAN 22.

```
Switch(config)# interface gigabitethernet0/7
Switch(config-if)# switchport access vlan 22
% Access VLAN does not exist. Creating vlan 22
Switch(config-if)# switchport mode dot1q-tunnel
Switch(config-if)# exit
Switch(config)# vlan dot1q tag native
Switch(config)# end
Switch# show dot1q-tunnel interface gigabitethernet0/7
Port

G10/1Port

Switch# show vlan dot1q tag native
dot1q native vlan tagging is enabled
```

### Understanding Layer 2 Protocol Tunneling

Customers at different sites connected across a service-provider network need to run various Layer 2 protocols to scale their topology to include all remote sites, as well as the local sites. STP must run properly, and every VLAN should build a proper spanning tree that includes the local site and all remote sites across the service-provider infrastructure. Cisco Discovery Protocol (CDP) must discover neighboring Cisco devices from local and remote sites. VLAN Trunking Protocol (VTP) must provide consistent VLAN configuration throughout all sites in the customer network.

When protocol tunneling is enabled, edge switches on the inbound side of the service-provider infrastructure encapsulate Layer 2 protocol packets with a special MAC address and send them across the service-provider network. Core switches in the network do not process these packets but forward them as normal packets. Layer 2 protocol data units (PDUs) for CDP, STP, or VTP cross the service-provider infrastructure and are delivered to customer switches on the outbound side of the service-provider network. Identical packets are received by all customer ports on the same VLANs with these results:

- Users on each of a customer’s sites are able to properly run STP, and every VLAN can build a correct spanning tree based on parameters from all sites and not just from the local site.
- CDP discovers and shows information about the other Cisco devices connected through the service-provider network.
- VTP provides consistent VLAN configuration throughout the customer network, propagating through the service provider to all switches.

Layer 2 protocol tunneling can be used independently or can enhance 802.1Q tunneling. If protocol tunneling is not enabled on 802.1Q tunneling ports, remote switches at the receiving end of the service-provider network do not receive the PDUs and cannot properly run STP, CDP, and VTP. When protocol tunneling is enabled, Layer 2 protocols within each customer’s network are totally separate from those running within the service-provider network. Customer switches on different sites that send traffic through the service-provider network with 802.1Q tunneling achieve complete knowledge of the customer’s VLAN. If 802.1Q tunneling is not used, you can still enable Layer 2 protocol tunneling by connecting to the customer switch through access ports and enabling tunneling on the service-provider access port.
For example, in Figure 14-4, Customer A has four switches in the same VLAN that are connected through the service-provider network. If the network does not tunnel PDUs, switches on the far ends of the network cannot properly run STP, CDP, and VTP. For example, STP for a VLAN on a switch in Customer A, Site 1 will build a spanning tree on the switches at that site without considering convergence parameters based on Customer A’s switch in Site 2. This could result in the topology shown in Figure 14-5.

Figure 14-4 Layer 2 Protocol Tunneling

Figure 14-5 Virtual Network Topology without BPDU Tunneling
Chapter 14 Configuring 802.1Q and Layer 2 Protocol Tunneling

Configuring Layer 2 Protocol Tunneling

You enable Layer 2 protocol tunneling (by protocol) on the access ports or tunnel ports that are connected to the customer in the edge switches of the service-provider network. Edge-switch tunnel ports are connected to customer 802.1Q trunk ports; edge-switch access ports are connected to customer access ports. The Catalyst 3550 switch supports Layer 2 protocol tunneling for CDP, STP, and VTP. The edge switches connected to the customer switch perform the tunneling process.

When the Layer 2 PDUs that entered the inbound edge switch through the tunnel or access port exit the switch through the trunk port into the service-provider network, the switch overwrites the customer PDU-destination MAC address with a well-known Cisco proprietary multicast address (01-00-0c-cd-cd-d0). If 802.1Q tunneling is enabled, packets are also double-tagged; the outer tag is the customer metro tag and the inner tag is the customer VLAN tag. The core switches ignore the inner tags and forward the packet to all trunk ports in the same metro VLAN. The edge switches on the outbound side restore the proper Layer 2 protocol and MAC address information and forward the packets to all tunnel or access ports in the same metro VLAN. Therefore, the Layer 2 PDUs are kept intact and delivered across the service-provider infrastructure to the other side of the customer network.

See Figure 14-4, with Customer A and Customer B in access VLANs 30 and 40, respectively. Asymmetric links connect the Customers in Site 1 to edge switches in the service-provider network. The Layer 2 PDUs (for example, BPDUs) coming into Switch 2 from Customer B in Site 1 are forwarded to the infrastructure as double-tagged packets with the well-known MAC address as the destination MAC address. These double-tagged packets have the outer VLAN tag of 40 as well as an inner VLAN tag (for example, VLAN 100). When the double-tagged packets reach Switch 4, the outer VLAN tag 40 is removed, the well-known MAC address is replaced with the respective Layer 2 protocol MAC address, and the packet is sent to Customer B on Site 2 as a single-tagged frame in VLAN 100.

You can also enable Layer 2 protocol tunneling on access ports on the edge switch connected to access ports on the customer switch. In this case, the encapsulation and de-encapsulation behavior is the same as described in the previous paragraph, except that the packets are not double-tagged in the service-provider network. The single tag is the customer-specific access VLAN tag.

This section contains this information about configuring Layer 2 protocol tunneling:

- Default Layer 2 Protocol Tunneling Configuration, page 14-9
- Layer 2 Protocol Tunneling Configuration Guidelines, page 14-10
- Configuring Layer 2 Tunneling Characteristics, page 14-11

Default Layer 2 Protocol Tunneling Configuration

Table 14-1 shows the default Layer 2 protocol tunneling configuration.

Table 14-1  Default Layer 2 Ethernet Interface VLAN Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 2 protocol tunneling</td>
<td>Disabled for CDP, STP, and VTP.</td>
</tr>
<tr>
<td>Shutdown threshold</td>
<td>No threshold for packets-per-second of Layer 2 PDUs per port for the port to shut down.</td>
</tr>
</tbody>
</table>
Chapter 14 Configuring 802.1Q and Layer 2 Protocol Tunneling

Configuring Layer 2 Protocol Tunneling

Layer 2 Protocol Tunneling Configuration Guidelines

These are some configuration guidelines and operating characteristics of Layer 2 protocol tunneling:

- The switch supports tunneling of CDP, STP, including multiple STP (MSTP), and VTP. Protocol tunneling is disabled by default but can be enabled for the individual protocols on 802.1Q tunnel ports or on access ports.

- Tunneling is not supported on trunk ports. If you enter the `l2protocol-tunnel` interface configuration command on a trunk port, the command is accepted, but Layer 2 tunneling does not take affect unless you change the port to a tunnel port or access port.

- EtherChannel port groups are compatible with tunnel ports as long as the 802.1Q configuration is consistent within an EtherChannel port group.

- If an encapsulated PDU (with the proprietary destination MAC address) is received from a tunnel port or access port with Layer 2 tunneling enabled, the tunnel port is shut down to prevent loops. The port also shuts down when a configured shutdown threshold for the protocol is reached. You can manually re-enable the port (by entering a `shutdown` and `no shutdown` command sequence) or if errdisable recovery is enabled, the operation is retried after a specified time interval.

- Only decapsulated PDUs are forwarded to the customer network. The spanning-tree instance running on the service-provider network does not forward BPDUs to tunnel ports. No CDP packets are forwarded from tunnel ports.

- When protocol tunneling is enabled on an interface, you can set a per-protocol, per-port, shutdown threshold for the PDUs generated by the customer network. If the limit is exceeded, the port shuts down. You can also rate-limit BPDUs by using QoS ACLs and policy maps on a tunnel port.

- When protocol tunneling is enabled on an interface, you can set a per-protocol, per-port, drop threshold for the PDUs generated by the customer network. If the limit is exceeded, the port drops PDUs until the rate at which the port receives them is below the drop threshold.

- Because tunneled PDUs (especially STP BPDUs) must be delivered to all remote sites for the customer virtual network to operate properly, you can give PDUs higher priority within the service-provider network than data packets received from the same tunnel port. By default, the PDUs use the same CoS value as data packets.

---

Table 14-1 Default Layer 2 Ethernet Interface VLAN Configuration (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drop threshold</td>
<td>No threshold for packets-per-second of Layer 2 PDUs per port for the port to drop the PDUs.</td>
</tr>
<tr>
<td>Class of service (CoS) value</td>
<td>If a CoS value is configured on the interface for data packets, that value is the default used for Layer 2 PDUs. If none is configured, the default is 5.</td>
</tr>
</tbody>
</table>
## Configuring Layer 2 Tunneling Characteristics

Beginning in privileged EXEC mode, follow these steps to configure a port for Layer 2 protocol tunneling:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Enter the interface configuration mode and the interface to be configured as a tunnel port. This should be the edge port in the service-provider network that connects to the customer switch. Valid interfaces include physical interfaces and port-channel logical interfaces (port channels 1 to 64).</td>
</tr>
<tr>
<td>3</td>
<td>switchport mode access</td>
<td>Configure the interface as an access port or an 802.1Q tunnel port.</td>
</tr>
<tr>
<td></td>
<td>or switchport mode dot1q-tunnel</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>l2protocol-tunnel [cdp</td>
<td>stp</td>
</tr>
<tr>
<td>5</td>
<td>l2protocol-tunnel shutdown-threshold [cdp</td>
<td>stp</td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td>If you also set a drop threshold on this interface, the shutdown-threshold value must be greater than or equal to the drop-threshold value.</td>
</tr>
<tr>
<td>6</td>
<td>l2protocol-tunnel drop-threshold [cdp</td>
<td>stp</td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td>If you also set a shutdown threshold on this interface, the drop-threshold value must be less than or equal to the shutdown-threshold value.</td>
</tr>
<tr>
<td>7</td>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>8</td>
<td>errdisable recovery cause l2ptguard</td>
<td>(Optional) Configure the recovery mechanism from a Layer 2 maximum rate error so that the interface can be brought out of the disabled state and allowed to try again. You can also set the time interval. Errdisable recovery is disabled by default; when enabled, the default time interval is 300 seconds.</td>
</tr>
<tr>
<td>9</td>
<td>l2protocol-tunnel cos value</td>
<td>(Optional) Configure the CoS value for all tunneled Layer 2 PDUs. The range is 0 to 7; the default is the default CoS value for the interface. If none is configured, the default is 5.</td>
</tr>
<tr>
<td>10</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>11</td>
<td>show l2protocol</td>
<td>Display the Layer 2 tunnel ports on the switch, including the protocols configured, the threshold, and the counters.</td>
</tr>
<tr>
<td>12</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Use the `no l2protocol-tunnel [cdp | stp | vtp]` interface configuration command to disable protocol tunneling for one of the Layer 2 protocols or for all three of them. Use the `no l2protocol-tunnel shutdown-threshold [cdp | stp | vtp]` and the `no l2protocol-tunnel drop-threshold [cdp | stp | vtp]` commands to return the shutdown and drop thresholds to the default settings.

This example shows how to configure Layer 2 protocol tunneling for CDP, STP, and CDP and to verify the configuration.

```plaintext
Switch(config)# interface gigabitethernet0/7
Switch(config-if)# l2protocol-tunnel cdp
Switch(config-if)# l2protocol-tunnel stp
Switch(config-if)# l2protocol-tunnel vtp
Switch(config-if)# l2protocol-tunnel shutdown-threshold 1500
Switch(config-if)# l2protocol-tunnel drop-threshold 1000
Switch(config-if)# exit
Switch(config)# l2protocol-tunnel cos 7
Switch(config)# end
Switch# show l2protocol
COS for Encapsulated Packets: 7
```

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Shutdown Threshold</th>
<th>Drop Threshold</th>
<th>Encapsulation Counter</th>
<th>Decapsulation Counter</th>
<th>Drop Counter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi0/7</td>
<td>cdp</td>
<td>1500</td>
<td>1000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>stp</td>
<td>1500</td>
<td>1000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>vtp</td>
<td>1500</td>
<td>1000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

**Monitoring and Maintaining Tunneling Status**

Table 14-2 shows the privileged EXEC commands for monitoring and maintaining 802.1Q and Layer 2 protocol tunneling.

**Table 14-2 Commands for Monitoring and Maintaining Tunneling**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear l2protocol-tunnel counters</td>
<td>Clear the protocol counters on Layer 2 protocol tunneling ports.</td>
</tr>
<tr>
<td>show dot1q-tunnel</td>
<td>Display 802.1Q tunnel ports on the switch.</td>
</tr>
<tr>
<td>show dot1q-tunnel interface interface-id</td>
<td>Verify if a specific interface is a tunnel port.</td>
</tr>
<tr>
<td>show l2protocol-tunnel</td>
<td>Display information about Layer 2 protocol tunneling ports.</td>
</tr>
<tr>
<td>show errdisable recovery</td>
<td>Verify if the recovery timer from a Layer 2 protocol-tunnel error disable state is enabled.</td>
</tr>
<tr>
<td>show l2protocol-tunnel interface interface-id</td>
<td>Display information about a specific Layer 2 protocol tunneling port.</td>
</tr>
<tr>
<td>show l2protocol-tunnel summary</td>
<td>Display only Layer 2 protocol summary information.</td>
</tr>
<tr>
<td>show vlan dot1q native</td>
<td>Display the status of native VLAN tagging on the switch.</td>
</tr>
</tbody>
</table>

For detailed information about these displays, refer to the command reference for this release.
Configuring STP

This chapter describes how to configure the Spanning Tree Protocol (STP) on your Catalyst 3550 switch. For information about the Rapid Spanning Tree Protocol (RSTP), the Multiple Spanning Tree Protocol (MSTP), and the per-VLAN rapid spanning tree (PVRST), see Chapter 16, “Configuring RSTP and MSTP.” For information about optional spanning-tree features, see Chapter 17, “Configuring Optional Spanning-Tree Features.”

Note

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter consists of these sections:

- Understanding Spanning-Tree Features, page 15-1
- Configuring Spanning-Tree Features, page 15-10
- Displaying the Spanning-Tree Status, page 15-20

Understanding Spanning-Tree Features

These sections describe how spanning-tree features work:

- STP Overview, page 15-2
- Supported Spanning-Tree Instances, page 15-2
- Bridge Protocol Data Units, page 15-2
- Election of the Root Switch, page 15-3
- Bridge ID, Switch Priority, and Extended System ID, page 15-4
- Spanning-Tree Timers, page 15-4
- Creating the Spanning-Tree Topology, page 15-5
- Spanning-Tree Interface States, page 15-5
- Spanning-Tree Address Management, page 15-8
- STP and IEEE 802.1Q Trunks, page 15-8
- VLAN-Bridge STP, page 15-8
STP Overview

STP is a Layer 2 link management protocol that provides path redundancy while preventing loops in the network. For a Layer 2 Ethernet network to function properly, only one active path can exist between any two stations. Spanning-tree operation is transparent to end stations, which cannot detect whether they are connected to a single LAN segment or a switched LAN of multiple segments.

When you create fault-tolerant internetworks, you must have a loop-free path between all nodes in a network. The spanning-tree algorithm calculates the best loop-free path throughout a switched Layer 2 network. Switches send and receive spanning-tree frames, called bridge protocol data units (BPDUs), at regular intervals. The switches do not forward these frames, but use the frames to construct a loop-free path.

Multiple active paths among end stations cause loops in the network. If a loop exists in the network, end stations might receive duplicate messages. Switches might also learn end-station MAC addresses on multiple Layer 2 interfaces. These conditions result in an unstable network.

Spanning tree defines a tree with a root switch and a loop-free path from the root to all switches in the Layer 2 network. Spanning tree forces redundant data paths into a standby (blocked) state. If a network segment in the spanning tree fails and a redundant path exists, the spanning-tree algorithm recalculates the spanning-tree topology and activates the standby path.

When two interfaces on a switch are part of a loop, the spanning-tree port priority and path cost settings determine which interface is put in the forwarding state and which is put in the blocking state. The port priority value represents the location of an interface in the network topology and how well it is located to pass traffic. The path cost value represents media speed.

Supported Spanning-Tree Instances

The switch supports the per-VLAN spanning tree (PVST) and a maximum of 128 spanning-tree instances. The switch also supports the PVRST, which uses RSTP to provide rapid convergence of the PVST. For information about the PVRST, see the “Spanning-Tree Instances Using RSTP” section on page 16-2. For information about how spanning tree interoperates with the VLAN Trunking Protocol (VTP), see the “STP Configuration Guidelines” section on page 15-11.

Bridge Protocol Data Units

The stable, active spanning-tree topology of a switched network is determined by these elements:

- The unique bridge ID (switch priority and MAC address) associated with each VLAN on each switch
- The spanning-tree path cost to the root switch
- The port identifier (port priority and MAC address) associated with each Layer 2 interface

When the switches in a network are powered up, each functions as the root switch. Each switch sends a configuration BPDU through all of its ports. The BPDUs communicate and compute the spanning-tree topology. Each configuration BPDU contains this information:

- The unique bridge ID of the switch that the sending switch identifies as the root switch
- The spanning-tree path cost to the root
• The bridge ID of the sending switch
• Message age
• The identifier of the sending interface
• Values for the hello, forward-delay, and max-age protocol timers

When a switch receives a configuration BPDU that contains superior information (lower bridge ID, lower path cost, and so forth), it stores the information for that port. If this BPDU is received on the root port of the switch, the switch also forwards it with an updated message to all attached LANs for which it is the designated switch.

If a switch receives a configuration BPDU that contains inferior information to that currently stored for that port, it discards the BPDU. If the switch is a designated switch for the LAN from which the inferior BPDU was received, it sends that LAN a BPDU containing the up-to-date information stored for that port. In this way, inferior information is discarded, and superior information is propagated on the network.

A BPDU exchange results in these actions:
• One switch in the network is elected as the root switch.
• A root port is selected for each switch (except the root switch). This port provides the best path (lowest cost) when the switch forwards packets to the root switch.
• The shortest distance to the root switch is calculated for each switch based on the path cost.
• A designated switch for each LAN segment is selected. The designated switch incurs the lowest path cost when forwarding packets from that LAN to the root switch. The port through which the designated switch is attached to the LAN is called the designated port.
• Interfaces included in the spanning-tree instance are selected. Root ports and designated ports are put in the forwarding state.
• All interfaces not included in the spanning tree are blocked.

**Election of the Root Switch**

All switches in the Layer 2 network participating in spanning tree gather information about other switches in the network through an exchange of BPDU data messages. This exchange of messages results in these actions:
• The election of a unique root switch for each spanning-tree instance
• The election of a designated switch for every switched LAN segment
• The removal of loops in the switched network by blocking Layer 2 interfaces connected to redundant links

For each VLAN, the switch with the highest switch priority (the lowest numerical priority value) is elected as the root switch. If all switches are configured with the default priority (32768), the switch with the lowest MAC address in the VLAN becomes the root switch. The switch priority value occupies the most significant bits of the bridge ID.

When you change the switch priority value, you change the probability that the switch will be elected as the root switch. Configuring a higher value decreases the probability; a lower value increases the probability.

The root switch is the logical center of the spanning-tree topology in a switched network. All paths that are not needed to reach the root switch from anywhere in the switched network are placed in the spanning-tree blocking mode.
BPDUs contain information about the sending switch and its ports, including switch and MAC addresses, switch priority, port priority, and path cost. Spanning tree uses this information to elect the root switch and root port for the switched network and the root port and designated port for each switched segment.

**Bridge ID, Switch Priority, and Extended System ID**

The IEEE 802.1D standard requires that each switch has a unique bridge identifier (bridge ID), which determines the selection of the root switch. Because each VLAN is considered as a different logical bridge with PVST and PVRST, the same switch must have as many different bridge IDs as VLANs configured on it. Each VLAN on the switch has a unique 8-byte bridge ID; the two most-significant bytes are used for the switch priority, and the remaining six bytes are derived from the switch MAC address.

In Release 12.1(8)EA1 and later, Catalyst 3550 switches support the 802.1T spanning-tree extensions. Some of the bits previously used for the switch priority are now used as the VLAN identifier. The result is that fewer MAC addresses are reserved for the switch, and a larger range of VLAN IDs can be supported, all while maintaining the uniqueness of the bridge ID. As shown in Table 15-1, the two bytes previously used for the switch priority are reallocated into a 4-bit priority value and a 12-bit extended system ID value equal to the VLAN ID. In earlier releases, the switch priority is a 16-bit value.

<table>
<thead>
<tr>
<th>Switch Priority Value</th>
<th>Extended System ID (Set Equal to the VLAN ID)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 16</td>
<td>Bit 15</td>
</tr>
<tr>
<td>32768</td>
<td>16384</td>
</tr>
</tbody>
</table>

Spanning tree uses the extended system ID, the switch priority, and the allocated spanning-tree MAC address to make the bridge ID unique for each VLAN. With earlier releases, spanning tree used one MAC address per VLAN to make the bridge ID unique for each VLAN.

Support for the extended system ID affects how you manually configure the root switch, the secondary root switch, and the switch priority of a VLAN. For more information, see the “Configuring the Root Switch” section on page 15-12, “Configuring a Secondary Root Switch” section on page 15-14, and “Configuring the Switch Priority of a VLAN” section on page 15-17.

**Spanning-Tree Timers**

Table 15-2 describes the timers that affect the entire spanning-tree performance.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hello timer</td>
<td>Determines how often the switch broadcasts hello messages to other switches.</td>
</tr>
<tr>
<td>Forward-delay timer</td>
<td>Determines how long each of the listening and learning states last before the interface begins forwarding.</td>
</tr>
<tr>
<td>Maximum-age timer</td>
<td>Determines the amount of time the switch stores protocol information received on an interface.</td>
</tr>
</tbody>
</table>
Creating the Spanning-Tree Topology

In Figure 15-1, Switch A is elected as the root switch because the switch priority of all the switches is set to the default (32768) and Switch A has the lowest MAC address. However, because of traffic patterns, number of forwarding interfaces, or link types, Switch A might not be the ideal root switch. By increasing the priority (lowering the numerical value) of the ideal switch so that it becomes the root switch, you force a spanning-tree recalculation to form a new topology with the ideal switch as the root.

Figure 15-1 Spanning-Tree Topology

When the spanning-tree topology is calculated based on default parameters, the path between source and destination end stations in a switched network might not be ideal. For instance, connecting higher-speed links to an interface that has a higher number than the root port can cause a root-port change. The goal is to make the fastest link the root port.

For example, assume that one port on Switch B is a Gigabit Ethernet link and that another port on Switch B (a 10/100 link) is the root port. Network traffic might be more efficient over the Gigabit Ethernet link. By changing the spanning-tree port priority on the Gigabit Ethernet interface to a higher priority (lower numerical value) than the root port, the Gigabit Ethernet interface becomes the new root port.

Spanning-Tree Interface States

Propagation delays can occur when protocol information passes through a switched LAN. As a result, topology changes can take place at different times and at different places in a switched network. When an interface transitions directly from nonparticipation in the spanning-tree topology to the forwarding state, it can create temporary data loops. Interfaces must wait for new topology information to propagate through the switched LAN before starting to forward frames. They must allow the frame lifetime to expire for forwarded frames that have used the old topology.

Each Layer 2 interface on a switch using spanning tree exists in one of these states:

- **Blocking**—The interface does not participate in frame forwarding.
- **Listening**—The first transitional state after the blocking state when the spanning tree determines that the interface should participate in frame forwarding.
- **Learning**—The interface prepares to participate in frame forwarding.
- **Forwarding**—The interface forwards frames.
- **Disabled**—The interface is not participating in spanning tree because of a shutdown port, no link on the port, or no spanning-tree instance running on the port.
An interface moves through these states:
- From initialization to blocking
- From blocking to listening or to disabled
- From listening to learning or to disabled
- From learning to forwarding or to disabled
- From forwarding to disabled

*Figure 15-2* illustrates how an interface moves through the states.

*Figure 15-2* Spanning-Tree Interface States

![Spanning-Tree Interface States Diagram]

When you power up the switch, STP is enabled by default, and every interface in the switch, VLAN, or network goes through the blocking state and the transitory states of listening and learning. Spanning tree stabilizes each interface at the forwarding or blocking state.

When the spanning-tree algorithm places a Layer 2 interface in the forwarding state, this process occurs:

1. The interface is in the listening state while spanning tree waits for protocol information to transition the interface to the blocking state.
2. While spanning tree waits the forward-delay timer to expire, it moves the interface to the learning state and resets the forward-delay timer.
3. In the learning state, the interface continues to block frame forwarding as the switch learns end-station location information for the forwarding database.
4. When the forward-delay timer expires, spanning tree moves the interface to the forwarding state, where both learning and frame forwarding are enabled.
Chapter 15 Configuring STP

Understanding Spanning-Tree Features

Blocking State

A Layer 2 interface in the blocking state does not participate in frame forwarding. After initialization, a BPDU is sent to each interface in the switch. A switch initially functions as the root until it exchanges BPDUs with other switches. This exchange establishes which switch in the network is the root or root switch. If there is only one switch in the network, no exchange occurs, the forward-delay timer expires, and the interfaces move to the listening state. An interface always enters the blocking state after switch initialization.

An interface in the blocking state performs as follows:

- Discards frames received on the port
- Discards frames switched from another interface for forwarding
- Does not learn addresses
- Receives BPDUs

Listening State

The listening state is the first state a Layer 2 interface enters after the blocking state. The interface enters this state when the spanning tree determines that the interface should participate in frame forwarding.

An interface in the listening state performs as follows:

- Discards frames received on the port
- Discards frames switched from another interface for forwarding
- Does not learn addresses
- Receives BPDUs

Learning State

A Layer 2 interface in the learning state prepares to participate in frame forwarding. The interface enters the learning state from the listening state.

An interface in the learning state performs as follows:

- Discards frames received on the port
- Discards frames switched from another interface for forwarding
- Learns addresses
- Receives BPDUs

Forwarding State

A Layer 2 interface in the forwarding state forwards frames. The interface enters the forwarding state from the learning state.

An interface in the forwarding state performs as follows:

- Receives and forwards frames received on the port
- Forwards frames switched from another port
- Learns addresses
- Receives BPDUs
**Disabled State**

A Layer 2 interface in the disabled state does not participate in frame forwarding or in the spanning tree. An interface in the disabled state is nonoperational.

A disabled interface performs as follows:
- Discards frames received on the port
- Discards frames switched from another interface for forwarding
- Does not learn addresses
- Does not receive BPDUs

**Spanning-Tree Address Management**

IEEE 802.1D specifies 17 multicast addresses, ranging from 0x00180C2000000 to 0x0180C2000010, to be used by different bridge protocols. These addresses are static addresses that cannot be removed.

Regardless of the spanning-tree state, the switch receives but does not forward packets destined for addresses between 0x0180C2000000 and 0x0180C20000F.

If STP is enabled, the switch CPU receives packets destined for 0x0180C2000000 and 0x0180C2000010. If STP is disabled, the switch forwards those packets as unknown multicast addresses.

**STP and IEEE 802.1Q Trunks**

The IEEE 802.1Q standard for VLAN trunks imposes some limitations on the spanning-tree strategy for a network. The standard requires only one spanning-tree instance for all VLANs allowed on the trunks. However, in a network of Cisco switches connected through 802.1Q trunks, the switches maintain one spanning-tree instance for each VLAN allowed on the trunks.

When you connect a Cisco switch to a non-Cisco device through an 802.1Q trunk, the Cisco switch uses per-VLAN spanning tree (PVST) to provide spanning-tree interoperability. If per-VLAN rapid spanning tree (PVRST) is enabled, the switch uses PVRST instead of PVST to provide spanning-tree interoperability. The switch combines the spanning-tree instance of the 802.1Q VLAN of the trunk with the spanning-tree instance of the non-Cisco 802.1Q switch. However, all PVST or PVRST information is maintained by Cisco switches separated by a cloud of non-Cisco 802.1Q switches. The non-Cisco 802.1Q cloud separating the Cisco switches is treated as a single trunk link between the switches.

PVST is automatically enabled on 802.1Q trunks, and no user configuration is required. The external spanning-tree behavior on access ports and Inter-Switch Link (ISL) trunk ports is not affected by PVST.

For more information on 802.1Q trunks, see Chapter 11, “Configuring VLANs.”

**VLAN-Bridge STP**

Cisco VLAN-bridge STP is used with the fallback bridging feature (bridge groups), which forwards non-IP protocols such as DECnet between two or more VLAN bridge domains or routed ports. The VLAN-bridge STP allows the bridge groups to form a spanning tree on top of the individual VLAN spanning trees to prevent loops from forming if there are multiple connections among VLANs. It also prevents the individual spanning trees from the VLANs being bridged from collapsing into a single spanning tree.
To support VLAN-bridge STP, some of the spanning-tree timers are increased. To use the fallback bridging feature, you must have the enhanced multilayer software image installed on your switch. For more information, see Chapter 35, “Configuring Fallback Bridging.”

**Spanning Tree and Redundant Connectivity**

You can create a redundant backbone with spanning tree by connecting two switch interfaces to another device or to two different devices. Spanning tree automatically disables one interface but enables it if the other one fails, as shown in Figure 15-3. If one link is high-speed and the other is low-speed, the low-speed link is always disabled. If the speeds are the same, the port priority and port ID are added together, and spanning tree disables the link with the lowest value.

![Figure 15-3 Spanning Tree and Redundant Connectivity](image)

You can also create redundant links between switches by using EtherChannel groups. For more information, see Chapter 29, “Configuring EtherChannels.”

**Accelerated Aging to Retain Connectivity**

The default for aging dynamic addresses is 5 minutes, the default setting of the `mac-address-table aging-time` global configuration command. However, a spanning-tree reconfiguration can cause many station locations to change. Because these stations could be unreachable for 5 minutes or more during a reconfiguration, the address-aging time is accelerated so that station addresses can be dropped from the address table and then relearned. The accelerated aging is the same as the forward-delay parameter value (`spanning-tree vlan vlan-id forward-time seconds` global configuration command) when the spanning tree reconfigures.

Because each VLAN is a separate spanning-tree instance, the switch accelerates aging on a per-VLAN basis. A spanning-tree reconfiguration on one VLAN can cause the dynamic addresses learned on that VLAN to be subject to accelerated aging. Dynamic addresses on other VLANs can be unaffected and remain subject to the aging interval entered for the switch.
Configuring Spanning-Tree Features

These sections describe how to configure spanning-tree features:

- Default STP Configuration, page 15-10
- STP Configuration Guidelines, page 15-11
- Disabling STP, page 15-11
- Configuring the Root Switch, page 15-12
- Configuring a Secondary Root Switch, page 15-14
- Configuring the Port Priority, page 15-15
- Configuring the Path Cost, page 15-16
- Configuring the Switch Priority of a VLAN, page 15-17
- Configuring the Hello Time, page 15-18
- Configuring the Forwarding-Delay Time for a VLAN, page 15-19
- Configuring the Maximum-Aging Time for a VLAN, page 15-19
- Configuring STP for Use in a Cascaded Stack, page 15-20

Default STP Configuration

Table 15-3 shows the default STP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable state</td>
<td>Enabled on VLAN 1. Up to 128 spanning-tree instances can be enabled.</td>
</tr>
<tr>
<td>Spanning-tree mode</td>
<td>PVST (PVRST and MSTP are disabled).</td>
</tr>
<tr>
<td>Switch priority</td>
<td>32768.</td>
</tr>
<tr>
<td>Spanning-tree port priority (configurable on a per-interface basis)</td>
<td>128.</td>
</tr>
<tr>
<td>Spanning-tree port cost (configurable on a per-interface basis)</td>
<td>1000 Mbps: 4. 100 Mbps: 19. 10 Mbps: 100.</td>
</tr>
<tr>
<td>Spanning-tree VLAN port priority (configurable on a per-VLAN basis)</td>
<td>128.</td>
</tr>
<tr>
<td>Spanning-tree VLAN port cost (configurable on a per-VLAN basis)</td>
<td>1000 Mbps: 4. 100 Mbps: 19. 10 Mbps: 100.</td>
</tr>
<tr>
<td>Hello time</td>
<td>2 seconds.</td>
</tr>
<tr>
<td>Forward-delay time</td>
<td>15 seconds.</td>
</tr>
<tr>
<td>Maximum-aging time</td>
<td>20 seconds.</td>
</tr>
</tbody>
</table>
STP Configuration Guidelines

If more VLANs are defined in the VTP than there are spanning-tree instances, you can enable STP on only 128 VLANs. The remaining VLANs operate with spanning tree disabled. If the number of VLANs exceeds 128, we recommend that you enable the MSTP to map multiple VLANs to a single spanning-tree instance. For more information, see the Chapter 16, “Configuring RSTP and MSTP.”

For information on the recommended trunk port configuration, see the “Interaction with Other Features” section on page 11-19.

If 128 instances of spanning tree are already in use, you can disable STP on one of the VLANs and then enable it on the VLAN where you want it to run. Use the `no spanning-tree vlan vlan-id` global configuration command to disable STP on a specific VLAN, and use the `spanning-tree vlan vlan-id` global configuration command to enable STP on the desired VLAN.

---

**Caution**

Switches that are not running spanning tree still forward BPDUs that they receive so that the other switches on the VLAN that have a running spanning-tree instance can break loops. Therefore, spanning tree must be running on enough switches to break all the loops in the network; for example, at least one switch on each loop in the VLAN must be running spanning tree. It is not absolutely necessary to run spanning tree on all switches in the VLAN; however, if you are running spanning tree only on a minimal set of switches, an incautious change to the network that introduces another loop into the VLAN can result in a broadcast storm.

---

**Note**

If you have already used all available spanning-tree instances on your switch, adding another VLAN anywhere in the VTP domain creates a VLAN that is not running spanning tree on that switch. If you have the default allowed list on the trunk ports of that switch, the new VLAN is carried on all trunk ports. Depending on the topology of the network, this could create a loop in the new VLAN that will not be broken, particularly if there are several adjacent switches that have all run out of spanning-tree instances. You can prevent this possibility by setting up allowed lists on the trunk ports of switches that have used up their allocation of spanning-tree instances. Setting up allowed lists is not necessary in many cases and can make it more labor-intensive to add another VLAN to the network.

Spanning-tree commands determine the configuration of VLAN spanning-tree instances. You create a spanning-tree instance when you assign an interface to a VLAN. The spanning-tree instance is removed when the last interface is moved to another VLAN. You can configure switch and port parameters before a spanning-tree instance is created; these parameters are applied when the spanning-tree instance is created.

---

Disabling STP

STP is enabled by default on VLAN 1 and on all newly created VLANs up to the spanning-tree limit specified in Table 15-3. Disable STP only if you are sure there are no loops in the network topology.

---

**Caution**

When STP is disabled and loops are present in the topology, excessive traffic and indefinite packet duplication can drastically reduce network performance.
Beginning in privileged EXEC mode, follow these steps to disable STP on a per-VLAN basis:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 no spanning-tree vlan vlvid</td>
<td>Disable STP on a per-VLAN basis. For vlvid, you can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show spanning-tree vlan vlvid</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To re-enable STP, use the `spanning-tree vlan vlvid` global configuration command.

### Configuring the Root Switch

The switch maintains a separate spanning-tree instance for each active VLAN configured on it. A bridge ID, consisting of the switch priority and the switch MAC address, is associated with each instance. For each VLAN, the switch with the lowest bridge ID becomes the root switch for that VLAN.

To configure a switch to become the root for the specified VLAN, use the `spanning-tree vlan vlvid root` global configuration command to modify the switch priority from the default value (32768) to a significantly lower value. When you enter this command, the switch checks the switch priority of the root switches for each VLAN. Because of the extended system ID support, the switch sets its own priority for the specified VLAN to 24576 if this value will cause this switch to become the root for the specified VLAN.

If any root switch for the specified VLAN has a switch priority lower than 24576, the switch sets its own priority for the specified VLAN to 4096 less than the lowest switch priority. (4096 is the value of the least-significant bit of a 4-bit switch priority value as shown in Table 15-1 on page 15-4.)

Note

The `spanning-tree vlan vlvid root` global configuration command fails if the value necessary to be the root switch is less than 1.

Before Release 12.1(8)EA1, entering the `spanning-tree vlan vlvid root` global configuration command on a Catalyst 3550 switch (no extended system ID) caused it to set its own switch priority for the specified VLAN to 8192 if this value caused this switch to become the root for the specified VLAN. If any root switch for the specified VLAN has a switch priority lower than 8192, the switch sets its own priority for the specified VLAN to 1 less than the lowest switch priority.

These examples show the effect of the `spanning-tree vlan vlvid root` command with and without the extended system ID support:

- For Catalyst 3550 switches with the extended system ID (Release 12.1(8)EA1 and later), if all network devices in VLAN 20 have the default priority of 32768, entering the `spanning-tree vlan 20 root primary` command on the switch sets the switch priority to 24576, which causes this switch to become the root switch for VLAN 20.
For Catalyst 3550 switches without the extended system ID (software earlier than Release 12.1(8)EA1), if all network devices in VLAN 100 have the default priority of 32768, entering the `spanning-tree vlan 100 root primary` command on the switch sets the switch priority for VLAN 100 to 8192, which causes this switch to become the root switch for VLAN 100.

**Note**
If your network consists of switches that both do and do not support the extended system ID, it is unlikely that the switch with the extended system ID support will become the root switch. The extended system ID increases the switch priority value every time the VLAN number is greater than the priority of the connected switches running older software.

**Note**
The root switch for each spanning-tree instance should be a backbone or distribution switch. Do not configure an access switch as the spanning-tree primary root.

Use the `diameter` keyword to specify the Layer 2 network diameter (that is, the maximum number of switch hops between any two end stations in the Layer 2 network). When you specify the network diameter, the switch automatically sets an optimal hello time, forward-delay time, and maximum-age time for a network of that diameter, which can significantly reduce the convergence time. You can use the `hello` keyword to override the automatically calculated hello time.

**Note**
After configuring the switch as the root switch, we recommend that you avoid manually configuring the hello time, forward-delay time, and maximum-age time by using the `spanning-tree vlan vlan-id hello-time`, `spanning-tree vlan vlan-id forward-time`, and the `spanning-tree vlan vlan-id max-age` global configuration commands.

Beginning in privileged EXEC mode, follow these steps to configure a switch to become the root for the specified VLAN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>spanning-tree vlan vlan-id root primary</code> [diameter net-diameter [hello-time seconds]]</td>
</tr>
<tr>
<td></td>
<td>Configure a switch to become the root for the specified VLAN.</td>
</tr>
<tr>
<td></td>
<td>• For <code>vlan-id</code>, you can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>diameter net-diameter</code>, specify the maximum number of switches between any two end stations. The range is 2 to 7.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>hello-time seconds</code>, specify the interval in seconds between the generation of configuration messages by the root switch. The range is 1 to 10 seconds; the default is 2 seconds.</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>When you enter this command without the optional keywords, the switch recalculates the forward-time, hello-time, max-age, and priority settings. If you had previously configured these parameters, the switch recalculates them.</td>
</tr>
</tbody>
</table>
Configuring Spanning-Tree Features

Chapter 15 Configuring STP

Configuring a Secondary Root Switch

When you configure a Catalyst 3550 switch that supports the extended system ID as the secondary root, the switch priority is modified from the default value (32768) to 28672. The switch is then likely to become the root switch for the specified VLAN if the primary root switch fails. This is assuming that the other network switches use the default switch priority of 32768 and therefore are unlikely to become the root switch. For Catalyst 3550 switches without the extended system ID support (software earlier than Release 12.1(8)EA1), the switch priority is changed to 16384.

You can execute this command on more than one switch to configure multiple backup root switches. Use the same network diameter and hello-time values as you used when you configured the primary root switch with the `spanning-tree vlan vlan-id root primary` global configuration command.

Beginning in privileged EXEC mode, follow these steps to configure a switch to become the secondary root for the specified VLAN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>spanning-tree vlan vlan-id root secondary</code> [diameter net-diameter [hello-time seconds]]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>end</code></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>show spanning-tree detail</code></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>copy running-config startup-config</code></td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the `no spanning-tree vlan vlan-id root` global configuration command.
To return the switch to its default setting, use the `no spanning-tree vlan vlan-id root` global configuration command.

## Configuring the Port Priority

If a loop occurs, spanning tree uses the port priority when selecting an interface to put into the forwarding state. You can assign higher priority values (lower numerical values) to interfaces that you want selected first and lower priority values (higher numerical values) that you want selected last. If all interfaces have the same priority value, spanning tree puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.

Beginning in privileged EXEC mode, follow these steps to configure the port priority of an interface:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify an interface to configure. Valid interfaces include physical interfaces and port-channel logical interfaces (<code>port-channel port-channel-number</code>).</td>
</tr>
<tr>
<td>3</td>
<td>spanning-tree port-priority priority</td>
<td>Configure the port priority for an interface. For <code>priority</code>, the range is 0 to 240 in increments of 16. The default is 128. The lower the number, the higher the priority. Valid priority values are 0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, and 240. All other values are rejected.</td>
</tr>
<tr>
<td>4</td>
<td>spanning-tree vlan vlan-id port-priority priority</td>
<td>Configure the VLAN port priority for an interface. For <code>vlan-id</code>, you can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094. For <code>priority</code>, the range is 0 to 240 in increments of 16. The default is 128. The lower the number, the higher the priority. Valid priority values are 0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, and 240. All other values are rejected.</td>
</tr>
<tr>
<td>5</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>6</td>
<td>show spanning-tree interface interface-id</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>7</td>
<td>show spanning-tree vlan vlan-id</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
The show spanning-tree interface interface-id privileged EXEC command displays information only if the port is in a link-up operative state. Otherwise, you can use the show running-config interface privileged EXEC command to confirm the configuration.

To return the interface to its default setting, use the no spanning-tree [vlan vlan-id] port-priority interface configuration command. For information on how to configure load sharing on trunk ports by using spanning-tree port priorities, see the “Load Sharing Using STP” section on page 11-23.

### Configuring the Path Cost

The spanning-tree path cost default value is derived from the media speed of an interface. If a loop occurs, spanning tree uses cost when selecting an interface to put in the forwarding state. You can assign lower cost values to interfaces that you want selected first and higher cost values that you want selected last. If all interfaces have the same cost value, spanning tree puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.

Beginning in privileged EXEC mode, follow these steps to configure the cost of an interface:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify an interface to configure. Valid interfaces include physical interfaces and port-channel logical interfaces (port-channel port-channel-number).</td>
</tr>
</tbody>
</table>
| 3    | spanning-tree cost cost | Configure the cost for an interface.  
If a loop occurs, spanning tree uses the path cost when selecting an interface to place into the forwarding state. A lower path cost represents higher-speed transmission.  
For cost, the range is 1 to 200000000; the default value is derived from the media speed of the interface. |
| 4    | spanning-tree vlan vlan-id cost cost | Configure the cost for a VLAN.  
If a loop occurs, spanning tree uses the path cost when selecting an interface to place into the forwarding state. A lower path cost represents higher-speed transmission.  
- For vlan-id, you can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.  
- For cost, the range is 1 to 200000000; the default value is derived from the media speed of the interface. |
| 5    | end | Return to privileged EXEC mode. |
Chapter 15      Configuring STP

Configuring Spanning-Tree Features

Note

The show spanning-tree interface interface-id privileged EXEC command displays information only for ports that are in a link-up operative state. Otherwise, you can use the show running-config privileged EXEC command to confirm the configuration.

To return the interface to its default setting, use the no spanning-tree [vlan vlan-id] cost interface configuration command. For information on how to configure load sharing on trunk ports by using spanning-tree path costs, see the “Load Sharing Using STP” section on page 11-23.

Configuring the Switch Priority of a VLAN

You can configure the switch priority and make it more likely that the switch will be chosen as the root switch.

Note

Exercise care when using this command. For most situations, we recommend that you use the spanning-tree vlan vlan-id root primary and the spanning-tree vlan vlan-id root secondary global configuration commands to modify the switch priority.

Beginning in privileged EXEC mode, follow these steps to configure the switch priority of a VLAN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 spanning-tree vlan vlan-id priority priority</td>
<td>Configure the switch priority of a VLAN.</td>
</tr>
<tr>
<td></td>
<td>• For vlan-id, you can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.</td>
</tr>
<tr>
<td></td>
<td>• For priority, the range is 0 to 61440 in increments of 4096; the default is 32768. The lower the number, the more likely the switch will be chosen as the root switch. Valid priority values are 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, and 61440. All other values are rejected.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show spanning-tree vlan vlan-id</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Configuring the Hello Time

You can configure the interval between the generation of configuration messages by the root switch by changing the hello time.

**Note**

Exercise care when using this command. For most situations, we recommend that you use the `spanning-tree vlan vlan-id root primary` and the `spanning-tree vlan vlan-id root secondary` global configuration commands to modify the hello time.

Beginning in privileged EXEC mode, follow these steps to configure the hello time of a VLAN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree vlan vlan-id hello-time seconds</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show spanning-tree vlan vlan-id</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the `no spanning-tree vlan vlan-id hello-time` global configuration command.
Configuring the Forwarding-Delay Time for a VLAN

Beginning in privileged EXEC mode, follow these steps to configure the forwarding-delay time for a VLAN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>spanning-tree vlan vlan-id forward-time seconds</td>
</tr>
</tbody>
</table>

Command Purpose

Step 3 end

Step 4 show spanning-tree vlan vlan-id

Step 5 copy running-config startup-config

Command Purpose

Step 1 configure terminal

Enter global configuration mode.

Step 2 spanning-tree vlan vlan-id forward-time seconds

Configure the forward time of a VLAN. The forward delay is the number of seconds a port waits before changing from its spanning-tree learning and listening states to the forwarding state.

- For vlan-id, you can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.
- For seconds, the range is 4 to 30; the default is 15.

Step 3 end

Return to privileged EXEC mode.

Step 4 show spanning-tree vlan vlan-id

Verify your entries.

Step 5 copy running-config startup-config

(Optional) Save your entries in the configuration file.

To return the switch to its default setting, use the **no spanning-tree vlan vlan-id forward-time** global configuration command.

Configuring the Maximum-Aging Time for a VLAN

Beginning in privileged EXEC mode, follow these steps to configure the maximum-aging time for a VLAN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>spanning-tree vlan vlan-id max-age seconds</td>
</tr>
</tbody>
</table>

Command Purpose

Step 3 end

Step 4 show spanning-tree vlan vlan-id

Step 5 copy running-config startup-config

Command Purpose

Step 1 configure terminal

Enter global configuration mode.

Step 2 spanning-tree vlan vlan-id max-age seconds

Configure the maximum-aging time of a VLAN. The maximum-aging time is the number of seconds a switch waits without receiving spanning-tree configuration messages before attempting a reconfiguration.

- For vlan-id, you can specify a single VLAN identified by VLAN ID number, a range of VLANs separated by a hyphen, or a series of VLANs separated by a comma. The range is 1 to 4094.
- For seconds, the range is 6 to 40; the default is 20.

Step 3 end

Return to privileged EXEC mode.

Step 4 show spanning-tree vlan vlan-id

Verify your entries.

Step 5 copy running-config startup-config

(Optional) Save your entries in the configuration file.

To return the switch to its default setting, use the **no spanning-tree vlan vlan-id max-age** global configuration command.
Configuring STP for Use in a Cascaded Stack

STP uses default values that can be reduced when configuring your switch in cascaded configurations. If a root switch is part of a cluster that is one switch from a cascaded stack, you can customize spanning tree to reconverge more quickly after a switch failure. Figure 15-4 shows switches in three cascaded stacks that use the GigaStack GBIC. Table 15-4 shows the default STP settings and those that are acceptable for these configurations.

Table 15-4 Default and Acceptable STP Parameter Settings (in seconds)

<table>
<thead>
<tr>
<th>STP Parameter</th>
<th>STP Default</th>
<th>Acceptable for Option 1</th>
<th>Acceptable for Option 2</th>
<th>Acceptable for Option 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hello Time</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Max Age</td>
<td>20</td>
<td>6</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Forwarding Delay</td>
<td>15</td>
<td>4</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

Figure 15-4 Gigabit Ethernet Stack

Displaying the Spanning-Tree Status

To display the spanning-tree status, use one or more of the privileged EXEC commands in Table 15-5:

Table 15-5 Commands for Displaying Spanning-Tree Status

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show spanning-tree active</td>
<td>Displays spanning-tree information on active interfaces only.</td>
</tr>
<tr>
<td>show spanning-tree detail</td>
<td>Displays a detailed summary of interface information.</td>
</tr>
</tbody>
</table>
Table 15-5 Commands for Displaying Spanning-Tree Status (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show spanning-tree interface interface-id</code></td>
<td>Displays spanning-tree information for the specified interface.</td>
</tr>
<tr>
<td><code>show spanning-tree summary [totals]</code></td>
<td>Displays a summary of port states or displays the total lines of the STP state section.</td>
</tr>
</tbody>
</table>

For information about other keywords for the `show spanning-tree` privileged EXEC command, refer to the command reference for this release.
Configuring RSTP and MSTP

This chapter describes how to configure the Cisco implementation of the IEEE 802.1W Rapid Spanning Tree Protocol (RSTP) and the IEEE 802.1S Multiple STP (MSTP) on your Catalyst 3550 switch. It also describes how to configure per-VLAN rapid spanning tree (PVRST).

RSTP provides rapid convergence of the spanning tree. MSTP, which uses RSTP to provide rapid convergence, enables VLANs to be grouped into a spanning-tree instance, provides for multiple forwarding paths for data traffic, and enables load balancing. It improves the fault tolerance of the network because a failure in one instance (forwarding path) does not affect other instances (forwarding paths). The most common initial deployment of MSTP and RSTP is in the backbone and distribution layers of a Layer 2 switched network; this deployment provides the highly-available network required in a service-provider environment.

Both RSTP and MSTP improve the operation of the spanning tree while maintaining backward compatibility with equipment that is based on the (original) 802.1D spanning tree, with existing Cisco per-VLAN spanning tree (PVST), and with the existing Cisco-proprietary Multiple Instance STP (MISTP). For information about STP, see Chapter 15, “Configuring STP.” For information about optional spanning-tree features, see Chapter 17, “Configuring Optional Spanning-Tree Features.”

PVRST uses RSTP to provide rapid convergence of spanning-tree instances. PVRST also maintains backward compatibility with equipment that is based on the 802.1D spanning tree, with PVST and MISTP. You can use this feature on a switch running MSTP. For information about PVRST, see the “Spanning-Tree Instances Using RSTP” section on page 16-2.

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter consists of these sections:

- Understanding RSTP, page 16-2
- Understanding MSTP, page 16-7
- Interoperability with 802.1D STP, page 16-11
- Configuring RSTP and MSTP Features, page 16-11
- Displaying the MST Configuration and Status, page 16-23
Understanding RSTP

The RSTP takes advantage of point-to-point wiring and provides rapid convergence of the spanning tree. Reconfiguration of the spanning tree can occur in less than 1 second (in contrast to 50 seconds with the default settings in the 802.1D spanning tree), which is critical for networks carrying delay-sensitive traffic such as voice and video.

These section describes how the RSTP works:
- Spanning-Tree Instances Using RSTP, page 16-2
- Port Roles and the Active Topology, page 16-2
- Rapid Convergence, page 16-3
- Synchronization of Port Roles, page 16-4
- Bridge Protocol Data Unit Format and Processing, page 16-5

For configuration information, see the “Configuring RSTP and MSTP Features” section on page 16-11.

Spanning-Tree Instances Using RSTP

The switch supports the PVRST and a maximum of 128 spanning-tree instances. When PVRST is enabled, the switch uses RSTP instead of STP to provide faster convergence. For information about the PVST, see the “Supported Spanning-Tree Instances” section on page 15-2. For information about how spanning tree interoperates with the VLAN Trunking Protocol (VTP), see the “STP Configuration Guidelines” section on page 15-11.

When a network contains switches running PVRST and switches running PVST, we recommend that the PVRST switches and PVST switches be in different spanning-tree instances. In the PVRST spanning-tree instances, the root switch must be a PVRST switch. In the PVST instances, the root switch must be a PVST switch. The PVST switches should be at the edge of the network.

Port Roles and the Active Topology

The RSTP provides rapid convergence of the spanning tree by assigning port roles and by determining the active topology. The RSTP builds upon the IEEE 802.1D STP to select the switch with the highest switch priority (lowest numerical priority value) as the root switch as described in “Election of the Root Switch” section on page 15-3. Then the RSTP assigns one of these port roles to individual ports:
- Root port—Provides the best path (lowest cost) when the switch forwards packets to the root switch.
- Designated port—Connects to the designated switch, which incurs the lowest path cost when forwarding packets from that LAN to the root switch. The port through which the designated switch is attached to the LAN is called the designated port.
- Alternate port—Offers an alternate path toward the root switch to that provided by the current root port.
- Backup port—Acts as a backup for the path provided by a designated port toward the leaves of the spanning tree. A backup port can exist only when two ports are connected together in a loopback by a point-to-point link or when a switch has two or more connections to a shared LAN segment.
- Disabled port—Has no role within the operation of the spanning tree.

A port with the root or a designated port role is included in the active topology. A port with the alternate or backup port role is excluded from the active topology.
In a stable topology with consistent port roles throughout the network, the RSTP ensures that every root port and designated port immediately transition to the forwarding state while all alternate and backup ports are always in the discarding state (equivalent to blocking in 802.1D). The port state controls the operation of the forwarding and learning processes. Table 16-1 provides a comparison of 802.1D and RSTP port states.

### Table 16-1 Port State Comparison

<table>
<thead>
<tr>
<th>Operational Status</th>
<th>STP Port State</th>
<th>RSTP Port State</th>
<th>Is Port Included in the Active Topology?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td>Blocking</td>
<td>Discarding</td>
<td>No</td>
</tr>
<tr>
<td>Enabled</td>
<td>Listening</td>
<td>Discarding</td>
<td>No</td>
</tr>
<tr>
<td>Enabled</td>
<td>Learning</td>
<td>Learning</td>
<td>Yes</td>
</tr>
<tr>
<td>Enabled</td>
<td>Forwarding</td>
<td>Forwarding</td>
<td>Yes</td>
</tr>
<tr>
<td>Disabled</td>
<td>Disabled</td>
<td>Discarding</td>
<td>No</td>
</tr>
</tbody>
</table>

To be consistent with Cisco STP implementations, this guide documents the port state as *blocking* instead of *discarding*. Designated ports start in the listening state.

### Rapid Convergence

The RSTP provides for rapid recovery of connectivity following the failure of a switch, a switch port, or a LAN. It provides rapid convergence for edge ports, new root ports, and ports connected through point-to-point links as follows:

- **Edge ports**—If you configure a port as an edge port on an RSTP switch by using the `spanning-tree portfast` interface configuration command, the edge port immediately transitions to the forwarding state. An edge port is the same as a Port Fast-enabled port, and you should enable it only on ports that connect to a single end station.

- **Root ports**—If the RSTP selects a new root port, it blocks the old root port and immediately transitions the new root port to the forwarding state.

- **Point-to-point links**—If you connect a port to another port through a point-to-point link and the local port becomes a designated port, it negotiates a rapid transition with the other port by using the proposal-agreement handshake to ensure a loop-free topology.

As shown in Figure 16-1, Switch A is connected to Switch B through a point-to-point link, and all of the ports are in the blocking state. Assume that the priority of Switch A is a smaller numerical value than the priority of Switch B. Switch A sends a proposal message (a configuration bridge protocol data unit [BPDU] with the proposal flag set) to Switch B, proposing itself as the designated switch.

After receiving the proposal message, Switch B selects as its new root port the port from which the proposal message was received, forces all nonedge ports to the blocking state, and sends an agreement message (a BPDU with the agreement flag set) through its new root port.

After receiving Switch B’s agreement message, Switch A also immediately transitions its designated port to the forwarding state. No loops in the network are formed because Switch B blocked all of its nonedge ports and because there is a point-to-point link between Switches A and B.
When Switch C is connected to Switch B, a similar set of handshaking messages are exchanged. Switch C selects the port connected to Switch B as its root port, and both ends immediately transition to the forwarding state. With each iteration of this handshaking process, one more switch joins the active topology. As the network converges, this proposal-agreement handshaking progresses from the root toward the leaves of the spanning tree.

The switch determines the link type from the port duplex mode: a full-duplex port is considered to have a point-to-point connection; a half-duplex port is considered to have a shared connection. You can override the default setting that is determined by the duplex setting by using the `spanning-tree link-type` interface configuration command.

**Figure 16-1 Proposal and Agreement Handshaking for Rapid Convergence**

When the switch receives a proposal message on one of its ports and that port is selected as the new root port, the RSTP forces all other ports to synchronize with the new root information.

The switch is synchronized with superior root information received on the root port if all other ports are synchronized. An individual port on the switch is synchronized if:

- That port is in the blocking state
- It is an edge port (a port configured to be at the edge of the network)

If a designated port is in the forwarding state and is not configured as an edge port, it transitions to the blocking state when the RSTP forces it to synchronize with new root information. In general, when the RSTP forces a port to synchronize with root information and the port does not satisfy any of the above conditions, its port state is set to blocking.

After ensuring all of the ports are synchronized, the switch sends an agreement message to the designated switch corresponding to its root port. When the switches connected by a point-to-point link are in agreement about their port roles, the RSTP immediately transitions the port states to forwarding. The sequence of events is shown in **Figure 16-2**.
Bridge Protocol Data Unit Format and Processing

The RSTP BPDU format is the same as the IEEE 802.1D BPDU format except that the protocol version is set to 2. A new one-byte version 1 Length field is set to zero, which means that no version 1 protocol information is present. Table 16-2 shows the RSTP flag fields.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Topology change (TC)</td>
</tr>
<tr>
<td>1</td>
<td>Proposal</td>
</tr>
<tr>
<td>2–3</td>
<td>Port role:</td>
</tr>
<tr>
<td>00</td>
<td>Unknown</td>
</tr>
<tr>
<td>01</td>
<td>Alternate port</td>
</tr>
<tr>
<td>10</td>
<td>Root port</td>
</tr>
<tr>
<td>11</td>
<td>Designated port</td>
</tr>
<tr>
<td>4</td>
<td>Learning</td>
</tr>
<tr>
<td>5</td>
<td>Forwarding</td>
</tr>
<tr>
<td>6</td>
<td>Agreement</td>
</tr>
<tr>
<td>7</td>
<td>Topology change acknowledgement (TCA)</td>
</tr>
</tbody>
</table>

The sending switch sets the proposal flag in the RSTP BPDU to propose itself as the designated switch on that LAN. The port role in the proposal message is always set to the designated port.

The sending switch sets the agreement flag in the RSTP BPDU to accept the previous proposal. The port role in the agreement message is always set to the root port.
The RSTP does not have a separate topology change notification (TCN) BPDU. It uses the topology change (TC) flag to show the topology changes. However, for interoperability with 802.1D switches, the RSTP switch processes and generates TCN BPDUs.

The learning and forwarding flags are set according to the state of the sending port.

**Processing Superior BPDU Information**

If a port receives superior root information (lower bridge ID, lower path cost, and so forth) than currently stored for the port, the RSTP triggers a reconfiguration. If the port is proposed and is selected as the new root port, RSTP forces all the other ports to synchronize.

If the BPDU received is an RSTP BPDU with the proposal flag set, the switch sends an agreement message after all of the other ports are synchronized. If the BPDU is an 802.1D BPDU, the switch does not set the proposal flag and starts the forward-delay timer for the port. The new root port requires twice the forward-delay time to transition to the forwarding state.

If the superior information received on the port causes the port to become a backup or alternate port, RSTP sets the port to the blocking state but does not send the agreement message. The designated port continues sending BPDUs with the proposal flag set until the forward-delay timer expires, at which time the port transitions to the forwarding state.

**Processing Inferior BPDU Information**

If a designated port receives an inferior BPDU (higher bridge ID, higher path cost, and so forth than currently stored for the port) with a designated port role, it immediately replies with its own information.

**Topology Changes**

This section describes the differences between the RSTP and the 802.1D in handling spanning-tree topology changes.

- Detection—Unlike 802.1D in which any transition between the blocking and the forwarding state causes a topology change, only transitions from the blocking to the forwarding state cause a topology change with RSTP (only an increase in connectivity is considered a topology change). State changes on an edge port do not cause a topology change. When an RSTP switch detects a topology change, it flushes the learned information on all of its nonedge ports except on those from which it received the TC notification.

- Notification—Unlike 802.1D, which uses TCN BPDUs, the RSTP does not use them. However, for 802.1D interoperability, an RSTP switch processes and generates TCN BPDUs.

- Acknowledgement—When an RSTP switch receives a TCN message on a designated port from an 802.1D switch, it replies with an 802.1D configuration BPDU with the TCA bit set. However, if the TC-while timer (the same as the topology-change timer in 802.1D) is active on a root port connected to an 802.1D switch and a configuration BPDU with the TCA bit set is received, the TC-while timer is reset.

This behavior is only required to support 802.1D switches. The RSTP BPDUs never have the TCA bit set.
Understanding MSTP

MSTP, which uses RSTP for rapid convergence, enables VLANs to be grouped into a spanning-tree instance, with each instance having a spanning-tree topology independent of other spanning-tree instances. This architecture provides multiple forwarding paths for data traffic, enables load balancing, and reduces the number of spanning-tree instances required to support a large number of VLANs.

These sections describe how the MSTP works:
- Multiple Spanning-Tree Regions, page 16-7
- IST, CIST, and CST, page 16-8
- Hop Count, page 16-10
- Boundary Ports, page 16-10

For configuration information, see the “Configuring RSTP and MSTP Features” section on page 16-11.

Multiple Spanning-Tree Regions

For switches to participate in multiple spanning-tree (MST) instances, you must consistently configure the switches with the same MST configuration information. A collection of interconnected switches that have the same MST configuration comprises an MST region as shown in Figure 16-3 on page 16-9.

The MST configuration determines to which MST region each switch belongs. The configuration includes the name of the region, the revision number, and the MST instance-to-VLAN assignment map. You configure the switch for a region by using the spanning-tree mst configuration global configuration command, after which the switch enters the MST configuration mode. From this mode, you can map VLANs to an MST instance by using the instance MST configuration command, specify the region name by using the name MST configuration command, and set the revision number by using the revision MST configuration command.

A region can have one member or multiple members with the same MST configuration; each member must be capable of processing RSTP BPDUs. There is no limit to the number of MST regions in a network, but each region can support up to 16 spanning-tree instances. You can assign a VLAN to only one spanning-tree instance at a time.
**IST, CIST, and CST**

Unlike PVST and PVRST in which all the spanning-tree instances are independent, the MSTP establishes and maintains two types of spanning-trees:

- An internal spanning tree (IST), which is the spanning tree that runs in an MST region.

  Within each MST region, the MSTP maintains multiple spanning-tree instances. Instance 0 is a special instance for a region, known as the internal spanning tree (IST). All other MST instances are numbered from 1 to 15.

  The IST is the only spanning-tree instance that sends and receives BPDUs; all of the other spanning-tree instance information is contained in M-records, which are encapsulated within MSTP BPDUs. Because the MSTP BPDU carries information for all instances, the number of BPDUs that need to be processed by a switch to support multiple spanning-tree instances is significantly reduced.

  All MST instances within the same region share the same protocol timers, but each MST instance has its own topology parameters, such as root switch ID, root path cost, and so forth. By default, all VLANs are assigned to the IST.

  An MST instance is local to the region; for example, MST instance 1 in region A is independent of MST instance 1 in region B, even if regions A and B are interconnected.

- A common and internal spanning tree (CIST), which is a collection of the ISTs in each MST region, and the common spanning tree (CST) that interconnects the MST regions and single spanning trees.

  The spanning tree computed in a region appears as a subtree in the CST that encompasses the entire switched domain. The CIST is formed as a result of the spanning-tree algorithm running between switches that support the 802.1W, 802.1S, and 802.1D protocols. The CIST inside an MST region is the same as the CST outside a region.

  For more information, see the “Operations Within an MST Region” section on page 16-8 and the “Operations Between MST Regions” section on page 16-9.

**Operations Within an MST Region**

The IST connects all the MSTP switches in a region. When the IST converges, the root of the IST becomes the IST master (shown in Figure 16-3 on page 16-9), which is the switch within the region with the lowest bridge ID and path cost to the CST root. The IST master also is the CST root if there is only one region within the network. If the CST root is outside the region, one of the MSTP switches at the boundary of the region is selected as the IST master.

When an MSTP switch initializes, it sends BPDUs claiming itself as the root of the CST and the IST master, with both of the path costs to the CST root and to the IST master set to zero. The switch also initializes all of its MST instances and claims to be the root for all of them. If the switch receives superior MST root information (lower bridge ID, lower path cost, and so forth) than currently stored for the port, it relinquishes its claim as the IST master.

During initialization, a region might have many subregions, each with its own IST master. As switches receive superior IST information, they leave their old subregions and join the new subregion that might contain the true IST master. Thus all subregions shrink, except for the one that contains the true IST master.

For correct operation, all switches in the MST region must agree on the same IST master. Therefore, any two switches in the region synchronize their port roles for an MST instance only if they converge to a common IST master.
Operations Between MST Regions

If there are multiple regions or legacy 802.1D switches within the network, MSTP establishes and maintains the CST, which includes all MST regions and all legacy STP switches in the network. The MST instances combine with the IST at the boundary of the region to become the CST.

The IST connects all the MSTP switches in the region and appears as a subtree in the CST that encompasses the entire switched domain, with the root of the subtree being the IST master. The MST region appears as a virtual switch to adjacent STP switches and MST regions.

Figure 16-3 shows a network with three MST regions and a legacy 802.1D switch (D). The IST master for region 1 (A) is also the CST root. The IST master for region 2 (B) and the IST master for region 3 (C) are the roots for their respective subtrees within the CST. The RSTP runs in all regions.

Figure 16-3 does not show additional MST instances for each region. Note that the topology of MST instances can be different from that of the IST for the same region.

Only the CST instance sends and receives BPDUs, and MST instances add their spanning-tree information into the BPDUs to interact with neighboring switches and compute the final spanning-tree topology. Because of this, the spanning-tree parameters related to BPDU transmission (for example, hello time, forward time, max-age, and max-hops) are configured only on the CST instance but affect all MST instances. Parameters related to the spanning-tree topology (for example, switch priority, port VLAN cost, port VLAN priority) can be configured on both the CST instance and the MST instance.

MSTP switches use version 3 RSTP BPDUs or 802.1D STP BPDUs to communicate with legacy 802.1D switches. MSTP switches use MSTP BPDUs to communicate with MSTP switches.
Hop Count

The IST and MST instances do not use the message-age and maximum-age information in the configuration BPDU to compute the spanning-tree topology. Instead, they use the path cost to the root and a hop-count mechanism similar to the IP time-to-live (TTL) mechanism.

By using the `spanning-tree mst max-hops` global configuration command, you can configure the maximum hops inside the region and apply it to the IST and all MST instances in that region. The hop count achieves the same result as the message-age information (determines when to trigger a reconfiguration). The root switch of the instance always sends a BPDU (or M-record) with a cost of 0 and the hop count set to the maximum value. When a switch receives this BPDU, it decrements the received remaining hop count by one and propagates this value as the remaining hop count in the BPDUs it generates. When the count reaches zero, the switch discards the BPDU and ages the information held for the port.

The message-age and maximum-age information in the RSTP portion of the BPDU remain the same throughout the region, and the same values are propagated by the region’s designated ports at the boundary.

Boundary Ports

A boundary port is a port that connects an MST region to a single spanning-tree region running RSTP, or to a single spanning-tree region running 802.1D, or to another MST region with a different MST configuration. A boundary port also connects to a LAN, the designated switch of which is either a single spanning-tree switch or a switch with a different MST configuration.

At the boundary, the roles of the MST ports do not matter, and their state is forced to be the same as the IST port state (MST ports at the boundary are in the forwarding state only when the IST port is forwarding). An IST port at the boundary can have any port role except a backup port role.

On a shared boundary link, the MST ports wait in the blocking state for the forward-delay time to expire before transitioning to the learning state. The MST ports wait another forward-delay time before transitioning to the forwarding state.

If the boundary port is on a point-to-point link and it is the IST root port, the MST ports transition to the forwarding state as soon as the IST port transitions to the forwarding state.

If the IST port is a designated port on a point-to-point link and if the IST port transitions to the forwarding state because of an agreement received from its peer port, the MST ports also immediately transition to the forwarding state.

If a boundary port transitions to the forwarding state in an IST instance, it is forwarding in all MST instances, and a topology change is triggered. If a boundary port with the IST root or designated port role receives a topology change notice external to the MST cloud, the MSTP switch triggers a topology change in the IST instance and in all the MST instances active on that port.
### Interoperability with 802.1D STP

A switch running MSTP supports a built-in protocol migration mechanism that enables it to interoperate with legacy 802.1D switches. If this switch receives a legacy 802.1D configuration BPDU (a BPDU with the protocol version set to 0), it sends only 802.1D BPDUs on that port. An MSTP switch can also detect that a port is at the boundary of a region when it receives a legacy BPDU, an MSTP BPDU (version 3) associated with a different region, or an RSTP BPDU (version 2).

However, the switch does not automatically revert to the MSTP mode if it no longer receives 802.1D BPDUs because it cannot determine whether the legacy switch has been removed from the link unless the legacy switch is the designated switch. Also, a switch might continue to assign a boundary role to a port when the switch to which this switch is connected has joined the region. To restart the protocol migration process (force the renegotiation with neighboring switches), you can use the clear spanning-tree detected-protocols privileged EXEC command.

If all the legacy switches on the link are RSTP switches, they can process MSTP BPDUs as if they are RSTP BPDUs. Therefore, MSTP switches send either a version 0 configuration and TCN BPDUs or version 3 MSTP BPDUs on a boundary port. A boundary port connects to a LAN, the designated switch of which is either a single spanning-tree switch or a switch with a different MST configuration.

### Configuring RSTP and MSTP Features

These sections describe how to configure basic RSTP and MSTP features:

- Default RSTP and MSTP Configuration, page 16-12
- RSTP and MSTP Configuration Guidelines, page 16-12
- Specifying the MST Region Configuration and Enabling MSTP, page 16-13 (required)
- Configuring the Root Switch, page 16-14 (optional)
- Configuring a Secondary Root Switch, page 16-16 (optional)
- Configuring the Port Priority, page 16-17 (optional)
- Configuring the Path Cost, page 16-18 (optional)
- Configuring the Switch Priority, page 16-19 (optional)
- Configuring the Hello Time, page 16-19 (optional)
- Configuring the Forwarding-Delay Time, page 16-20 (optional)
- Configuring the Maximum-Aging Time, page 16-21 (optional)
- Configuring the Maximum-Hop Count, page 16-21 (optional)
- Specifying the Link Type to Ensure Rapid Transitions, page 16-22 (optional)
- Restarting the Protocol Migration Process, page 16-22 (optional)
Default RSTP and MSTP Configuration

Table 16-3 shows the default RSTP and MSTP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning-tree mode</td>
<td>PVST (PVRST and MSTP are disabled).</td>
</tr>
<tr>
<td>Switch priority (configurable on a per-CIST interface basis)</td>
<td>32768.</td>
</tr>
<tr>
<td>Spanning-tree port priority (configurable on a per-CIST interface basis)</td>
<td>128.</td>
</tr>
<tr>
<td>Spanning-tree port cost (configurable on a per-CIST interface basis)</td>
<td>1000 Mbps: 4. 100 Mbps: 19. 10 Mbps: 100.</td>
</tr>
<tr>
<td>Hello time</td>
<td>2 seconds.</td>
</tr>
<tr>
<td>Forward-delay time</td>
<td>15 seconds.</td>
</tr>
<tr>
<td>Maximum-aging time</td>
<td>20 seconds.</td>
</tr>
<tr>
<td>Maximum hop count</td>
<td>20 hops.</td>
</tr>
</tbody>
</table>

RSTP and MSTP Configuration Guidelines

These are the configuration guidelines for RSTP and MSTP:

- The UplinkFast, BackboneFast, and cross-stack UplinkFast features are not supported with the PVRST and MSTP.
- Per-VLAN RSTP is not supported in software releases earlier than Release 12.1(13)EA1. When you enable MST by using the spanning-tree mode mst global configuration command, RSTP is enabled.
- Per-VLAN RSTP is supported in Release 12.1(13)EA1 or later. When you enable PVRST by using the spanning-tree mode rapid-pvst global configuration command, RSTP is enabled.
- PVST, PVRST, and MSTP are supported, but only one version can be active at any time; all VLANs run PVST, all VLANs run PVRST, or all VLANs run MSTP. For information on the recommended trunk port configuration, see the “Interaction with Other Features” section on page 11-19.
- VTP propagation of the MST configuration is not supported. However, you can manually configure the MST configuration (region name, revision number, and VLAN-to-instance mapping) on each switch within the MST region by using the command-line interface (CLI) or through the SNMP support.
- For load balancing across redundant paths in the network to work, all VLAN-to-instance mapping assignments must match; otherwise, all traffic flows on a single link.
All MST boundary ports must be forwarding for load balancing between a PVST and an MST cloud or between a PVRST and an MST cloud. For this to occur, the IST master of the MST cloud should also be the root of the CST. If the MST cloud consists of multiple MST regions, one of the MST regions must contain the CST root, and all of the other MST regions must have a better path to the root contained with the MST cloud than a path through the PVST or PVRST cloud. You might have to manually configure the switches in the clouds.

Partitioning the network into a large number of regions is not recommended. However, if this situation is unavoidable, we recommend that you partition the switched LAN into smaller LANs interconnected by routers or non-Layer 2 devices.

### Specifying the MST Region Configuration and Enabling MSTP

For two or more switches to be in the same MST region, they must have the same VLAN-to-instance mapping, the same configuration revision number, and the same name.

A region can have one member or multiple members with the same MST configuration; each member must be capable of processing RSTP BPDUs. There is no limit to the number of MST regions in a network, but each region can support up to 16 spanning-tree instances. You can assign a VLAN to only one spanning-tree instance at a time.

Beginning in privileged EXEC mode, follow these steps to specify the MST region configuration and enable MSTP. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>spannung-tree mst configuration</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>instance instance-id vlan vlan-range</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>name name</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>revision version</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>show pending</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>exit</td>
</tr>
</tbody>
</table>

- **Command Purpose**
  - **Step 1**
    - `configure terminal`
      - Enter global configuration mode.
  - **Step 2**
    - `spannung-tree mst configuration`
      - Enter MST configuration mode.
  - **Step 3**
    - `instance instance-id vlan vlan-range`
      - Map VLANs to an MST instance.
      - **For instance-id**, you can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is 1 to 15.
      - **For vlan vlan-range**, the range is 1 to 4094.
      - When you map VLANs to an MST instance, the mapping is incremental, and the range of VLANs specified is added or removed to the existing ones.
      - To specify a VLAN range, use a hyphen; for example, `instance 1 vlan 1-63` maps VLANs 1 through 63 to MST instance 1.
      - To specify a VLAN series, use a comma; for example, `instance 1 vlan 10, 20, 30` maps VLANs 10, 20, and 30 to MST instance 1.
  - **Step 4**
    - `name name`
      - Specify the configuration name. The `name` string has a maximum length of 32 characters and is case sensitive.
  - **Step 5**
    - `revision version`
      - Specify the configuration revision number. The range is 0 to 65535.
  - **Step 6**
    - `show pending`
      - Verify your configuration by displaying the pending configuration.
  - **Step 7**
    - `exit`
      - Apply all changes, and return to global configuration mode.
To return to the default MST region configuration, use the `no spanning-tree mst configuration` global configuration command. To return to the default VLAN-to-instance map, use the `no instance instance-id [vlan vlan-range]` MST configuration command. To return to the default name, use the `no name` MST configuration command. To return to the default revision number, use the `no revision` MST configuration command. To re-enable PVST, use the `no spanning-tree mode` or the `spanning-tree mode pvst` global configuration command.

This example shows how to enter MST configuration mode, map VLANs 10 to 20 to MST instance 1, name the region `region1`, set the configuration revision to 1, display the pending configuration, apply the changes, and return to global configuration mode:

```
Switch(config)# spanning-tree mst configuration
Switch(config-mst)# instance 1 vlan 10-20
Switch(config-mst)# name region1
Switch(config-mst)# revision 1
Switch(config-mst)# show pending
Pending MST configuration
Name [region1]
Revision 1
Instance Vlans Mapped
-------- ---------------------
0 1-9,21-4094
1 10-20

Switch(config-mst)# exit
Switch(config)#
```

**Configuring the Root Switch**

The switch maintains a spanning-tree instance for the group of VLANs mapped to it. A bridge ID, consisting of the switch priority and the switch MAC address, is associated with each instance. The switch with the lowest bridge ID becomes the root switch for the group of VLANs.

To configure a switch to become the root, use the `spanning-tree mst instance-id root` global configuration command to modify the switch priority from the default value (32768) to a significantly lower value so that the switch becomes the root switch for the specified spanning-tree instance. When you enter this command, the switch checks the switch priorities of the root switches. Because of the extended system ID support, the switch sets its own priority for the specified instance to 24576 if this value will cause this switch to become the root for the specified spanning-tree instance.
If any root switch for the specified instance has a switch priority lower than 24576, the switch sets its own priority to 4096 less than the lowest switch priority. (4096 is the value of the least-significant bit of a 4-bit switch priority value as shown in Table 15-1 on page 15-4.)

**Note**
Catalyst 3550 switches running software earlier than Release 12.1(8)EA1 do not support the extended system ID. Catalyst 3550 switches running software earlier than Release 12.1(9)EA1 do not support the MSTP.

**Note**
If your network consists of switches that both do and do not support the extended system ID, it is unlikely that the switch with the extended system ID support will become the root switch. The extended system ID increases the switch priority value every time the VLAN number is greater than the priority of the connected switches running older software.

**Note**
The root switch for each spanning-tree instance should be a backbone or distribution switch. Do not configure an access switch as the spanning-tree primary root.

Use the `diameter` keyword, which is available only for MST instance 0, to specify the Layer 2 network diameter (that is, the maximum number of switch hops between any two end stations in the Layer 2 network). When you specify the network diameter, the switch automatically sets an optimal hello time, forward-delay time, and maximum-age time for a network of that diameter, which can significantly reduce the convergence time. You can use the `hello` keyword to override the automatically calculated hello time.

**Note**
We recommend that you avoid manually configuring the hello time, forward-delay time, and maximum-age time by using the `spanning-tree mst hello-time`, `spanning-tree mst forward-time`, and the `spanning-tree mst max-age` global configuration commands after configuring the switch as the root switch.

Beginning in privileged EXEC mode, follow these steps to configure a switch as the root switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>Step 2</strong></td>
</tr>
<tr>
<td>configure terminal</td>
<td><code>spanning-tree mst instance-id root primary [diameter net-diameter [hello-time seconds]]</code></td>
</tr>
<tr>
<td>Enter global configuration mode.</td>
<td>Configure a switch as the root switch.</td>
</tr>
</tbody>
</table>

- For `instance-id`, you can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is 0 to 15.

- (Optional) For `diameter net-diameter`, specify the maximum number of switches between any two end stations. The range is 2 to 7. This keyword is available only for MST instance 0.

- (Optional) For `hello-time seconds`, specify the interval in seconds between the generation of configuration messages by the root switch. The range is 1 to 10 seconds; the default is 2 seconds.
Chapter 16      Configuring RSTP and MSTP

Configuring RSTP and MSTP Features

To return the switch to its default setting, use the `no spanning-tree mst instance-id root` global configuration command.

### Configuring a Secondary Root Switch

When you configure a Catalyst 3550 switch that supports the extended system ID as the secondary root, the spanning-tree switch priority is modified from the default value (32768) to 28672. The switch is then likely to become the root switch for the specified instance if the primary root switch fails. This is assuming that the other network switches use the default switch priority of 32768 and therefore are unlikely to become the root switch. For Catalyst 3550 switches without the extended system ID support (software earlier than Release 12.1(8)EA1), the switch priority is changed to 16384.

You can execute this command on more than one switch to configure multiple backup root switches. Use the same network diameter and hello-time values that you used when you configured the primary root switch with the `spanning-tree mst instance-id root primary` global configuration command.

Beginning in privileged EXEC mode, follow these steps to configure a switch as the secondary root switch:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>spanning-tree mst instance-id root secondary [diameter net-diameter [hello-time seconds]]</td>
<td>Configure a switch as the secondary root switch.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>instance-id</code>, you can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is 0 to 15.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) For <code>diameter net-diameter</code>, specify the maximum number of switches between any two end stations. The range is 2 to 7. This keyword is available only for MST instance 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) For <code>hello-time seconds</code>, specify the interval in seconds between the generation of configuration messages by the root switch. The range is 1 to 10 seconds; the default is 2 seconds.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use the same network diameter and hello-time values that you used when configuring the primary root switch. See the “Configuring the Root Switch” section on page 16-14.</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>show spanning-tree mst instance-id</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the `no spanning-tree mst instance-id root` global configuration command.
Chapter 16      Configuring RSTP and MSTP

Configuring the Port Priority

If a loop occurs, the MSTP uses the port priority when selecting an interface to put into the forwarding state. You can assign higher priority values (lower numerical values) to interfaces that you want selected first and lower priority values (higher numerical values) that you want selected last. If all interfaces have the same priority value, the MSTP puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.

Beginning in privileged EXEC mode, follow these steps to configure the MSTP port priority of an interface:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify an interface to configure. Valid interfaces include physical ports and port channels. Valid port-channel numbers are 1 to 64.</td>
</tr>
<tr>
<td>3</td>
<td>spanning-tree mst instance-id port-priority priority</td>
<td>Configure the port priority for an MST instance. For instance-id, you can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is 0 to 15. For priority, the range is 0 to 240 in increments of 16. The default is 128. The lower the number, the higher the priority. Valid priority values are 0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, and 240. All other values are rejected.</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>show spanning-tree mst interface interface-id</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>show spanning-tree mst instance-id</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Note

The show spanning-tree mst interface interface-id privileged EXEC command displays information only if the port is in a link-up operative state. Otherwise, you can use the show running-config interface privileged EXEC command to confirm the configuration.

To return the interface to its default setting, use the no spanning-tree mst instance-id port-priority interface configuration command.
Configuring the Path Cost

The MSTP path cost default value is derived from the media speed of an interface. If a loop occurs, the MSTP uses cost when selecting an interface to put in the forwarding state. You can assign lower cost values to interfaces that you want selected first and higher cost values that you want selected last. If all interfaces have the same cost value, the MSTP puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.

Beginning in privileged EXEC mode, follow these steps to configure the MSTP cost of an interface:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify an interface to configure. Valid interfaces include physical ports and port channels. Valid port-channel numbers are 1 to 64.</td>
</tr>
</tbody>
</table>
| 3    | spanning-tree mst instance-id cost cost | Configure the cost for an MST instance. If a loop occurs, the MSTP uses the path cost when selecting an interface to place into the forwarding state. A lower path cost represents higher-speed transmission.  
   • For instance-id, you can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is 0 to 15.  
   • For cost, the range is 1 to 200000000; the default value is derived from the media speed of the interface. |
| 4    | end | Return to privileged EXEC mode. |
| 5    | show spanning-tree mst interface interface-id | Verify your entries.  
   or  
   show spanning-tree mst instance-id |
| 6    | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

**Note**

The `show spanning-tree mst interface interface-id` privileged EXEC command displays information only for ports that are in a link-up operative state. Otherwise, you can use the `show running-config` privileged EXEC command to confirm the configuration.

To return the interface to its default setting, use the `no spanning-tree mst instance-id cost` interface configuration command.
Configuring the Switch Priority

You can configure the switch priority and make it more likely that the switch will be chosen as the root switch.

**Note**

Exercise care when using this command. For most situations, we recommend that you use the `spanning-tree mst instance-id root primary` and the `spanning-tree mst instance-id root secondary` global configuration commands to modify the switch priority.

Beginning in privileged EXEC mode, follow these steps to configure the switch priority:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>spanning-tree mst instance-id priority priority</code></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>show spanning-tree mst instance-id</code></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>copy running-config startup-config</code></td>
</tr>
</tbody>
</table>

For `instance-id`, you can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is 0 to 15.

For `priority`, the range is 0 to 61440 in increments of 4096; the default is 32768. The lower the number, the more likely the switch will be chosen as the root switch.

Valid priority values are 0, 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, and 61440. All other values are rejected.

To return the switch to its default setting, use the `no spanning-tree mst instance-id priority` global configuration command.

Configuring the Hello Time

You can configure the interval between the generation of configuration messages by the root switch by changing the hello time.

**Note**

Exercise care when using this command. For most situations, we recommend that you use the `spanning-tree mst instance-id root primary` and the `spanning-tree mst instance-id root secondary` global configuration commands to modify the hello time.
Beginning in privileged EXEC mode, follow these steps to configure the hello time for all MST instances:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>spanning-tree mst hello-time <em>seconds</em></td>
</tr>
<tr>
<td></td>
<td>Configure the hello time for all MST instances. The hello time is the interval between the</td>
</tr>
<tr>
<td></td>
<td>generation of configuration messages by the root switch. These messages mean that the switch</td>
</tr>
<tr>
<td></td>
<td>is alive. For <em>seconds</em>, the range is 1 to 10; the default is 2.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>show spanning-tree mst</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the `no spanning-tree mst hello-time` global configuration command.

### Configuring the Forwarding-Delay Time

Beginning in privileged EXEC mode, follow these steps to configure the forwarding-delay time for all MST instances:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>spanning-tree mst forward-time <em>seconds</em></td>
</tr>
<tr>
<td></td>
<td>Configure the forward time for all MST instances. The forward delay is the number of</td>
</tr>
<tr>
<td></td>
<td>seconds a port waits before changing from its spanning-tree learning and listening states</td>
</tr>
<tr>
<td></td>
<td>to the forwarding state.                     For <em>seconds</em>, the range is 4 to 30; the default is</td>
</tr>
<tr>
<td></td>
<td>15.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>show spanning-tree mst</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the `no spanning-tree mst forward-time` global configuration command.
Configuring the Maximum-Aging Time

Beginning in privileged EXEC mode, follow these steps to configure the maximum-aging time for all MST instances:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree mst max-age seconds</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show spanning-tree mst</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the **no spanning-tree mst max-age** global configuration command.

Configuring the Maximum-Hop Count

Beginning in privileged EXEC mode, follow these steps to configure the maximum-hop count for all MST instances:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree mst max-hops hop-count</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show spanning-tree mst</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the **no spanning-tree mst max-hops** global configuration command.
Specifying the Link Type to Ensure Rapid Transitions

If you connect a port to another port through a point-to-point link and the local port becomes a designated port, the RSTP negotiates a rapid transition with the other port by using the proposal-agreement handshake to ensure a loop-free topology as described in the “Rapid Convergence” section on page 16-3.

By default, the link type is determined from the duplex mode of the interface: a full-duplex port is considered to have a point-to-point connection; a half-duplex port is considered to have a shared connection. If you have a half-duplex link physically connected point-to-point to a single port on a remote switch running PVRST or MSTP, you can override the default setting of the link type and enable rapid transitions to the forwarding state.

Beginning in privileged EXEC mode, follow these steps to override the default link-type setting:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to configure. Valid interfaces include physical ports, VLANs, and port channels. Valid VLAN IDs are 1 to 4094; valid port-channel numbers are 1 to 64.</td>
</tr>
<tr>
<td>spanning-tree link-type point-to-point</td>
<td>Specify that the link type of a port is point-to-point.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show spanning-tree mst interface interface-id</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the switch to its default setting, use the no spanning-tree link-type interface configuration command.

Restarting the Protocol Migration Process

A switch running MSTP supports a built-in protocol migration mechanism that enables it to interoperate with legacy 802.1D switches. If this switch receives a legacy 802.1D configuration BPDU (a BPDU with the protocol version set to 0), it sends only 802.1D BPDUs on that port. An MSTP switch can also detect that a port is at the boundary of a region when it receives a legacy BPDU, an MST BPDU (version 3) associated with a different region, or an RST BPDU (version 2).

However, the switch does not automatically revert to the MSTP mode if it no longer receives 802.1D BPDUs because it cannot determine whether the legacy switch has been removed from the link unless the legacy switch is the designated switch. A switch also might continue to assign a boundary role to a port when the switch to which it is connected has joined the region.

To restart the protocol migration process (force the renegotiation with neighboring switches) on the entire switch, you can use the clear spanning-tree detected-protocols privileged EXEC command. Use the clear spanning-tree detected-protocols interface interface-id privileged EXEC command to restart the protocol migration process on a specific interface.
Displaying the MST Configuration and Status

To display the spanning-tree status, use one or more of the privileged EXEC commands in Table 16-4:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show spanning-tree mst configuration</code></td>
<td>Displays the MST region configuration.</td>
</tr>
<tr>
<td><code>show spanning-tree mst instance-id</code></td>
<td>Displays MST information for the specified instance.</td>
</tr>
<tr>
<td><code>show spanning-tree mst interface interface-id</code></td>
<td>Displays MST information for the specified interface. Valid interfaces include physical ports, VLANs, and port channels. The valid VLAN range is 1 to 4094; the valid port-channel range is 1 to 64.</td>
</tr>
</tbody>
</table>

For information about other keywords for the `show spanning-tree` privileged EXEC command, refer to the command reference for this release.
Displaying the MST Configuration and Status
Configuring Optional Spanning-Tree Features

This chapter describes how to configure optional spanning-tree features. You can configure all of these features when your Catalyst 3550 switch is running the per-VLAN spanning tree (PVST). You can only configure the noted features when your switch is running the per-VLAN rapid spanning tree (PVRST) and the Multiple Spanning Tree Protocol (MSTP).

For information on configuring the Spanning Tree Protocol (STP), see Chapter 15, “Configuring STP.” For information on configuring the Rapid Spanning Tree Protocol (RSTP), the Multiple Spanning Tree Protocol (MSTP), and PVRST, see Chapter 16, “Configuring RSTP and MSTP.”

Note

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter consists of these sections:

- Understanding Optional Spanning-Tree Features, page 17-1
- Configuring Optional Spanning-Tree Features, page 17-14
- Displaying the Spanning-Tree Status, page 17-21

Understanding Optional Spanning-Tree Features

These sections describe how the optional spanning-tree features work:

- Understanding Port Fast, page 17-2
- Understanding BPDU Guard, page 17-3
- Understanding BPDU Filtering, page 17-3
- Understanding UplinkFast, page 17-4
- Understanding Cross-Stack UplinkFast, page 17-5
- Understanding BackboneFast, page 17-10
- Understanding EtherChannel Guard, page 17-12
- Understanding Root Guard, page 17-12
- Understanding Loop Guard, page 17-13
Understanding Port Fast

Port Fast immediately brings an interface configured as an access or trunk port to the forwarding state from a blocking state, bypassing the listening and learning states. You can use Port Fast on ports connected to a single workstation or server, as shown in Figure 17-1, to allow those devices to immediately connect to the network, rather than waiting for the spanning tree to converge.

Ports connected to a single workstation or server should not receive bridge protocol data units (BPDUs). A port with Port Fast enabled goes through the normal cycle of spanning-tree status changes when the switch is restarted.

**Note**

Because the purpose of Port Fast is to minimize the time ports must wait for spanning-tree to converge, it is effective only when used on ports connected to end stations. If you enable Port Fast on a port connecting to another switch, you risk creating a spanning-tree loop.

If your switch is running PVST, PVRST, or MSTP, you can enable this feature by using the `spanning-tree portfast` interface configuration or the `spanning-tree portfast default` global configuration command.

**Figure 17-1  Port Fast-Enabled Ports**
Understanding Optional Spanning-Tree Features

Chapter 17      Configuring Optional Spanning-Tree Features

Understanding BPDU Guard

The BPDU guard feature can be globally enabled on the switch or can be enabled per interface, but the feature operates with some differences.

At the global level, you can enable BPDU guard on Port Fast-enabled ports by using the `spanning-tree portfast bpduguard default` global configuration command. Spanning tree shuts down ports that are in a Port Fast-operational state. In a valid configuration, Port Fast-enabled ports do not receive BPDUs. Receiving a BPDU on a Port Fast-enabled port signals an invalid configuration, such as the connection of an unauthorized device, and the BPDU guard feature puts the port in the error-disabled state.

At the interface level, you can enable BPDU guard on any port by using the `spanning-tree bpduguard enable` interface configuration command without also enabling the Port Fast feature. When the port receives a BPDU, it is put in the error-disabled state.

The BPDU guard feature provides a secure response to invalid configurations because you must manually put the port back in service. Use the BPDU guard feature in a service-provider network to prevent an access port from participating in the spanning tree.

If your switch is running PVST, PVRST, or MSTP, you can enable the BPDU guard feature for the entire switch or for an interface.

Understanding BPDU Filtering

The BPDU filtering feature can be globally enabled on the switch or can be enabled per interface, but the feature operates with some differences.

At the global level, you can enable BPDU filtering on Port Fast-enabled ports by using the `spanning-tree portfast bpdufilter default` global configuration command. This command prevents ports that are in a Port Fast-operational state from sending or receiving BPDUs. The ports still send a few BPDUs at link-up before the switch begins to filter outbound BPDUs. You should globally enable BPDU filtering on a switch so that hosts connected to these ports do not receive BPDUs. If a BPDU is received on a Port Fast-enabled port, the port loses its Port Fast-operational status, and BPDU filtering is disabled.

At the interface level, you can enable BPDU filtering on any port without also enabling the Port Fast feature by using the `spanning-tree bpdufilter enable` interface configuration command. This command prevents the port from sending or receiving BPDUs.

<table>
<thead>
<tr>
<th>Caution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabling BPDU filtering on an interface is the same as disabling spanning tree on it and can result in spanning-tree loops.</td>
</tr>
</tbody>
</table>

If your switch is running PVST, PVRST, or MSTP, you can enable the BPDU filtering feature for the entire switch or for an interface.
Understanding UplinkFast

Switches in hierarchical networks can be grouped into backbone switches, distribution switches, and access switches. Figure 17-2 shows a complex network where distribution switches and access switches each have at least one redundant link that spanning tree blocks to prevent loops.

If a switch loses connectivity, it begins using the alternate paths as soon as the spanning tree selects a new root port. By enabling UplinkFast with the `spanning-tree uplinkfast` global configuration command, you can accelerate the choice of a new root port when a link or switch fails or when the spanning tree reconfigures itself. The root port transitions to the forwarding state immediately without going through the listening and learning states, as it would with the normal spanning-tree procedures. The UplinkFast feature is supported only when the switch is running PVST. It is not supported when the switch is running PVRST because PVRST uses fast convergence and takes precedence over UplinkFast.

When the spanning tree reconfigures the new root port, other interfaces flood the network with multicast packets, one for each address that was learned on the interface. You can limit these bursts of multicast traffic by reducing the `max-update-rate` parameter (the default for this parameter is 150 packets per second). However, if you enter zero, station-learning frames are not generated, so the spanning-tree topology converges more slowly after a loss of connectivity.

Note

UplinkFast is most useful in wiring-closet switches at the access or edge of the network. It is not appropriate for backbone devices. This feature might not be useful for other types of applications.

UplinkFast provides fast convergence after a direct link failure and achieves load balancing between redundant Layer 2 links using uplink groups. An uplink group is a set of Layer 2 interfaces (per VLAN), only one of which is forwarding at any given time. Specifically, an uplink group consists of the root port (which is forwarding) and a set of blocked ports, except for self-looping ports. The uplink group provides an alternate path in case the currently forwarding link fails.
Figure 17-3 shows an example topology with no link failures. Switch A, the root switch, is connected directly to Switch B over link L1 and to Switch C over link L2. The Layer 2 interface on Switch C that is connected directly to Switch B is in a blocking state.

If Switch C detects a link failure on the currently active link L2 on the root port (a direct link failure), UplinkFast unblocks the blocked port on Switch C and transitions it to the forwarding state without going through the listening and learning states, as shown in Figure 17-4. This change takes approximately 1 to 5 seconds.

Understanding Cross-Stack UplinkFast

Cross-stack UplinkFast (CSUF) provides a fast spanning-tree transition (fast convergence in less than 1 second under normal network conditions) across a stack of switches that use the GigaStack GBICs connected in a shared cascaded configuration (multidrop backbone). During the fast transition, an alternate redundant link on the stack of switches is placed in the forwarding state without causing temporary spanning-tree loops or loss of connectivity to the backbone. With this feature, you can have a redundant and resilient network in some configurations. You enable CSUF by using the spanning-tree stack-port interface configuration command. The CSUF feature is supported only when the switch is running PVST. It is not supported when the switch is running PVRST.

CSUF might not provide a fast transition all the time; in these cases, the normal spanning-tree transition occurs, completing in 30 to 40 seconds. For more information, see the “Events that Cause Fast Convergence” section on page 17-7.
How CSUF Works

CSUF ensures that one link in the stack is elected as the path to the root. As shown in Figure 17-5, Switches A, B, and C are cascaded through the GigaStack GBIC to form a multidrop backbone, which communicates control and data traffic across the switches at the access layer. The switches in the stack use their stack ports to communicate with each other and to connect to the stack backbone; stack ports are always in the spanning-tree forwarding state. The stack-root port on Switch A provides the path to the root of the spanning tree; the alternate stack-root ports on Switches B and C can provide an alternate path to the spanning-tree root if the current stack-root switch fails or if its link to the spanning-tree root fails.

Link A, the root link, is in the spanning-tree forwarding state; Links B and C are alternate redundant links that are in the spanning-tree blocking state. If Switch A fails, if its stack-root port fails, or if Link A fails, CSUF selects either the Switch B or Switch C alternate stack-root port and puts it into the forwarding state in less than 1 second.

Figure 17-5 Cross-Stack UplinkFast Topology

CSUF uses the Stack Membership Discovery Protocol to build a neighbor list of stack members through the receipt of discovery hello packets. When certain link loss or spanning-tree events occur (described in “Events that Cause Fast Convergence” section on page 17-7), the Fast Uplink Transition Protocol uses the neighbor list to send fast-transition requests on the stack port to stack members.
The switch sending the fast-transition request needs to do a fast transition to the forwarding state of a port that it has chosen as the root port, and it must obtain an acknowledgement from each stack switch before performing the fast transition.

Each switch in the stack determines if the sending switch is a better choice than itself to be the stack root of this spanning-tree instance by comparing the root, cost, and bridge ID. If the sending switch is the best choice as the stack root, each switch in the stack returns an acknowledgement; otherwise, it does not respond to the sending switch (drops the packet). The sending switch then has not received acknowledgements from all stack switches.

When acknowledgements are received from all stack switches, the Fast Uplink Transition Protocol on the sending switch immediately transitions its alternate stack-root port to the forwarding state. If acknowledgements from all stack switches are not obtained by the sending switch, the normal spanning-tree transitions (blocking, listening, learning, and forwarding) take place, and the spanning-tree topology converges at its normal rate (2 * forward-delay time + max-age time).

The Fast Uplink Transition Protocol is implemented on a per-VLAN basis and affects only one spanning-tree instance at a time.

**Events that Cause Fast Convergence**

Depending on the network event or failure, the CSUF fast convergence might or might not occur.

Fast convergence (less than 1 second under normal network conditions) occurs under these circumstances:

- The stack-root port link fails.
  - If two switches in the stack have alternate paths to the root, only one of the switches performs the fast transition.
- The failed link, which connects the stack root to the spanning-tree root, recovers.
- A network reconfiguration causes a new stack-root switch to be selected.
- A network reconfiguration causes a new port on the current stack-root switch to be chosen as the stack-root port.

The fast transition might not occur if multiple events occur simultaneously. For example, if a stack member switch is powered off, and at the same time, the link connecting the stack root to the spanning-tree root comes back up, the normal spanning-tree convergence occurs.

Normal spanning-tree convergence (30 to 40 seconds) occurs under these conditions:

- The stack-root switch is powered off, or the software failed.
- The stack-root switch, which was powered off or failed, is powered on.
- A new switch, which might become the stack root, is added to the stack.
- A switch other than the stack root is powered off or failed.
- A link fails between stack ports on the multidrop backbone.
Limitations

These limitations apply to CSUF:

- CSUF uses the GigaStack GBIC and runs on all Catalyst 3550 switches, all Catalyst 3500 XL switches, Catalyst 2950 switches with GBIC module slots, and only on modular Catalyst 2900 XL switches that have the 1000BASE-X module installed.
- Up to nine stack switches can be connected through their stack ports to the multidrop backbone. Only one stack port per switch is supported.
- Each stack switch can be connected to the spanning-tree backbone through one uplink.
- If the stack consists of a mixture of Catalyst 3550, Catalyst 3500 XL, Catalyst 2950, and Catalyst 2900 XL switches, up to 64 VLANs with spanning tree enabled are supported. If the stack consists of only Catalyst 3550 switches, up to 128 VLANs with spanning tree enabled are supported.

Connecting the Stack Ports

A fast transition occurs across the stack of switches if the multidrop backbone connections are a continuous link from one GigaStack GBIC to another as shown in the top half of Figure 17-6. The bottom half of Figure 17-6 shows how to connect the GigaStack GBIC to achieve a normal convergence time.

You should follow these guidelines:

- A switch supports only one stack port.
- Do not connect alternate stack-root ports to stack ports.
- Connect all stack ports on the switch stack to the multidrop backbone.
- You can connect the open ports on the top and bottom GigaStack GBICs within the same stack to form a redundant link.
Figure 17-6  GigaStack GBIC Connections and Spanning-Tree Convergence

GigaStack GBIC connection for fast convergence

Catalyst 3550-12T

Catalyst 3508G XL

Catalyst 2950G-24

Catalyst 2950G-12

GigaStack GBIC connection for normal convergence

Catalyst 2950G-12

Catalyst 2950G-24

Catalyst 2950G-48
Understanding BackboneFast

BackboneFast detects indirect failures in the core of the backbone. BackboneFast is a complementary technology to the UplinkFast feature, which responds to failures on links directly connected to access switches. BackboneFast optimizes the maximum-age timer, which determines the amount of time the switch stores protocol information received on an interface. When a switch receives an inferior BPDU from the designated port of another switch, the BPDU is a signal that the other switch might have lost its path to the root, and BackboneFast tries to find an alternate path to the root.

BackboneFast, which is enabled by using the `spanning-tree backbonefast` global configuration command, starts when a root port or blocked port on a switch receives inferior BPDUs from its designated bridge. An inferior BPDU identifies one switch as both the root bridge and the designated bridge. When a switch receives an inferior BPDU, it means that a link to which the switch is not directly connected (an indirect link) has failed (that is, the designated bridge has lost its connection to the root switch). Under spanning-tree rules, the switch ignores inferior BPDUs for the configured maximum aging time specified by the `spanning-tree max-age` global configuration command. The BackboneFast feature is supported only when the switch is running PVST. It is not supported when the switch is running PVRST.

The switch tries to determine if it has an alternate path to the root switch. If the inferior BPDU arrives on a blocked port, the root port and other blocked ports on the switch become alternate paths to the root switch. (Self-looped ports are not considered alternate paths to the root switch.) If the inferior BPDU arrives on the root port, all blocked ports become alternate paths to the root switch. If the inferior BPDU arrives on the root port and there are no blocked ports, the switch assumes that it has lost connectivity to the root switch, causes the maximum aging time on the root port to expire, and becomes the root switch according to normal spanning-tree rules.

If the switch has alternate paths to the root switch, it uses these alternate paths to send a root link query (RLQ) request. The switch sends the RLQ request on all alternate paths to the root switch and waits for an RLQ reply from other switches in the network. If the switch determines that it still has an alternate path to the root, it expires the maximum aging time on the port that received the inferior BPDU. If all the alternate paths to the root switch indicate that the switch has lost connectivity to the root switch, the switch expires the maximum aging time on the port that received the RLQ reply. If one or more alternate paths can still connect to the root switch, the switch makes all ports on which it received an inferior BPDU its designated ports and moves them from the blocking state (if they were in the blocking state), through the listening and learning states, and into the forwarding state.

Figure 17-7 shows an example topology with no link failures. Switch A, the root switch, connects directly to Switch B over link L1 and to Switch C over link L2. The Layer 2 interface on Switch C that connects directly to Switch B is in the blocking state.
Understanding Optional Spanning-Tree Features

If link L1 fails as shown in Figure 17-8, Switch C cannot detect this failure because it is not connected directly to link L1. However, because Switch B is directly connected to the root switch over L1, it detects the failure, elects itself the root, and begins sending BPDUs to Switch C, identifying itself as the root. When Switch C receives the inferior BPDUs from Switch B, Switch C assumes that an indirect failure has occurred. At that point, BackboneFast allows the blocked port on Switch C to move immediately to the listening state without waiting for the maximum aging time for the port to expire. BackboneFast then transitions the Layer 2 interface on Switch C to the forwarding state, providing a path from Switch B to Switch A. This switchover takes approximately 30 seconds, twice the Forward Delay time if the default Forward Delay time of 15 seconds is set. Figure 17-8 shows how BackboneFast reconfigures the topology to account for the failure of link L1.

If a new switch is introduced into a shared-medium topology as shown in Figure 17-9, BackboneFast is not activated because the inferior BPDUs did not come from the recognized designated bridge (Switch B). The new switch begins sending inferior BPDUs that indicate it is the root switch. However, the other switches ignore these inferior BPDUs, and the new switch learns that Switch B is the designated bridge to Switch A, the root switch.
Understanding EtherChannel Guard

You can use EtherChannel guard to detect an EtherChannel misconfiguration between the switch and a connected device. A misconfiguration can occur if the switch interfaces are configured in an EtherChannel, but the interfaces on the other device are not. A misconfiguration can also occur if the channel parameters are not the same at both ends of the EtherChannel. For EtherChannel configuration guidelines, see the “EtherChannel Configuration Guidelines” section on page 29-8.

If the switch detects a misconfiguration on the other device, EtherChannel guard places in the switch interfaces in the error-disabled state, and this error message appears:

```
PM-4-ERR_DISABLE: Channel-misconfig error detected on [chars], putting [chars] in err-disable state.
```

If your switch is running PVST, PVRST, or MSTP, you can enable this feature by using the spanning-tree etherchannel guard misconfig global configuration command.

Understanding Root Guard

The Layer 2 network of a service provider (SP) can include many connections to switches that are not owned by the SP. In such a topology, the spanning tree can reconfigure itself and select a customer switch as the root switch, as shown in Figure 17-10. You can avoid this situation by configuring root guard on SP switch interfaces that connect to switches in your customer’s network. If spanning-tree calculations cause an interface in the customer network to be selected as the root port, root guard then places the interface in the root-inconsistent (blocked) state to prevent the customer’s switch from becoming the root switch or being in the path to the root.

If a switch outside the SP network becomes the root switch, the interface is blocked (root-inconsistent state), and spanning tree selects a new root switch. The customer’s switch does not become the root switch and is not in the path to the root.
If the switch is operating in multiple spanning-tree (MST) mode, root guard forces the port to be a designated port. If a boundary port is blocked in an internal spanning-tree (IST) instance because of root guard, the port also is blocked in all MST instances. A boundary port is a port that connects to a LAN, the designated switch of which is either an 802.1D switch or a switch with a different MST region configuration.

Root guard enabled on an interface applies to all the VLANs to which the interface belongs. VLANs can be grouped and mapped to an MST instance.

If your switch is running PVST, PVRST, or MSTP, you can enable this feature by using the `spanning-tree guard root` interface configuration command.

**Caution**

Misuse of the root-guard feature can cause a loss of connectivity.

**Figure 17-10 Root Guard in a Service-Provider Network**

Understanding Loop Guard

You can use loop guard to prevent alternate or root ports from becoming designated ports because of a failure that leads to a unidirectional link. This feature is most effective when it is configured on the entire switched network.

If your switch is running PVST, PVRST, or MSTP, you can enable this feature by using the `spanning-tree loopguard default` global configuration command.

When the switch is operating in PVST mode, loop guard prevents alternate and root ports from becoming designated ports, and spanning tree does not send BPDUs on root or alternate ports.

When the switch is operating in MST mode, BPDUs are not sent on nonboundary ports only if the port is blocked by loop guard in all MST instances. On a boundary port, loop guard blocks the port in all MST instances.
Configuring Optional Spanning-Tree Features

These sections describe how to configure optional spanning-tree features:

- Default Optional Spanning-Tree Configuration, page 17-14
- Enabling Port Fast, page 17-14
- Enabling BPDU Guard, page 17-15
- Enabling BPDU Filtering, page 17-16
- Enabling UplinkFast for Use with Redundant Links, page 17-17
- Enabling Cross-Stack UplinkFast, page 17-18
- Enabling BackboneFast, page 17-19
- Enabling EtherChannel Guard, page 17-19
- Enabling Root Guard, page 17-20
- Enabling Loop Guard, page 17-20

Default Optional Spanning-Tree Configuration

Table 17-1 shows the default optional spanning-tree configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Fast, BPDU filtering, BPDU guard</td>
<td>Globally disabled (unless they are individually configured per interface).</td>
</tr>
<tr>
<td>UplinkFast</td>
<td>Globally disabled.</td>
</tr>
<tr>
<td>CSUF</td>
<td>Disabled on all interfaces.</td>
</tr>
<tr>
<td>BackboneFast</td>
<td>Globally disabled.</td>
</tr>
<tr>
<td>EtherChannel guard</td>
<td>Globally enabled.</td>
</tr>
<tr>
<td>Root guard</td>
<td>Disabled on all interfaces.</td>
</tr>
<tr>
<td>Loop guard</td>
<td>Disabled on all interfaces.</td>
</tr>
</tbody>
</table>

Enabling Port Fast

A port with the Port Fast feature enabled is moved directly to the spanning-tree forwarding state without waiting for the standard forward-time delay.

⚠️ Caution

Use Port Fast only when connecting a single end station to an access or trunk port. Enabling this feature on a port connected to a switch or hub could prevent spanning tree from detecting and disabling loops in your network, which could cause broadcast storms and address-learning problems.

If you enable the voice VLAN feature, the Port Fast feature is automatically enabled. When you disable voice VLAN, the Port Fast feature is not automatically disabled. For more information, see Chapter 13, “Configuring Voice VLAN.”
You can enable this feature if your switch is running PVST, PVRST, or MSTP.

Beginning in privileged EXEC mode, follow these steps to enable Port Fast:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify an interface to configure.</td>
</tr>
<tr>
<td>3</td>
<td>spanning-tree portfast [trunk]</td>
<td>Enable Port Fast on an access port connected to a single workstation or server. By specifying the <strong>trunk</strong> keyword, you can enable Port Fast on a trunk port.</td>
</tr>
</tbody>
</table>

**Caution** Make sure that there are no loops in the network between the trunk port and the workstation or server before you enable Port Fast on a trunk port.

By default, Port Fast is disabled on all ports.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>show spanning-tree interface interface-id portfast</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

You can use the **spanning-tree portfast default** global configuration command to globally enable the Port Fast feature on all nontrunking ports.

To disable the Port Fast feature, use the **spanning-tree portfast disable** interface configuration command.

---

**Enabling BPDU Guard**

When you globally enable BPDU guard on ports that are Port Fast-enabled (the ports are in a Port Fast-operational state), spanning tree shuts down Port Fast-enabled ports that receive BPDUs.

In a valid configuration, Port Fast-enabled ports do not receive BPDUs. Receiving a BPUO on a Port Fast-enabled port signals an invalid configuration, such as the connection of an unauthorized device, and the BPDU guard feature puts the port in the error-disabled state. The BPDU guard feature provides a secure response to invalid configurations because you must manually put the port back in service. Use the BPDU guard feature in a service-provider network to prevent an access port from participating in the spanning tree.

**Caution** Configure Port Fast only on ports that connect to end stations; otherwise, an accidental topology loop could cause a data packet loop and disrupt switch and network operation.

You can also use the **spanning-tree bpduguard enable** interface configuration command to enable BPDU guard on any port without also enabling the Port Fast feature. When the port receives a BPDU, it is put in the error-disabled state.
You can enable the BPDU guard feature if your switch is running PVST, PVRST, or MSTP.

Beginning in privileged EXEC mode, follow these steps to globally enable the BPDU guard feature:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: spanning-tree portfast bpduguard default</td>
<td>Globally enable BPDU guard. By default, BPDU guard is disabled.</td>
</tr>
<tr>
<td>Step 3: interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface connected to an end station.</td>
</tr>
<tr>
<td>Step 4: spanning-tree portfast</td>
<td>Enable the Port Fast feature.</td>
</tr>
<tr>
<td>Step 5: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6: show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 7: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable BPDU guard, use the **no spanning-tree portfast bpduguard default** global configuration command.

You can override the setting of the **no spanning-tree portfast bpduguard default** global configuration command by using the **spanning-tree bpduguard enable** interface configuration command.

### Enabling BPDU Filtering

When you globally enable BPDU filtering on Port Fast-enabled ports, it prevents ports that are in a Port Fast-operational state from sending or receiving BPDUs. The ports still send a few BPDUs at link-up before the switch begins to filter outbound BPDUs. You should globally enable BPDU filtering on a switch so that hosts connected to these ports do not receive BPDUs. If a BPDU is received on a Port Fast-enabled port, the port loses its Port Fast-operational status, and BPDU filtering is disabled.

**Caution**

Configure Port Fast only on ports that connect to end stations; otherwise, an accidental topology loop could cause a data packet loop and disrupt switch and network operation.

You can also use the **spanning-tree bpdufilter enable** interface configuration command to enable BPDU filtering on any port without also enabling the Port Fast feature. This command prevents the port from sending or receiving BPDUs.

**Caution**

Enabling BPDU filtering on an interface is the same as disabling spanning tree on it and can result in spanning-tree loops.

You can enable the BPDU filtering feature if your switch is running PVST, PVRST, or MSTP.
Beginning in privileged EXEC mode, follow these steps to globally enable the BPDU filtering feature:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1  configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2  spanning-tree portfast bpdufilter default</td>
<td>Globally enable BPDU filtering. By default, BPDU filtering is disabled.</td>
</tr>
<tr>
<td>Step 3  interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface connected to an end station.</td>
</tr>
<tr>
<td>Step 4  spanning-tree portfast</td>
<td>Enable the Port Fast feature.</td>
</tr>
<tr>
<td>Step 5  end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6  show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 7  copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable BPDU filtering, use the `no spanning-tree portfast bpdufilter default` global configuration command.

You can override the setting of the `no spanning-tree portfast bpdufilter default` global configuration command by using the `spanning-tree bpdufilter enable` interface configuration command.

### Enabling UplinkFast for Use with Redundant Links

UplinkFast cannot be enabled on VLANs that have been configured for switch priority. To enable UplinkFast on a VLAN with switch priority configured, first restore the switch priority on the VLAN to the default value by using the `no spanning-tree vlan vlan-id priority` global configuration command.

**Note**

When you enable UplinkFast, it affects all VLANs on the switch. You cannot configure UplinkFast on an individual VLAN.

The UplinkFast feature is supported only when the switch is running PVST. It is not supported when the switch is running PVRST.

Beginning in privileged EXEC mode, follow these steps to enable UplinkFast:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1  configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
(Optional) For `pkts-per-second`, the range is 0 to 32000 packets per second; the default is 150. 
If you set the rate to 0, station-learning frames are not generated, and the spanning-tree topology converges more slowly after a loss of connectivity. |
| Step 3  end                       | Return to privileged EXEC mode.                   |
| Step 4  show spanning-tree summary | Verify your entries.                              |
| Step 5  copy running-config startup-config | (Optional) Save your entries in the configuration file. |
Configuring Optional Spanning-Tree Features

When UplinkFast is enabled, the switch priority of all VLANs is set to 49152. If you change the path cost to a value less than 3000 and you enable UplinkFast or UplinkFast is already enabled, the path cost of all interfaces and VLAN trunks is increased by 3000 (if you change the path cost to 3000 or above, the path cost is not altered). The changes to the switch priority and the path cost reduces the chance that the switch will become the root switch.

When UplinkFast is disabled, the switch priorities of all VLANs and path costs of all interfaces are set to default values if you did not modify them from their defaults.

To return the update packet rate to the default setting, use the `no spanning-tree uplinkfast max-update-rate` global configuration command. To disable UplinkFast, use the `no spanning-tree uplinkfast` command.

Enabling Cross-Stack UplinkFast

Before enabling CSUF, make sure your stack switches are properly connected. For more information, see the “Connecting the Stack Ports” section on page 17-8.

The CSUF feature is supported only when the switch is running PVST. It is not supported when the switch is running PVRST.

Beginning in privileged EXEC mode, follow these steps to enable CSUF:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree uplinkfast [max-update-rate pkts-per-second]</td>
<td>Enable UplinkFast on the switch. (Optional) For <code>max-update-rate pkts-per-second</code>, specify the number of packets per second at which update packets are sent. The range is 0 to 65535; the default is 150 packets per second.</td>
</tr>
<tr>
<td>Step 1</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the GBIC interface on which to enable CSUF.</td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree stack-port</td>
<td>Enable CSUF on only one stack-port GBIC interface. The stack port connects to the GigaStack GBIC multidrop backbone. If you try to enable CSUF on a Fast Ethernet or a Gigabit-capable Ethernet port, you receive an error message. If CSUF is already enabled on an interface and you try to enable it on another interface, you receive an error message. You must disable CSUF on the first interface before enabling it on a new interface. Use this command only on access switches.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable CSUF on an interface, use the `no spanning-tree stack-port` interface configuration command. To disable UplinkFast on the switch and all its VLANs, use the `no spanning-tree uplinkfast` global configuration command.
**Enabling BackboneFast**

You can enable BackboneFast to detect indirect link failures and to start the spanning-tree reconfiguration sooner.

---

**Note**

If you use BackboneFast, you must enable it on all switches in the network. BackboneFast is not supported on Token Ring VLANs. This feature is supported for use with third-party switches.

The BackboneFast feature is supported only when the switch is running PVST. It is not supported when the switch is running PVRST.

Beginning in privileged EXEC mode, follow these steps to enable BackboneFast:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> spanning-tree backbonefast</td>
<td>Enable BackboneFast.</td>
</tr>
<tr>
<td><strong>Step 3</strong> end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong> show spanning-tree summary</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 5</strong> copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable the BackboneFast feature, use the `no spanning-tree backbonefast` global configuration command.

**Enabling EtherChannel Guard**

You can enable EtherChannel guard to detect an EtherChannel misconfiguration that causes a loop. You can enable this feature if your switch is running PVST, PVRST, or MSTP.

Beginning in privileged EXEC mode, follow these steps to enable EtherChannel guard:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> spanning-tree etherchannel guard misconfig</td>
<td>Enable EtherChannel guard.</td>
</tr>
<tr>
<td><strong>Step 3</strong> end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong> show spanning-tree summary</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 5</strong> copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable the EtherChannel guard feature, use the `no spanning-tree etherchannel guard misconfig` global configuration command.
You can use the `show interfaces status err-disabled` privileged EXEC command to determine which switch ports are disabled because of an EtherChannel misconfiguration. On the remote device, you can enter the `show etherchannel summary` privileged EXEC command to verify the EtherChannel configuration.

After the configuration is corrected, enter the `shutdown` and `no shutdown` interface configuration commands on the port-channel interfaces that were misconfigured.

### Enabling Root Guard

Root guard enabled on an interface applies to all the VLANs to which the interface belongs.

Do not enable the root guard on interfaces to be used by the UplinkFast feature. With UplinkFast, the backup interfaces (in the blocked state) replace the root port in the case of a failure. However, if root guard is also enabled, all the backup interfaces used by the UplinkFast feature are placed in the root-inconsistent state (blocked) and are prevented from reaching the forwarding state.

---

**Note**

You cannot enable both root guard and loop guard at the same time.

You can enable this feature if your switch is running PVST, PVRST, or MSTP.

Beginning in privileged EXEC mode, follow these steps to enable root guard on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td>Enter interface configuration mode, and specify an interface to configure.</td>
</tr>
<tr>
<td><code>spanning-tree guard root</code></td>
<td>Enable root guard on the interface. By default, root guard is disabled on all interfaces.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable root guard, use the `no spanning-tree guard` interface configuration command.

### Enabling Loop Guard

You can use loop guard to prevent alternate or root ports from becoming designated ports because of a failure that leads to a unidirectional link. This feature is most effective when it is configured on the entire switched network. Loop guard operates only on ports that are considered point-to-point by the spanning tree.

---

**Note**

You cannot enable both loop guard and root guard at the same time.

You can enable this feature if your switch is running PVST, PVRST, or MSTP.
Beginning in privileged EXEC mode, follow these steps to enable loop guard:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>show spanning-tree active</td>
<td>Determine which ports are alternate or root ports.</td>
</tr>
<tr>
<td></td>
<td>or show spanning-tree mst</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>3</td>
<td>spanning-tree loopguard default</td>
<td>Enable loop guard. By default, loop guard is disabled.</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To globally disable loop guard, use the `no spanning-tree loopguard default` global configuration command. You can override the setting of the `no spanning-tree loopguard default` global configuration command by using the `spanning-tree guard loop` interface configuration command.

**Displaying the Spanning-Tree Status**

To display the spanning-tree status, use one or more of the privileged EXEC commands in Table 17-2:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show spanning-tree active</td>
<td>Displays spanning-tree information on active interfaces only.</td>
</tr>
<tr>
<td>show spanning-tree detail</td>
<td>Displays a detailed summary of interface information.</td>
</tr>
<tr>
<td>show spanning-tree interface interface-id</td>
<td>Displays spanning-tree information for the specified interface.</td>
</tr>
<tr>
<td>show spanning-tree mst interface interface-id</td>
<td>Displays MST information for the specified interface.</td>
</tr>
<tr>
<td>show spanning-tree summary [totals]</td>
<td>Displays a summary of port states or displays the total lines of the spanning-tree state section.</td>
</tr>
</tbody>
</table>

For information about other keywords for the `show spanning-tree` privileged EXEC command, refer to the command reference for this release.
Configuring the DHCP Option 82 for Subscriber Identification

This chapter describes how to configure the Dynamic Host Configuration Protocol (DHCP) relay agent information (option 82) feature. This feature enables the DHCP relay agent (Catalyst 3550 switch) to include information about itself and the attached client when forwarding DHCP requests from a DHCP client to a DHCP server.

The DHCP server can use this information to assign IP addresses, perform access control, and set quality of service (QoS) and security policies (or other parameter-assignment policies) for each subscriber of a service-provider network.

For complete syntax and usage information for the commands used in this chapter, refer to the “IP Addressing and Services” section in the Cisco IOS IP and IP Routing Command Reference for Release 12.1.

This chapter consists of these sections:
- Understanding the DHCP and Option 82 Subscriber Identification, page 18-1
- Configuring the DHCP Relay Agent, page 18-3
- Displaying the DHCP Information, page 18-7

Understanding the DHCP and Option 82 Subscriber Identification

The DHCP is widely used in LAN environments to dynamically assign host IP addresses from a centralized server, which significantly reduces the overhead of administrating IP addresses. The DHCP also helps conserve the limited IP address space because IP addresses no longer need to be permanently assigned to hosts; only those hosts that are connected to the network require IP addresses.
In the residential, metropolitan Ethernet-access environment, the DHCP can centrally manage the IP address assignment for a large number of subscribers. By enabling the DHCP option-82 feature on the switch, a subscriber is identified by the switch port through which it connects to the network (rather than by its MAC address). Multiple hosts on the subscriber LAN can be connected to the same port on the access switch and are uniquely identified.

Figure 18-1 is an example of a metropolitan Ethernet network in which a centralized DHCP server assigns IP addresses to subscribers connected to the Catalyst 3550 switch at the access layer. Because the DHCP clients and their associated DHCP servers do not reside on the same IP network or subnet, a DHCP relay agent (the Catalyst 3550 switch) is configured with a helper address to enable broadcast forwarding and to transfer DHCP messages between the clients and the server.

With the DHCP option-82 feature enabled on the switch, port-to-port DHCP broadcast isolation is achieved when the client ports are within a single VLAN. During client-to-server exchanges, broadcast requests from clients connected to VLAN access ports are intercepted by the relay agent and are not flooded to other clients on the same VLAN. The relay agent forwards the request to the DHCP server. During server-to-client exchanges, the DHCP server sends a broadcast reply that contains the option-82 field. The relay agent uses this information to identify which port connects to the requesting client and avoids forwarding the reply to the entire VLAN.

When you enable the DHCP relay agent option 82 on the switch, these events occur:

- The host (DHCP client) generates a DHCP request and broadcasts it on the network.
- The switch (DHCP relay agent) intercepts the broadcast DHCP request packet and inserts the relay agent information option (option 82) in the packet. The relay information option contains the switch’s MAC address (the remote ID suboption) and the port SNMP ifindex from which the packet is received (circuit ID suboption).
- The switch forwards the DHCP request that includes the option-82 field to the DHCP server.
• The DHCP server receives the packet. If the server is option-82 capable, it might use the remote ID, the circuit ID, or both to assign IP addresses and implement policies, such as restricting the number of IP addresses that can be assigned to a single remote ID or circuit ID. Then the DHCP server echoes the option-82 field in the DHCP reply.

If the server does not support option 82, it ignores the option and does not echo it in the reply.

• The DHCP server unicasts the reply to the relay agent. The relay agent makes sure that the packet is destined for it by checking the IP destination address in the packet, which is the same as the Layer 3 interface where the `ip helper-address` interface configuration command is configured. The relay agent removes the option-82 field and forwards the packet to the switch port that connects to the DHCP client, which sent the DHCP request.

### Configuring the DHCP Relay Agent

These sections describe how to configure the DHCP relay agent and option 82 on your switch:

- Default DHCP Configuration, page 18-3
- DHCP Configuration Guidelines, page 18-4
- Enabling the DHCP Relay Agent and Relay Agent Information, page 18-4 (required)
- Validating the Relay Agent Information Option 82, page 18-4 (optional)
- Configuring the Reforwarding Policy, page 18-5 (optional)
- Specifying the Packet Forwarding Address, page 18-5 (optional)
- Suppressing DHCP Broadcasts and Achieving Port-to-Port Isolation, page 18-7 (optional)

### Default DHCP Configuration

Table 18-1 shows the default DHCP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP server and DHCP relay agent</td>
<td>Enabled</td>
</tr>
<tr>
<td>DHCP packet forwarding address (ip helper-address)</td>
<td>None configured</td>
</tr>
<tr>
<td>Insert and remove DHCP relay information (option-82 field) in forwarded request messages from the DHCP client to the server</td>
<td>Disabled</td>
</tr>
<tr>
<td>Check (validate) the relay agent information option in forwarded reply messages from the DHCP server to the client</td>
<td>Enabled (invalid messages are dropped)</td>
</tr>
<tr>
<td>DHCP relay agent reforwarding policy</td>
<td>Replace (overwrite) existing relay agent information</td>
</tr>
</tbody>
</table>
DHCP Configuration Guidelines

Before configuring the DHCP relay agent on your switch, make sure to configure the device that is acting as the DHCP server. For example, you must specify the IP addresses that the DHCP server can assign or exclude, configure DHCP options for devices, or set up the DHCP database agent.

If your DHCP server is a Cisco device, refer to the “IP Addressing and Services” section in the “Configuring DHCP” chapter of the Cisco IOS IP and IP Routing Configuration Guide for Release 12.1. Otherwise, refer to the documentation that shipped with the server.

Enabling the DHCP Relay Agent and Relay Agent Information

Beginning in privileged EXEC mode, follow these steps to enable the DHCP relay agent and the relay agent information on the switch. This procedure is required.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 service dhcp</td>
<td>Enable the DHCP server and relay agent on your switch. By default, this feature is enabled.</td>
</tr>
<tr>
<td>Step 3 ip dhcp relay information option</td>
<td>Enable the switch to insert and remove DHCP relay information (option-82 field) in forwarded DHCP request messages to the DHCP server. By default, this feature is disabled.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable the DHCP server and relay agent, use the no service dhcp global configuration command. To disable the insertion and removal of the option-82 field, use the no ip dhcp relay information option global configuration command.

Validating the Relay Agent Information Option 82

By default, the switch checks that the option-82 field in DHCP reply packet it receives from the DHCP server is valid. If an invalid message is received, the switch drops it. If a valid message is received, the switch removes the option-82 field and forwards the packet.

If you want to disable this feature, use the no ip dhcp relay information check global configuration command. When disabled, the switch does not check the option-82 field for validity, but still removes the option from the packet and forwards it.
Chapter 18 Configuring the DHCP Option 82 for Subscriber Identification

Configuring the DHCP Relay Agent

Note

If the switch receives a packet that contains the option-82 field from a DHCP client and the information checking feature is enabled, the switch drops the packet because it is invalid. However, in some instances, you might configure a client with the option-82 field. In this situation, you should disable the information-check feature so that the switch does not remove the option-82 field from the packet. You can configure the action that the switch takes when it receives a packet with existing option-82 information by using the `ip dhcp relay information policy` global configuration command. For more information, see the “Configuring the Reforwarding Policy” section on page 18-5.

Configuring the Reforwarding Policy

By default, the reforwarding policy of the switch is to replace existing relay information in packets received from DHCP clients with switch DHCP relay information. If the default action is not suitable for your network configuration, you can use the `ip dhcp relay information policy {drop | keep | replace}` global configuration command to change it.

Note

To ensure the correct operation of the reforwarding policy, make sure to disable the relay agent information check by using the `no ip dhcp relay information check` global configuration command.

Beginning in privileged EXEC mode, follow these steps to change the action of the reforwarding policy. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>`ip dhcp relay information policy {drop</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>end</code></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>show running-config</code></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>copy running-config startup-config</code></td>
</tr>
</tbody>
</table>

To return to the default reforwarding policy, use the `no ip dhcp relay information policy` global configuration command.

Specifying the Packet Forwarding Address

A DHCP relay agent is any device that forwards DHCP packets between clients and servers when they are not on the same physical subnet. Relay agent forwarding is distinct from the normal forwarding of an IP router, where IP datagrams are transparently switched between networks. By contrast, relay agents receive DHCP messages and then generate a new DHCP message to send on another interface.
If the DHCP server and the DHCP clients are on different networks or subnets, you must configure the switch with the `ip helper-address address` interface configuration command. The general rule is to configure the command on the Layer 3 interface closest to the client. The address used in the `ip helper-address` command can be a specific DHCP server IP address, or it can be the network address if other DHCP servers are on the destination network segment. Using the network address enables any DHCP server to respond to requests.

Beginning in privileged EXEC mode, follow these steps to specify the packet forwarding address. This procedure is optional.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> interface vlan <code>vlan-id</code></td>
<td>Enter interface configuration mode, and create a switch virtual interface.</td>
</tr>
<tr>
<td><strong>Step 3</strong> <code>ip address ip-address subnet-mask</code></td>
<td>Configure the interface with an IP address and an IP subnet.</td>
</tr>
<tr>
<td><strong>Step 4</strong> <code>ip helper-address address</code></td>
<td>Specify the DHCP packet forwarding address. The helper address can be a specific DHCP server address, or it can be the network address if other DHCP servers are on the destination network segment. Using the network address enables other servers to respond to DHCP requests. If you have multiple servers, you can configure one helper address for each server.</td>
</tr>
<tr>
<td><strong>Step 5</strong> exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong> interface range <code>port-range</code></td>
<td>Configure multiple physical ports that are connected to the DHCP clients, and enter interface range configuration mode.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> interface <code>interface-id</code></td>
<td>Configure a single physical port that is connected to the DHCP client, and enter interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 7</strong> switchport mode access</td>
<td>Define the VLAN membership mode for the port.</td>
</tr>
<tr>
<td><strong>Step 8</strong> switchport access vlan <code>vlan-id</code></td>
<td>Assign the ports to the same VLAN as configured in Step 2.</td>
</tr>
<tr>
<td><strong>Step 9</strong> end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 10</strong> show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 11</strong> copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the DHCP packet forwarding address, use the `no ip helper-address address` interface configuration command.
Chapter 18  Configuring the DHCP Option 82 for Subscriber Identification

Displaying the DHCP Information

This example shows how to enable the DHCP server, the relay agent, and the insertion and removal of the DHCP relay information (option 82). It creates a switch virtual interface with VLAN ID 10, assigns it an IP address, and specifies the DHCP packet forwarding address of 30.0.0.2 (DHCP server address). Two interfaces (Gigabit Ethernet 0/1 and 0/2) that connect to the DHCP clients are configured as static access ports in VLAN 10 (see Figure 18-1 on page 18-2):

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# service dhcp
Switch(config)# ip dhcp relay information option
Switch(config)# interface vlan 10
Switch(config-if)# ip address 10.0.0.1 255.0.0.0
Switch(config-if)# ip helper-address 30.0.0.2
Switch(config-if)# exit
Switch(config)# interface range gigabitethernet0/1 - 2
Switch(config-if)# switchport mode access
Switch(config-if)# switchport access vlan 10
Switch(config-if)# exit

Suppressing DHCP Broadcasts and Achieving Port-to-Port Isolation

If a DHCP client requests broadcast replies from the DHCP server, the switch broadcasts these replies to all of its switch ports within the VLAN and attached LAN segments. However, in the metropolitan Ethernet environment, you must ensure security and provide total isolation among different subscribers.

To achieve total isolation of among between client ports so that one client cannot receive another client's traffic, you can configure each client port with the protected port feature by using the switchport protected interface configuration command. Protected ports ensure that there is no exchange of unicast, broadcast, or multicast traffic with any other switch port that is also a protected port.

For more information, see the “Configuring Protected Ports” section on page 20-5.

Displaying the DHCP Information

To display the status of the insertion and removal of the DHCP relay information option-82 field on all interfaces, use the show running-config privileged EXEC command.
Configuring IGMP Snooping and MVR

This chapter describes how to configure Internet Group Management Protocol (IGMP) snooping on your Catalyst 3550 switch, including an application of local IGMP snooping, Multicast VLAN Registration (MVR). It also includes procedures for controlling multicast group membership by using IGMP filtering.

Note
For complete syntax and usage information for the commands used in this chapter, refer to the switch command reference for this release and the Cisco IOS Release Network Protocols Command Reference, Part 1, for Release 12.1.

This chapter consists of these sections:
- Understanding IGMP Snooping, page 19-1
- Configuring IGMP Snooping, page 19-5
- Displaying IGMP Snooping Information, page 19-9
- Understanding Multicast VLAN Registration, page 19-12
- Configuring MVR, page 19-14
- Displaying MVR Information, page 19-18
- Configuring IGMP Filtering, page 19-19
- Displaying IGMP Filtering Configuration, page 19-23

Note
For MAC addresses that map to IP multicast groups, you can either manage them through features such as IGMP snooping and MVR, or you can use static MAC addresses. However, you cannot use both methods simultaneously. Therefore, before using IGMP snooping or MVR, you should remove all statically configured MAC addresses that map to IP multicast groups.

Understanding IGMP Snooping

Layer 2 switches can use IGMP snooping to constrain the flooding of multicast traffic by dynamically configuring Layer 2 interfaces so that multicast traffic is forwarded to only those interfaces associated with IP multicast devices. As the name implies, IGMP snooping requires the LAN switch to snoop on the IGMP transmissions between the host and the router and to keep track of multicast groups and member ports. When the switch receives an IGMP report from a host for a particular multicast group,
the switch adds the host port number to the forwarding table entry; when it receives an IGMP Leave Group message from a host, it removes the host port from the table entry. It also periodically deletes entries if it does not receive IGMP membership reports from the multicast clients.

Note

For more information on IP multicast and IGMP, refer to RFC 1112 and RFC 2236.

The multicast router (which could be a Catalyst 3550 switch with the enhanced multilayer software image) sends out periodic general queries to all VLANs. All hosts interested in this multicast traffic send join requests and are added to the forwarding table entry. The switch forwards only one join request per IP multicast group to the multicast router. It creates one entry per VLAN in the Layer 2 forwarding table for each MAC group from which it receives an IGMP join request.

Layer 2 multicast groups learned through IGMP snooping are dynamic. However, you can statically configure MAC multicast groups by using the `ip igmp snooping vlan static` global configuration command. If you specify group membership for a multicast group address statically, your setting supersedes any automatic manipulation by IGMP snooping. Multicast group membership lists can consist of both user-defined and IGMP snooping-learned settings.

If a port spanning-tree, a port group, or a VLAN ID change occurs, the IGMP snooping-learned multicast groups from this port on the VLAN are deleted.

**Joining a Multicast Group**

When a host connected to the switch wants to join an IP multicast group, it sends an unsolicited IGMP join message, specifying the IP multicast group to join. Alternatively, when the switch receives a general query from the router, it forwards the query to all ports in the VLAN. Hosts wanting to join the multicast group respond by sending a join message to the switch. The switch CPU creates a multicast forwarding-table entry for the group if it is not already present. The CPU also adds the interface where the join message was received to the forwarding-table entry. The host associated with that interface receives multicast traffic for that multicast group. See **Figure 19-1**.
Figure 19-1 Initial IGMP Join Message

Router A sends a general query to the switch, which forwards the query to ports 2 through 5, all members of the same VLAN. Host 1 wants to join multicast group 224.1.2.3 and multicasts an IGMP membership report (IGMP join message) to the group with the equivalent MAC destination address of 0x0100.5E01.0203. When the CPU receives the IGMP report multicast by Host 1, the CPU uses the information in the IGMP report to set up a forwarding-table entry, as shown in Table 19-1, that includes the port numbers of Host 1, the router, and the switch internal CPU.

Table 19-1 IGMP Snooping Forwarding Table

<table>
<thead>
<tr>
<th>Destination Address</th>
<th>Type of Packet</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100.5e00.0000</td>
<td>IGMP</td>
<td>0</td>
</tr>
<tr>
<td>0100.5e01.0203</td>
<td>!IGMP</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

Note that the switch hardware can distinguish IGMP information packets from other packets for the multicast group.

- The first entry in the table tells the switching engine to send IGMP packets to only the switch CPU. This prevents the CPU from becoming overloaded with multicast frames.
- The second entry tells the switching engine to send frames addressed to the 0x0100.5E01.0203 multicast MAC address that are not IGMP packets (!IGMP) to the router and to the host that has joined the group.

If another host (for example, Host 4) sends an unsolicited IGMP join message for the same group (Figure 19-2), the CPU receives that message and adds the port number of Host 4 to the forwarding table as shown in Table 19-2. Note that because the forwarding table directs IGMP messages to only the CPU, the message is not flooded to other ports on the switch. Any known multicast traffic is forwarded to the group and not to the CPU.
**Understanding IGMP Snooping**

Leaving a Multicast Group

The router sends periodic multicast general queries and the switch forwards these queries through all ports in the VLAN. Interested hosts respond to the queries. If at least one host in the VLAN wishes to receive multicast traffic, the router continues forwarding the multicast traffic to the VLAN. The switch forwards multicast group traffic to only those hosts listed in the forwarding table for that Layer 2 multicast group.

When hosts want to leave a multicast group, they can either silently leave, or they can send a leave message. When the switch receives a leave message from a host, it sends out a MAC-based general query to determine if any other devices connected to that interface are interested in traffic for the specific multicast group. The switch then updates the forwarding table for that MAC group so that only those hosts interested in receiving multicast traffic for the group are listed in the forwarding table. If the router receives no reports from a VLAN, it removes the group for the VLAN from its IGMP cache.

**Immediate-Leave Processing**

The switch uses IGMP snooping Immediate-Leave processing to remove from the forwarding table an interface that sends a leave message without the switch sending MAC-based general queries to the interface. The VLAN interface is pruned from the multicast tree for the multicast group specified in the original leave message. Immediate-Leave processing ensures optimal bandwidth management for all hosts on a switched network, even when multiple multicast groups are simultaneously in use.
You should only use the Immediate-Leave processing feature on VLANs where a single host is connected to each port. If Immediate Leave is enabled in VLANs where more than one host is connected to a port, some hosts might be inadvertently dropped. Immediate Leave is supported with only IGMP version 2 hosts.

## Configuring IGMP Snooping

IGMP snooping allows switches to examine IGMP packets and make forwarding decisions based on their content. To enable IGMP snooping on the switch to discover external multicast routers, the Layer 3 interfaces on the routers in the VLAN must already have been configured for multicast routing. For more information, see Chapter 33, “Configuring IP Multicast Routing.”

These sections describe how to configure IGMP snooping:

- Default IGMP Snooping Configuration, page 19-5
- Enabling or Disabling IGMP Snooping, page 19-5
- Setting the Snooping Method, page 19-6
- Configuring a Multicast Router Port, page 19-7
- Configuring a Host Staticaly to Join a Group, page 19-8
- Enabling IGMP Immediate-Leave Processing, page 19-9

## Default IGMP Snooping Configuration

Table 19-3 shows the default IGMP snooping configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP snooping</td>
<td>Enabled globally and per VLAN</td>
</tr>
<tr>
<td>Multicast routers</td>
<td>None configured</td>
</tr>
<tr>
<td>Multicast router learning (snooping) method</td>
<td>PIM-DVMRP</td>
</tr>
<tr>
<td>IGMP snooping Immediate Leave</td>
<td>Disabled</td>
</tr>
<tr>
<td>Static groups</td>
<td>None configured</td>
</tr>
</tbody>
</table>

## Enabling or Disabling IGMP Snooping

By default, IGMP snooping is globally enabled on the switch. When globally enabled or disabled, it is also enabled or disabled in all existing VLAN interfaces. IGMP snooping is by default enabled on all VLANs, but can be enabled and disabled on a per-VLAN basis. After you configure the VLAN interface for multicast routing, no configuration is needed for the switch to dynamically access external multicast routers by using IGMP snooping.

Global IGMP snooping overrides the VLAN IGMP snooping. If global snooping is disabled, you cannot enable VLAN snooping. If global snooping is enabled, you can enable or disable VLAN snooping.
Beginning in privileged EXEC mode, follow these steps to globally enable IGMP snooping on the switch:

**Command**	**Purpose**
Step 1 configure terminal | Enter global configuration mode.
Step 2 ip igmp snooping | Globally enable IGMP snooping in all existing VLAN interfaces.
Step 3 end | Return to privileged EXEC mode.
Step 4 copy running-config startup-config | (Optional) Save your entries in the configuration file.

To globally disable IGMP snooping on all VLAN interfaces, use the `no ip igmp snooping` global configuration command.

Beginning in privileged EXEC mode, follow these steps to enable IGMP snooping on a VLAN interface:

**Command**	**Purpose**
Step 1 configure terminal | Enter global configuration mode.
Step 2 ip igmp snooping vlan vlan-id | Enable IGMP snooping on the VLAN interface.
Step 3 end | Return to privileged EXEC mode.
Step 4 copy running-config startup-config | (Optional) Save your entries in the configuration file.

To disable IGMP snooping on a VLAN interface, use the `no ip igmp snooping vlan vlan-id` global configuration command for the specified VLAN number.

**Setting the Snooping Method**

Multicast-capable router ports are added to the forwarding table for every Layer 2 multicast entry. The switch learns of such ports through one of these methods:

- Snooping on IGMP queries, Protocol Independent Multicast (PIM) packets, and Distance Vector Multicast Routing Protocol (DVMRP) packets
- Listening to Cisco Group Management Protocol (CGMP) packets from other routers
- Statically connecting to a multicast router port with the `ip igmp snooping mrouter` global configuration command

You can configure the switch either to snoop on IGMP queries and PIM/DVMRP packets or to listen to CGMP self-join or proxy-join packets. By default, the switch snoops on PIM/DVMRP packets on all VLANs. To learn of multicast router ports through only CGMP packets, use the `ip igmp snooping vlan vlan-id mrouter learn cgmp` global configuration command. When this command is entered, the router listens to only CGMP self-join and CGMP proxy-join packets and no other CGMP packets. To learn of multicast router ports through only PIM-DVMRP packets, use the `ip igmp snooping vlan vlan-id mrouter learn pim-dvmrp` global configuration command.

**Note**

If you want to use CGMP as the learning method and no multicast routers in the VLAN are CGMP proxy-enabled, you must enter the `ip cgmp router-only` command to dynamically access the router. For more information, see Chapter 33, “Configuring IP Multicast Routing.”
Beginning in privileged EXEC mode, follow these steps to alter the method in which a VLAN interface dynamically accesses a multicast router:

**Command**	**Purpose**
**Step 1** | configure terminal
Enter global configuration mode.
**Step 2** | ip igmp snooping vlan vlan-id mrouter learn {cgmp | pim-dvmrp}
Enable IGMP snooping on a VLAN. The VLAN ID range is 1 to 4094. Specify the multicast router learning method:
- cgmp—Listen for CGMP packets. This method is useful for reducing control traffic.
- pim-dvmrp—Snoop on IGMP queries and PIM-DVMRP packets. This is the default.
**Step 3** | end
Return to privileged EXEC mode.
**Step 4** | show ip igmp snooping
Verify the configuration.
**Step 5** | copy running-config startup-config
(Optional) Save your entries in the configuration file.

This example shows how to configure IGMP snooping to use CGMP packets as the learning method:

```
Switch# configure terminal
Switch(config)# ip igmp snooping vlan 1 mrouter learn cgmp
Switch(config)# end
Switch(config)# show ip igmp snooping vlan 1
vlan 1

IGMP snooping is globally enabled
IGMP snooping is enabled on this Vlan
IGMP snooping immediate-leave is disabled on this Vlan
IGMP snooping mrouter learn mode is cgmp on this Vlan
IGMP snooping is running in IGMP_ONLY mode on this Vlan
```

To return to the default learning method, use the `no ip igmp snooping vlan vlan-id mrouter learn cgmp` global configuration command.

**Configuring a Multicast Router Port**

To add a multicast router port (add a static connection to a multicast router), use the `ip igmp snooping vlan mrouter` global configuration command on the switch.

**Note**
Static connections to multicast routers are supported only on switch ports.

Beginning in privileged EXEC mode, follow these steps to enable a static connection to a multicast router:

**Command**	**Purpose**
**Step 1** | configure terminal
Enter global configuration mode.
**Step 2** | ip igmp snooping vlan vlan-id mrouter interface interface-id
Specify the multicast router VLAN ID and specify the interface to the multicast router. The VLAN ID range is 1 to 4094.
**Step 3** | end
Return to privileged EXEC mode.
**Chapter 19      Configuring IGMP Snooping and MVR**

### Configuring IGMP Snooping

To remove a multicast router port from the VLAN, use the `no ip igmp snooping vlan vlan-id mrouter interface interface-id` global configuration command.

This example shows how to enable a static connection to a multicast router and verify the configuration:

```
Switch# configure terminal
Switch(config)# ip igmp snooping vlan 200 mrouter interface gigabitethernet0/2
Switch(config)# end
Switch# show ip igmp snooping mrouter vlan 200
 vlan ports
 -----+--
 200 Gi0/2(static)
```

### Configuring a Host Statically to Join a Group

Hosts or Layer 2 ports normally join multicast groups dynamically, but you can also statically configure a host on an interface.

Beginning in privileged EXEC mode, follow these steps to add a Layer 2 port as a member of a multicast group:

```
<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode</td>
</tr>
<tr>
<td>Step 2 ip igmp snooping vlan vlan-id static mac-address interface interface-id</td>
<td>Statically configure a Layer 2 port as a member of a multicast group:</td>
</tr>
<tr>
<td></td>
<td>• <code>vlan-id</code> is the multicast group VLAN ID.</td>
</tr>
<tr>
<td></td>
<td>• <code>mac-address</code> is the group MAC address.</td>
</tr>
<tr>
<td></td>
<td>• <code>interface-id</code> is the member port.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show ip igmp snooping mrouter vlan vlan-id</td>
<td>Verify that the member port is a member of the VLAN multicast group.</td>
</tr>
<tr>
<td>Step 5 show mac address-table multicast vlan vlan-id</td>
<td>Verify the member port and the MAC address</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
```

To remove the Layer 2 port from the multicast group, use the `no ip igmp snooping vlan vlan-id mrouter interface interface-id` global configuration command.

This example shows how to statically configure a host on an interface and verify the configuration:

```
Switch# configure terminal
Switch(config)# ip igmp snooping vlan 1 static 0100.5e00.0203 interface gigabitethernet0/1
Switch(config)# end
Switch# show mac address-table multicast vlan 1
 Vlan Mac Address Type Ports
 --- ----------- ---- ----
 1 0100.5e00.0203 USER Gi0/1
```
Enabling IGMP Immediate-Leave Processing

When you enable IGMP Immediate-Leave processing, the switch immediately removes a port when it detects an IGMP version 2 leave message on that port. You should use the Immediate-Leave feature only when there is a single receiver present on every port in the VLAN.

Immediate Leave is supported with only IGMP version 2 hosts.

Beginning in privileged EXEC mode, follow these steps to enable IGMP Immediate-Leave processing:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip igmp snooping vlan vlan-id immediate-leave</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show ip igmp snooping vlan vlan-id</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable IGMP Immediate-Leave on a VLAN, use the `no ip igmp snooping vlan vlan-id immediate-leave` global configuration command.

This example shows how to enable IGMP immediate-leave processing on VLAN 130 and verify the configuration:

```
Switch# configure terminal
Switch(config)# ip igmp snooping vlan 130 immediate-leave
Switch(config)# end
Switch# show ip igmp snooping vlan 130
vlan 130

IGMP snooping is globally enabled
IGMP snooping is enabled on this Vlan
IGMP snooping immediate-leave is enabled on this Vlan
IGMP snooping mrouter learn mode is pim-dvmrp on this Vlan
IGMP snooping is running in IGMP_ONLY mode on this Vlan
```

Displaying IGMP Snooping Information

You can display IGMP snooping information for dynamically learned and statically configured router ports and VLAN interfaces. You can also display MAC address multicast entries for a VLAN configured for IGMP snooping.

To display IGMP snooping information, use one or more of the privileged EXEC commands in Table 19-4.
Chapter 19  Configuring IGMP Snooping and MVR

Table 19-4  Commands for Displaying IGMP Snooping Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip igmp snooping [vlan vlan-id]</td>
<td>Display the snooping configuration information for all VLANs on the switch or for a specified VLAN. (Optional) Enter <code>vlan vlan-id</code> to display information for a single VLAN.</td>
</tr>
<tr>
<td>show ip igmp snooping mrouter [vlan vlan-id]</td>
<td>Display information on dynamically learned and manually configured multicast router interfaces. (Optional) Enter <code>vlan vlan-id</code> to display information for a single VLAN.</td>
</tr>
</tbody>
</table>
| show mac address-table multicast [vlan vlan-id] [user | igmp-snooping] [count] | Display the Layer 2 MAC address table entries for a VLAN. The keywords are all optional and limit the display as shown:  
  • `vlan vlan-id`—Displays only the specified multicast group VLAN.  
  • `user`—Displays only the user-configured multicast entries.  
  • `igmp-snooping`—Displays only entries learned through IGMP snooping.  
  • `count`—Displays only the total number of entries for the selected criteria, not the actual entries. |

This is an example of output from the `show ip igmp snooping` privileged EXEC command for all VLAN interfaces on the switch:

```
Switch# show ip igmp snooping
vlan 1

IGMP snooping is globally enabled
IGMP snooping is enabled on this Vlan
IGMP snooping immediate-leave is disabled on this Vlan
IGMP snooping mrouter learn mode is pim-dvmrp on this Vlan
IGMP snooping is running in IGMP_ONLY mode on this Vlan
vlan 2

IGMP snooping is globally enabled
IGMP snooping is enabled on this Vlan
IGMP snooping immediate-leave is disabled on this Vlan
IGMP snooping mrouter learn mode is pim-dvmrp on this Vlan
IGMP snooping is running in IGMP_ONLY mode on this Vlan
vlan 10

IGMP snooping is globally enabled
IGMP snooping is enabled on this Vlan
IGMP snooping immediate-leave is disabled on this Vlan
IGMP snooping mrouter learn mode is pim-dvmrp on this Vlan
IGMP snooping is running in IGMP_ONLY mode on this Vlan
```
This is an example of output from the `show ip igmp snooping` privileged EXEC command for a specific VLAN interface:

```
Switch# show ip igmp snooping vlan 1
vlan 1

IGMP snooping is globally enabled
IGMP snooping is disabled on this Vlan
IGMP snooping immediate-leave is disabled on this Vlan
IGMP snooping mrouter learn mode is pim-dvmrp on this Vlan
```

This is an example of output from the `show ip igmp snooping mrouter` privileged EXEC command for VLAN 1:

```
Switch# show ip igmp snooping mrouter vlan 1
Vlan ports
---- -----
1 Gi0/1(dynamic)
1 Gi0/2(dynamic)
```

This example shows how to display the Layer 2 multicast entries for VLAN 1:

```
Switch# show mac address-table multicast vlan 1
vlan mac address type ports
-------+---------------+--------+---------+---+--------------------------------
1 0100.5e02.0203 user Gi0/1,Gi0/2
1 0100.5e00.0127 igmp Gi0/1,Gi0/2
1 0100.5e00.0128 user Gi0/1,Gi0/2
1 0100.5e00.0001 igmp Gi0/1,Gi0/2
```

This is an example of output from the `show mac address-table multicast count` privileged EXEC command for the switch:

```
Switch# show mac address-table multicast count
Multicast MAC Entries for all vlans: 10
```

This is an example of output from the `show mac address-table multicast count` privileged EXEC command for a VLAN:

```
Switch# show mac address-table multicast vlan 1 count
Multicast MAC Entries for vlan 1:
```

This example shows how to display only the user-configured multicast entries for VLAN 1:

```
Switch# show mac address-table multicast vlan 1 user
vlan mac address type ports
-------+---------------+--------+---------+---+--------------------------------
1 0100.5e02.0203 user Gi0/1,Gi0/2
1 0100.5e00.0128 user Gi0/1,Gi0/2
```

This example shows how to display the total number of entries learned by IGMP snooping for VLAN 1:

```
Switch# show mac address-table multicast vlan 1 igmp-snooping count
Number of user programmed entries: 2
```
Understanding Multicast VLAN Registration

Multicast VLAN Registration (MVR) is designed for applications using wide-scale deployment of multicast traffic across an Ethernet ring-based service provider network (for example, the broadcast of multiple television channels over a service-provider network). MVR allows a subscriber on a port to subscribe and unsubscribe to a multicast stream on the network-wide multicast VLAN. It allows the single multicast VLAN to be shared in the network while subscribers remain in separate VLANs. MVR provides the ability to continuously send multicast streams in the multicast VLAN, but to isolate the streams from the subscriber VLANs for bandwidth and security reasons.

MVR assumes that subscriber ports subscribe and unsubscribe (join and leave) these multicast streams by sending out IGMP join and leave messages. These messages can originate from an IGMP version-2-compatible host with an Ethernet connection. Although MVR operates on the underlying mechanism of IGMP snooping, the two features operate independently of each other. One can be enabled or disabled without affecting the behavior of the other feature. However, if IGMP snooping and MVR are both enabled, MVR reacts only to join and leave messages from multicast groups configured under MVR. Join and leave messages from all other multicast groups are managed by IGMP snooping.

The switch CPU identifies the MVR IP multicast streams and their associated MAC addresses in the switch forwarding table, intercepts the IGMP messages, and modifies the forwarding table to include or remove the subscriber as a receiver of the multicast stream, even though the receivers might be in a different VLAN from the source. This forwarding behavior selectively allows traffic to cross between different VLANs.

The switch has these modes of MVR operation: dynamic and compatible.

- When operating in MVR dynamic mode, the switch performs standard IGMP snooping. IGMP information packets are sent to the switch CPU, but multicast data packets are not sent to the CPU. Dynamic mode allows the multicast router to run normally because the switch sends the IGMP join messages to the router, and the router forwards multicast streams for a particular group to an interface only if it has received a join message from the interface for the group. Receiver ports are treated as members of the multicast VLAN for MVR multicast control and data traffic. IGMP reports for MVR groups are sent out source ports in the multicast VLAN.

- When in MVR compatible mode, MVR on the Catalyst 3550 switch interoperates with MVR on Catalyst 3500 XL and Catalyst 2900 XL switches. It works the same as dynamic mode for all multicast data packets and IGMP query and leave packets. However, received IGMP report packets for MVR groups are not sent out on the multicast VLAN source ports. In contrast to dynamic mode, the switch does not send join messages to the router. The router must be statically configured for the interface to receive the multicast stream. Therefore, in this mode, MVR does not support dynamic membership joins on source ports.

Using MVR in a Multicast Television Application

In a multicast television application, a PC or a television with a set-top box can receive the multicast stream. Multiple set-top boxes or PCs can be connected to one subscriber port, which is a switch port configured as an MVR receiver port. See Figure 19-3. DHCP assigns an IP address to the set-top box or the PC. When a subscriber selects a channel, the set-top box or PC sends an IGMP report to the S1 switch to join the appropriate multicast. If the IGMP report matches one of the configured multicast MAC addresses, the switch CPU modifies the hardware address table to include this receiver port and VLAN as a forwarding destination of the specified multicast stream when it is received from the multicast VLAN. Uplink ports that send and receive multicast data to and from the multicast VLAN are called MVR source ports.
When a subscriber changes channels or turns off the television, the set-top box sends an IGMP leave message for the multicast stream. The switch CPU sends an IGMP group-specific query through the receiver port VLAN. If there is another set-top box in the VLAN still subscribing to this group, that set-top box must respond within the maximum response time. If the CPU does not receive a response, it eliminates the receiver port as a forwarding destination for this group.

If the Immediate-Leave feature is enabled on a receiver port, the port leaves a multicast group more quickly. Without Immediate Leave, when the switch receives an IGMP leave message from a subscriber on a receiver port, it sends out an IGMP query on that port and waits for IGMP group membership reports. If no reports are received in a configured time period, the receiver port is removed from multicast group membership. With Immediate Leave, an IGMP query is not sent from the receiver port on which the IGMP leave was received. As soon as the leave message is received, the receiver port is removed from multicast group membership, which speeds up leave latency. Enable the Immediate Leave feature only on receiver ports to which a single receiver device is connected.

Figure 19-3  Multicast VLAN Registration Example

[Diagram showing Multicast VLAN Registration Example]
MVR eliminates the need to duplicate television-channel multicast traffic for subscribers in each VLAN. Multicast traffic for all channels is only sent around the VLAN trunk once—only on the multicast VLAN. Although the IGMP leave and join message in the VLAN to which the subscriber port is assigned. These messages dynamically register for streams of multicast traffic in the multicast VLAN on the Layer 3 device. The access layer switch (S1 switch) modifies the forwarding behavior to allow the traffic to be forwarded from the multicast VLAN to the subscriber port in a different VLAN, selectively allowing traffic to cross between two VLANs.

IGMP reports are sent to the same MAC addresses as the multicast data. The S1 CPU must capture all IGMP join and leave messages from receiver ports and forward them to the multicast VLAN of the source (uplink) port.

## Configuring MVR

These sections include basic MVR configuration information:

- Default MVR Configuration, page 19-14
- MVR Configuration Guidelines and Limitations, page 19-15
- Configuring MVR Global Parameters, page 19-15
- Configuring MVR Interfaces, page 19-16

### Default MVR Configuration

Table 19-5 shows the default MVR configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVR</td>
<td>Disabled globally and per interface</td>
</tr>
<tr>
<td>Multicast addresses</td>
<td>None configured</td>
</tr>
<tr>
<td>Query response time</td>
<td>0.5 second</td>
</tr>
<tr>
<td>Multicast VLAN</td>
<td>VLAN 1</td>
</tr>
<tr>
<td>Mode</td>
<td>Compatible</td>
</tr>
<tr>
<td>Interface (per port) default</td>
<td>Neither a receiver nor a source port</td>
</tr>
<tr>
<td>Immediate Leave</td>
<td>Disabled on all ports</td>
</tr>
</tbody>
</table>
MVR Configuration Guidelines and Limitations

Follow these guidelines when configuring MVR:

- Receiver ports cannot be trunk ports. Receiver ports on a switch can be in different VLANs, but should not belong to the multicast VLAN.
- The maximum number of multicast entries that can be configured on a switch (that is, the maximum number of television channels that can be received) is 256.
- Each channel is one multicast stream destined for a unique IP multicast address. These IP addresses cannot alias between themselves or with the reserved IP multicast addresses (in the range 224.0.0.xxx).
- Multicast routing and MVR cannot coexist on a switch. If you enable multicast routing and a multicast routing protocol while MVR is enabled, MVR is disabled, and you receive a warning message. If you try to enable MVR while multicast routing and a multicast routing protocol are enabled, the operation to enable MVR is cancelled, and you receive an error message.

Note: For complete syntax and usage information for the commands used in this section, refer to the command reference for this release.

Configuring MVR Global Parameters

You do not need to set the optional MVR parameters if you choose to use the default settings. If you do want to change the default parameters (except for the MVR VLAN), you must first enable MVR.

Beginning in privileged EXEC mode, follow these steps to configure MVR parameters:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>mvr</td>
<td>Enable MVR on the switch.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>mvr group ip-address [count]</td>
<td>Configure an IP multicast address on the switch or use the count parameter to configure a contiguous series of MVR group addresses (the range for count is 1 to 256; the default is 1). Any multicast data sent to this address is sent to all source ports on the switch and all receiver ports that have elected to receive data on that multicast address. Each multicast address would correspond to one television channel.</td>
</tr>
<tr>
<td>Note</td>
<td>Each IP address translates to a multicast 48-bit MAC address. If an IP address being configured translates (aliases) to a previously configured MAC address or to any reserved multicast MAC addresses, the command fails.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>mvr querytime value</td>
<td>(Optional) Define the maximum time to wait for IGMP report memberships on a receiver port before removing the port from multicast group membership. The value is in units of tenths of a second. The range is from 1 to 100 and the default is 5 tenths or one-half second.</td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>mvr vlan vlan-id</td>
<td>(Optional) Specify the VLAN in which multicast data is received; all source ports must belong to this VLAN. The VLAN range is 1 to 4094. The default is VLAN 1.</td>
</tr>
</tbody>
</table>
Configuring MVR

To return the switch to its default settings, use the `no mvr [mode | group ip-address | querytime | vlan]` global configuration commands.

This example shows how to enable MVR, configure the MVR group address, set the query time to 1 second (10 tenths), specify the MVR multicast VLAN as VLAN 22, set the MVR mode as dynamic, and verify the results:

```
Switch(config)# mvr
Switch(config)# mvr group 228.1.23.4
Switch(config)# mvr querytime 10
Switch(config)# mvr vlan 22
Switch(config)# mvr mode dynamic
Switch(config)# end
Switch# show mvr
MVR Running: TRUE
MVR multicast vlan: 22
MVR Max Multicast Groups: 256
MVR Current multicast groups: 1
MVR Global query response time: 10 (tenths of sec)
MVR Mode: dynamic
```

You can use the `show mvr members` privileged EXEC command to verify the MVR multicast group addresses on the switch.

### Configuring MVR Interfaces

Beginning in privileged EXEC mode, follow these steps to configure Layer 2 MVR interfaces:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>mvr</td>
<td>Enable MVR on the switch.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and enter the type and number of the Layer 2 port to configure; for example, enter <code>gi0/1</code> or <code>gigabitethernet 0/1</code> for Gigabit Ethernet port 1.</td>
</tr>
</tbody>
</table>
### Chapter 19      Configuring IGMP Snooping and MVR

**Configuring MVR**

To return the interface to its default settings, use the `no mvr [type | immediate | vlan vlan-id | group]` interface configuration commands.

This example shows how to configure Gigabit Ethernet port 0/2 as a receiver port, statically configure the port to receive multicast traffic sent to the multicast group address, configure Immediate Leave on the interface, and verify the results.

```
Switch(config)# mvr
Switch(config)# interface gigabitethernet0/2
Switch(config-if)# mvr type receiver
Switch(config-if)# mvr vlan 22 group 228.1.23.4
Switch(config-if)# mvr immediate
Switch(config-if)# end
Switch# show mvr interface gigabitethernet0/2
Type: RECEIVER Status: ACTIVE Immediate Leave: ENABLED
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 4</strong> mvr type {source | receiver}</td>
<td>Configure an MVR port as one of these:</td>
</tr>
<tr>
<td></td>
<td>• source—Configure uplink ports that receive and send multicast data as source ports.</td>
</tr>
<tr>
<td></td>
<td>Subscribers cannot be directly connected to source ports. All source ports on a switch</td>
</tr>
<tr>
<td></td>
<td>belong to the single multicast VLAN.</td>
</tr>
<tr>
<td></td>
<td>• receiver—Configure a port as a receiver port if it is a subscriber port and should only</td>
</tr>
<tr>
<td></td>
<td>receive multicast data. It does not receive data unless it becomes a member of the</td>
</tr>
<tr>
<td></td>
<td>multicast group, either statically or by using IGMP leave and join messages. Receiver ports</td>
</tr>
<tr>
<td></td>
<td>cannot belong to the multicast VLAN.</td>
</tr>
</tbody>
</table>

The default configuration is as a non-MVR port. If you attempt to configure a non-MVR port with MVR characteristics, the operation fails.

**Step 5** mvr vlan vlan-id group ip-address | (Optional) Statically configure a port to receive multicast traffic sent to the multicast VLAN and the IP multicast address. A port statically configured as a member of a group remains a member of the group until statically removed.  

**Note** In compatible mode, this command applies to only receiver ports. In dynamic mode, it applies to receiver ports and source ports.

Receiver ports can also dynamically join multicast groups by using IGMP join and leave messages.

**Step 6** mvr immediate | (Optional) Enable the Immediate Leave feature of MVR on the port.  

**Note** This command applies to only receiver ports and should only be enabled on receiver ports to which a single receiver device is connected.

**Step 7** end | Return to privileged EXEC mode.

**Step 8** show mvr  
show mvr interface  
or  
show mvr members | Verify the configuration.

**Step 9** copy running-config startup-config | (Optional) Save your entries in the configuration file.
This is an example of output from the `show mvr interface` privileged EXEC command when the `members` keyword is included:

```
Switch# show mvr interface gigabitethernet0/6 members
239.255.0.0 DYNAMIC ACTIVE
239.255.0.1 DYNAMIC ACTIVE
239.255.0.2 DYNAMIC ACTIVE
239.255.0.3 DYNAMIC ACTIVE
239.255.0.4 DYNAMIC ACTIVE
239.255.0.5 DYNAMIC ACTIVE
239.255.0.6 DYNAMIC ACTIVE
239.255.0.7 DYNAMIC ACTIVE
239.255.0.8 DYNAMIC ACTIVE
239.255.0.9 DYNAMIC ACTIVE
```

## Displaying MVR Information

You can display MVR information for the switch or for a specified interface.

Beginning in privileged EXEC mode, use the commands in Table 19-6 to display MVR configuration:

### Table 19-6 Commands for Displaying MVR Information

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show mvr</code></td>
<td>Displays MVR status and values for the switch—whether MVR is enabled or disabled, the multicast VLAN, the maximum (256) and current (0 through 256) number of multicast groups, the query response time, and the MVR mode.</td>
</tr>
</tbody>
</table>
| `show mvr interface [interface-id] [members [vlan vlan-id]]` | Displays all MVR interfaces and their MVR configurations. When a specific interface is entered, displays this information:
  - Type—Receiver or Source
  - Status—One of these:
    - Active means the port is part of a VLAN.
    - Up/Down means that the port is forwarding or nonforwarding.
    - Inactive means that the port is not part of any VLAN.
  - Immediate Leave—Enabled or Disabled
  If the `members` keyword is entered, displays all multicast group members on this port or, if a VLAN identification is entered, all multicast group members on the VLAN. The VLAN ID range is 1 to 4094. |
| `show mvr members [ip-address]` | Displays all receiver and source ports that are members of any IP multicast group or the specified IP multicast group IP address. |

This is an example of output from the `show mvr` privileged EXEC command:

```
Switch# show mvr
MVR Running: TRUE
MVR multicast vlan: 1
MVR Max Multicast Groups: 256
MVR Current multicast groups: 256
MVR Global query response time: 5 (tenths of sec)
MVR Mode: compatible
```
Configuring IGMP Filtering

In some environments, for example metropolitan or multiple-dwelling unit (MDU) installations, an administrator might want to control the set of multicast groups to which a user on a switch port can belong. This allows the administrator to control the distribution of multicast services, such as IP/TV, based on some type of subscription or service plan. With the IGMP filtering feature, you can filter multicast joins on a per-port basis by configuring IP multicast profiles and associating them with individual switch ports. An IGMP profile can contain one or more multicast groups and specifies whether access to the group is permitted or denied. If an IGMP profile denying access to a multicast group is applied to a switch port, the IGMP join report requesting the stream of IP multicast traffic is dropped, and the port is not allowed to receive IP multicast traffic from that group. If the filtering action permits access to the multicast group, the IGMP report from the port is forwarded for normal processing.
IGMP filtering controls only group specific query and membership reports, including join and leave reports. It does not control general IGMP queries. IGMP filtering has no relationship with the function that directs the forwarding of IP multicast traffic. The filtering feature operates in the same manner whether CGMP or MVR is used to forward the multicast traffic.

You can also set the maximum number of IGMP groups that a Layer 2 interface can join.

### Default IGMP Filtering Configuration

Table 19-7 shows the default IGMP filtering configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP filters</td>
<td>None applied</td>
</tr>
<tr>
<td>IGMP Maximum number of IGMP groups</td>
<td>No maximum set</td>
</tr>
<tr>
<td>IGMP profiles</td>
<td>None defined</td>
</tr>
<tr>
<td>IGMP profile action</td>
<td>Deny the range addresses</td>
</tr>
</tbody>
</table>

### Configuring IGMP Profiles

To configure an IGMP profile, use the `ip igmp profile` global configuration command with a profile number to create an IGMP profile and to enter IGMP profile configuration mode. From this mode, you can specify the parameters of the IGMP profile to be used for filtering IGMP join requests from a port. When you are in IGMP profile configuration mode, you can create the profile by using these commands:

- **deny**: Specifies that matching addresses are denied; this is the default condition.
- **exit**: Exits from igmp-profile configuration mode.
- **no**: Negates a command or sets its defaults.
- **permit**: Specifies that matching addresses are permitted.
- **range**: Specifies a range of IP addresses for the profile. You can enter a single IP address or a range with a start and an end address.

The default is for the switch to have no IGMP profiles configured. When a profile is configured, if neither the `permit` nor `deny` keyword is included, the default is to deny access to the range of IP addresses.

Beginning in privileged EXEC mode, follow these steps to create an IGMP profile:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>ip igmp profile profile number</code></td>
<td>Enter IGMP profile configuration mode, and assign a number to the profile you are configuring. The range is from 1 to 4294967295.</td>
</tr>
<tr>
<td>`permit</td>
<td>deny`</td>
</tr>
</tbody>
</table>
Chapter 19 Configuring IGMP Snooping and MVR

Configuring IGMP Filtering

To delete a profile, use the `no ip igmp profile profile number` global configuration command.

To delete an IP multicast address or range of IP multicast addresses, use the `no range ip multicast address` IGMP profile configuration command.

This example shows how to create IGMP profile 4 allowing access to the single IP multicast address and how to verify the configuration. If the action was to deny (the default), it would not appear in the `show ip igmp profile` output display.

```
Switch(config)# ip igmp profile 4
Switch(config-igmp-profile)# permit
Switch(config-igmp-profile)# range 229.9.9.0
Switch(config-igmp-profile)# end
Switch# show ip igmp profile 4
IGMP Profile 4
 permit
 range 229.9.9.0 229.9.9.0
```

Applying IGMP Profiles

To control access as defined in an IGMP profile, use the `ip igmp filter profile number` interface configuration command to apply the profile to the appropriate interfaces. You can apply IGMP profiles to Layer 2 ports only; you cannot apply IGMP profiles to routed ports or SVIs. You cannot apply profiles to ports that belong to an EtherChannel port group. You can apply a profile to multiple interfaces, but each interface can only have one profile applied to it.

Beginning in privileged EXEC mode, follow these steps to apply an IGMP profile to a switch port:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and enter the physical interface to configure, for example <code>fastethernet0/3</code>. The interface must be a Layer 2 port that does not belong to an EtherChannel port group.</td>
</tr>
<tr>
<td>3</td>
<td>ip igmp filter profile number</td>
<td>Apply the specified IGMP profile to the interface. The profile number can be from 1 to 4294967295.</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>show running configuration interface interface-id</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To remove a profile from an interface, use the `no ip igmp filter profile number` interface configuration command.

This example shows how to apply IGMP profile 4 to an interface and verify the configuration.

```bash
Switch(config)# interface fastethernet0/12
Switch(config-if)# ip igmp filter 4
Switch(config-if)# end
Switch# show running-config interface fastethernet0/12
```

Setting the Maximum Number of IGMP Groups

You can set the maximum number of IGMP groups that a Layer 2 interface can join by using the `ip igmp mac-groups` interface configuration command. Use the `no` form of this command to set the maximum back to the default, which is no limit.

This restriction can be applied to Layer 2 ports only; you cannot set a maximum number of IGMP groups on routed ports or SVIs. You also cannot use this command on ports that belong to an EtherChannel port group.

Beginning in privileged EXEC mode, follow these steps to apply an IGMP profile to a switch port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and enter the physical interface to configure, for example <code>gigabitethernet0/1</code>. The interface must be a Layer 2 port that does not belong to an EtherChannel group.</td>
</tr>
<tr>
<td>Step 3 ip igmp max-groups number</td>
<td>Set the maximum number of IGMP groups that the interface can join. The range is from 0 to 4294967294. The default is to have no maximum set.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-configuration interface interface-id</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the maximum group limitation and return to the default of no maximum, use the `no ip igmp max-groups` interface configuration command.

This example shows how to limit the number of IGMP groups that an interface can join to 25.

```bash
Switch(config)# interface fastethernet0/12
Switch(config-if)# ip igmp max-groups 25
Switch(config-if)# end
Switch# show running-config interface fastethernet0/12
```
Displaying IGMP Filtering Configuration

You can display IGMP profile characteristics, and you can display the IGMP profile and maximum group configuration for all interfaces on the switch or for a specified interface.

Use the privileged EXEC commands in Table 19-8 to display IGMP filtering configuration:

Table 19-8 Commands for Displaying IGMP Filtering Configuration

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip igmp profile [profile number]</code></td>
<td>Displays the specified IGMP profile or all IGMP profiles defined on the switch.</td>
</tr>
<tr>
<td><code>show running-configuration [interface interface-id]</code></td>
<td>Displays the configuration of the specified interface or all interfaces on the switch, including (if configured) the maximum number of IGMP groups to which an interface can belong and the IGMP profile applied to the interface.</td>
</tr>
</tbody>
</table>

This is an example of the `show ip igmp profile` privileged EXEC command when no profile number is entered. All profiles defined on the switch are displayed.

Switch# `show ip igmp profile`
IGMP Profile 3
   range 230.9.9.0 230.9.9.0
IGMP Profile 4
   permit
   range 229.9.9.0 229.255.255.255

This is an example of the output from the `show running-config` privileged EXEC command when an interface is specified with IGMP maximum groups configured and IGMP profile 4 has been applied to the interface.

Switch# `show running-config interface fastethernet0/12`
Building configuration...
Current configuration : 123 bytes
!
interface FastEthernet0/12
   no ip address
   shutdown
   snmp trap link-status
   ip igmp max-groups 25
   ip igmp filter 4
end
Configuring Port-Based Traffic Control

This chapter describes how to configure the port-based traffic control features on your Catalyst 3550 switch.

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter consists of these sections:

- Configuring Storm Control, page 20-1
- Configuring Protected Ports, page 20-5
- Configuring Port Blocking, page 20-6
- Configuring Port Security, page 20-7
- Displaying Port-Based Traffic Control Settings, page 20-14

Configuring Storm Control

These sections include storm control configuration information and procedures:

- Understanding Storm Control, page 20-1
- Default Storm Control Configuration, page 20-3
- Enabling Storm Control, page 20-3
- Disabling Storm Control, page 20-4

Understanding Storm Control

Storm control prevents switchports on a LAN from being disrupted by a broadcast, multicast, or unicast storm on one of the physical interfaces. A LAN storm occurs when packets flood the LAN, creating excessive traffic and degrading network performance. Errors in the protocol-stack implementation or in the network configuration can cause a storm.
Storm control (or traffic suppression) monitors incoming traffic statistics over a time period and compares the measurement with a predefined suppression level threshold. The threshold represents the percentage of the total available bandwidth of the port. The switch supports separate storm control thresholds for broadcast, multicast, and unicast traffic. If the threshold of a traffic type is reached, further traffic of that type is suppressed until the incoming traffic falls below the threshold level.

**Note**

When the rate of multicast traffic exceeds a set threshold, all incoming traffic (broadcast, multicast, and unicast) is dropped until the level drops below the threshold level. Only spanning-tree packets are forwarded. When broadcast and unicast thresholds are exceeded, traffic is blocked for only the type of traffic that exceeded the threshold.

When storm control is enabled, the switch monitors packets passing from an interface to the switching bus and determines if the packet is unicast, multicast, or broadcast. The switch monitors the number of broadcast, multicast, or unicast packets received within the 1-second time interval, and when a threshold for one type of traffic is reached, that type of traffic is dropped. This threshold is specified as a percentage of total available bandwidth that can be used by broadcast (multicast or unicast) traffic.

The graph in Figure 20-1 shows broadcast traffic patterns on an interface over a given period of time. The example can also be applied to multicast and unicast traffic. In this example, the broadcast traffic being forwarded exceeded the configured threshold between time intervals T1 and T2 and between T4 and T5. When the amount of specified traffic exceeds the threshold, all traffic of that kind is dropped for the next time period. Therefore, broadcast traffic is blocked during the intervals following T2 and T5. At the next time interval (for example, T3), if broadcast traffic does not exceed the threshold, it is again forwarded.

**Figure 20-1 Broadcast Storm Control Example**

The combination of the storm-control suppression level and the 1-second time interval control the way the storm control algorithm works. A higher threshold allows more packets to pass through. A threshold value of 100 percent means that no limit is placed on the traffic. A value of 0.0 means that all broadcast, multicast, or unicast traffic on that port is blocked.

**Note**

Because packets do not arrive at uniform intervals, the 1-second time interval during which traffic activity is measured can affect the behavior of storm control.

The switch continues to monitor traffic on the port, and when the utilization level is below the threshold level, the type of traffic that was dropped is forwarded again.
You use the `storm-control` interface configuration commands to set the threshold value for each traffic type.

**Note** Before IOS Release 12.1(8)EA1, you set up storm control threshold values by using the `switchport broadcast`, `switchport multicast`, and `switchport unicast` interface configuration commands. These commands are now obsolete, replaced by the `storm-control` interface configuration commands.

## Default Storm Control Configuration

By default, unicast, broadcast, and multicast storm control is disabled on the switch: that is, the suppression level is 100 percent (no limit is placed on the traffic).

## Enabling Storm Control

You enable storm control on an interface and enter the percentage of total available bandwidth that you want to be used by a particular type of traffic; entering 100 percent allows all traffic. However, because of hardware limitations and the way in which packets of different sizes are counted, threshold percentages are approximations. Depending on the sizes of the packets making up the incoming traffic, the actual enforced threshold might differ from the configured level by several percentage points.

**Note** Storm control is supported only on physical interfaces; it is not supported on EtherChannel port channels even though the command is available in the CLI.

Beginning in privileged EXEC mode, follow these steps to enable a particular type of storm control:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>interface interface-id</code> Specify the type and number of the physical interface to configure, for example, <code>gigabitethernet0/1</code>, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>storm-control broadcast level level [level]</code> Specify the broadcast traffic suppression level for an interface as a percentage of total bandwidth. The level can be from 1 to 100; the optional fraction of a level can be from 0 to 99. A threshold value of 100 percent means that no limit is placed on broadcast traffic. A value of 0.0 means that all broadcast traffic on that port is blocked.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>storm-control multicast level level [level]</code> Specify the multicast traffic suppression level for an interface as a percentage of total bandwidth. The level can be from 1 to 100; the optional fraction of a level can be from 0 to 99. A threshold value of 100 percent means that no limit is placed on broadcast traffic. A value of 0.0 means that all multicast traffic on that port is blocked.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>storm-control unicast level level [level]</code> Specify the unicast traffic suppression level for an interface as a percentage of total bandwidth. The level can be from 1 to 100; the optional fraction of a level can be from 0 to 99. A threshold value of 100 percent means that no limit is placed on broadcast traffic. A value of 0.0 means that all unicast traffic on that port is blocked.</td>
</tr>
</tbody>
</table>
To disable storm control, use the `no storm-control broadcast level`, `no storm-control multicast level`, or `no storm-control unicast level` interface configuration command.

This example shows how to set the multicast storm control level at 70.5 percent on Fast Ethernet interface 17 and verify the configuration:

```
Switch# configure terminal
Switch(config)# interface fastethernet0/17
Switch(config-if)# storm-control multicast level 70.5
Switch(config-if)# end
Switch# show storm-control fastethernet0/17 multicast
 Interface Filter State Level Current
 --------- ------------- ------- -------
 Fa0/17 Forwarding 70.50% 0.00%
```

## Disabling Storm Control

Beginning in privileged EXEC mode, follow these steps to disable storm control on an interface:

```
 Command Purpose
 ------- -------
 Step 1 configure terminal Enter global configuration mode.
 Step 2 interface interface-id Specify the type and number of the physical interface to configure, for example gigabitethernet0/1, and enter interface configuration mode.
 Step 3 no storm-control broadcast level Disable broadcast storm control on the interface.
 Step 4 no storm-control multicast level Disable multicast storm control on the interface.
 Step 5 no storm-control unicast level Disable unicast storm control on the interface.
 Step 6 end Return to privileged EXEC mode.
 Step 7 show storm-control [interface-id] [broadcast | multicast | unicast] Verify that there are no storm control suppression levels set on the interface for the specified traffic type. If you do not enter a traffic type, broadcast storm control settings are displayed.
 Step 8 copy running-config startup-config (Optional) Save your entries in the configuration file.
```

This example shows how to disable the multicast storm control on Fast Ethernet interface 17 and verify the configuration:

```
Switch# configure terminal
Switch(config)# interface fastethernet0/17
Switch(config-if)# no storm-control multicast level
Switch(config-if)# end
Switch# show storm-control fastethernet0/17 multicast
 Interface Filter State Level Current
 --------- ------------- ------- -------
 Fa0/17 inactive 100.00% N/A
```
Configuring Protected Ports

Some applications require that no traffic be forwarded between ports on the same switch so that one neighbor does not see the traffic generated by another neighbor. In such an environment, the use of protected ports ensures that there is no exchange of unicast, broadcast, or multicast traffic between these ports on the switch.

Protected ports have these features:

- A protected port does not forward any traffic (unicast, multicast, or broadcast) to any other port that is also a protected port. Traffic cannot be forwarded between protected ports at Layer 2; all traffic passing between protected ports must be forwarded through a Layer 3 device.
- Forwarding behavior between a protected port and a nonprotected port proceeds as usual.

The default is to have no protected ports defined.

Note: The protected port feature is not compatible with fallback bridging. When fallback bridging is enabled, it is possible for packets to be forwarded from one protected port on a switch to another protected port on the same switch if the ports are in different VLANs.

Note: There could be times when unknown unicast or multicast traffic from a nonprotected port is flooded to a protected port because a MAC address has timed out or has not been learned by the switch. Use the switchport block unicast and switchport block multicast interface configuration commands to guarantee that no unicast or multicast traffic is flooded to the port in such a case.

You can configure protected ports on a physical interface (for example, Gigabit Ethernet 0/1) or an EtherChannel group (for example, port-channel 5). When you enable protected ports for a port channel, it is enabled for all ports in the port-channel group.

Beginning in privileged EXEC mode, follow these steps to define a port as a protected port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport protected</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show interfaces interface-id switchport</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable protected port, use the no switchport protected interface configuration command.

This example shows how to configure Gigabit Ethernet interface 0/1 as a protected port and verify the configuration:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# switchport protected
Switch(config-if)# end
```
Configuring Port Blocking

By default, the switch floods packets with unknown destination MAC addresses to all ports. If unknown unicast and multicast traffic is forwarded to a protected port, there could be security issues.

To prevent unknown unicast or multicast traffic from being forwarded from one port to another, you can configure a port (protected or nonprotected) to block unknown unicast or multicast packets.

*Note* Blocking unicast or multicast traffic is not automatically enabled on protected ports; you must explicitly configure it.

Blocking Flooded Traffic on an Interface

*Note* The interface can be a physical interface (for example, Gigabit Ethernet 0/1) or an EtherChannel group (for example, port-channel 5). When you block multicast or unicast traffic for a port channel, it is blocked on all ports in the port channel group.

Beginning in privileged EXEC mode, follow these steps to disable the flooding of multicast and unicast packets to an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>switchport block multicast</td>
</tr>
<tr>
<td>Step 4</td>
<td>switchport block unicast</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show interfaces interface-id switchport</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>
To return the interface to the default condition where no traffic is blocked, use the `no switchport block {multicast | unicast}` interface configuration commands.

This example shows how to block unicast and multicast flooding on Gigabit Ethernet interface 0/1 and verify the configuration:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# switchport block multicast
Switch(config-if)# switchport block unicast
Switch(config-if)# end
Switch# show interfaces gigabitethernet0/1 switchport
Name: Gi0/1
Switchport: Enabled

<output truncated>

Protected: True
Unknown unicast blocked: enabled
Unknown multicast blocked: enabled
```

## Resuming Normal Forwarding on a Port

Beginning in privileged EXEC mode, follow these steps to resume normal forwarding on a port:

### Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Specify the type and number of the physical interface to configure, for example <code>gigabitethernet0/1</code>, and enter interface configuration mode.</td>
</tr>
<tr>
<td>3</td>
<td>no switchport block multicast</td>
<td>Enable unknown multicast flooding to the port.</td>
</tr>
<tr>
<td>4</td>
<td>no switchport block unicast</td>
<td>Enable unknown unicast flooding to the port.</td>
</tr>
<tr>
<td>5</td>
<td>end</td>
<td>Return to privileged EXEC mode</td>
</tr>
<tr>
<td>6</td>
<td>show interfaces interface-id switchport</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>7</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

## Configuring Port Security

You can use the port security feature to restrict input to an interface by limiting and identifying MAC addresses of the stations allowed to access the port. When you assign secure MAC addresses to a secure port, the port does not forward packets with source addresses outside the group of defined addresses.

This section includes information about these topics:

- Understanding Port Security, page 20-8
- Default Port Security Configuration, page 20-9
- Port Security Configuration Guidelines, page 20-9
- Enabling and Configuring Port Security, page 20-10
- Enabling and Configuring Port Security Aging, page 20-12
Understanding Port Security

This section includes information about:

- Secure MAC Addresses, page 20-8
- Security Violations, page 20-8

Secure MAC Addresses

A secure port can have from 1 to 128 associated secure addresses. This is also the total number of available secure addresses on the switch.

You can configure these types of secure MAC addresses:

- Static secure MAC addresses—These are manually configured by using the `switchport port-security mac-address mac-address` interface configuration command, stored in the address table, and added to the switch running configuration.

- Dynamic secure MAC addresses—These are dynamically learned, stored only in the address table, and removed when the switch restarts.

- Sticky secure MAC addresses—These can be dynamically learned or manually configured, stored in the address table, and added to the running configuration. If these addresses are saved in the configuration file, the interface does not need to dynamically relearn them when the switch restarts. Although sticky secure addresses can be manually configured, we do not recommend it.

You can configure an interface to convert the dynamic MAC addresses to sticky secure MAC addresses and to add them to the running configuration by enabling sticky learning. To enable sticky learning, enter the `switchport port-security mac-address sticky` interface configuration command. When you enter this command, the interface converts all the dynamic secure MAC addresses, including those that were dynamically learned before sticky learning was enabled, to sticky secure MAC addresses.

The sticky secure MAC addresses do not automatically become part of the configuration file, which is the startup configuration used each time the switch restarts. If you save the sticky secure MAC addresses in the configuration file, when the switch restarts, the interface does not need to relearn these addresses. If you do not save the configuration, they are lost.

If sticky learning is disabled, the sticky secure MAC addresses are converted to dynamic secure addresses and are removed from the running configuration.

Security Violations

It is a security violation when one of these situations occurs:

- The maximum number of secure MAC addresses have been added to the address table, and a station whose MAC address is not in the address table attempts to access the interface.

- An address learned or configured on one secure interface is seen on another secure interface in the same VLAN.

You can configure the interface for one of three violation modes, based on the action to be taken if a violation occurs:

- protect—When the number of secure MAC addresses reaches the limit allowed on the port, packets with unknown source addresses are dropped until you remove a sufficient number of secure MAC addresses or increase the number of maximum allowable addresses. You are not notified that a security violation has occurred.
• **restrict**—When the number of secure MAC addresses reaches the limit allowed on the port, packets with unknown source addresses are dropped until you remove a sufficient number of secure MAC addresses or increase the number of maximum allowable addresses. In this mode, you are notified that a security violation has occurred. Specifically, an SNMP trap is sent, a syslog message is logged, and the violation counter increments.

• **shutdown**—In this mode, a port security violation causes the interface to immediately become error-disabled, and turns off the port LED. It also sends an SNMP trap, logs a syslog message, and increments the violation counter. When a secure port is in the error-disabled state, you can bring it out of this state by entering the `errdisable recovery cause psecure-violation` global configuration command, or you can manually re-enable it by entering the `shutdown` and `no shutdown` interface configuration commands. This is the default mode.

Table 20-1 shows the violation mode and the actions taken when you configure an interface for port security.

<table>
<thead>
<tr>
<th>Violation Mode</th>
<th>Traffic is forwarded</th>
<th>Sends SNMP trap</th>
<th>Sends syslog message</th>
<th>Displays error message</th>
<th>Violation counter increments</th>
<th>Shuts down port</th>
</tr>
</thead>
<tbody>
<tr>
<td>protect</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>restrict</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>shutdown</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

1. Packets with unknown source addresses are dropped until you remove a sufficient number of secure MAC addresses.

2. The switch will return an error message if you manually configure an address that would cause a security violation.

### Default Port Security Configuration

Table 20-2 shows the default port security configuration for an interface.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port security</td>
<td>Disabled on a port</td>
</tr>
<tr>
<td>Maximum number of secure MAC addresses</td>
<td>One</td>
</tr>
<tr>
<td>Violation mode</td>
<td>Shutdown</td>
</tr>
</tbody>
</table>

### Port Security Configuration Guidelines

Follow these guidelines when configuring port security:

• Port security can only be configured on static access ports.

• A secure port cannot be a dynamic access port or a trunk port.

• A secure port cannot be a destination port for Switched Port Analyzer (SPAN).

• A secure port cannot belong to a Fast EtherChannel or Gigabit EtherChannel port group.
• You cannot configure static secure or sticky secure MAC addresses on a voice VLAN.

• When you enable port security on an interface that is also configured with a voice VLAN, you must set the maximum allowed secure addresses on the port to at least two. If any type of port security is enabled on the access VLAN, dynamic port security is automatically enabled on the voice VLAN. You cannot configure port security on a per-VLAN basis.

• To enable port security on an 802.1X port, you must first enable the 802.1X multiple-hosts mode on the port.

• The switch does not support port security aging of sticky secure MAC addresses.

Enabling and Configuring Port Security

Beginning in privileged EXEC mode, follow these steps to restrict input to an interface by limiting and identifying MAC addresses of the stations allowed to access the port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Specify the type and number of the physical interface to configure, for example <strong>gigabitethernet0/1</strong>, and enter interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 switchport mode access</td>
<td>Set the interface mode as access; an interface in the default mode (dynamic desirable) cannot be configured as a secure port.</td>
</tr>
<tr>
<td>Step 4 switchport port-security</td>
<td>Enable port security on the interface.</td>
</tr>
<tr>
<td>Step 5 switchport port-security maximum value</td>
<td>(Optional) Set the maximum number of secure MAC addresses for the interface. The range is 1 to 128; the default is 1.</td>
</tr>
<tr>
<td>Step 6 switchport port-security violation {protect</td>
<td>restrict</td>
</tr>
</tbody>
</table>

• **protect**—When the number of secure MAC addresses reaches the limit allowed on the port, packets with unknown source addresses are dropped until you remove a sufficient number of secure MAC addresses or increase the number of maximum allowable addresses. You are not notified that a security violation has occurred.

• **restrict**—When the number of secure MAC addresses reaches the limit allowed on the port, packets with unknown source addresses are dropped until you remove a sufficient number of secure MAC addresses or increase the number of maximum allowable addresses. In this mode, you are notified that a security violation has occurred. Specifically, an SNMP trap is sent, a syslog message is logged, and the violation counter increments.

• **shutdown**—In this mode, a port security violation causes the interface to immediately become error-disabled, and turns off the port LED. It also sends an SNMP trap, logs a syslog message, and increments the violation counter.

**Note** When a secure port is in the error-disabled state, you can bring it out of this state by entering the **errdisable recovery cause psecure-violation** global configuration command, or you can manually re-enable it by entering the **shutdown** and no **shutdown** interface configuration commands.
To return the interface to the default condition as not a secure port, use the `no switchport port-security` interface configuration command. If you enter this command when sticky learning is enabled, the sticky secure addresses remain part of the running configuration but are removed from the address table. All addresses are now dynamically learned.

To return the interface to the default number of secure MAC addresses, use the `no switchport port-security maximum value` interface configuration command.

To return the violation mode to the default condition (shutdown mode), use the `no switchport port-security violation {protocol | restrict}` interface configuration command.

To disable sticky learning on an interface, use the `no switchport port-security mac-address sticky` interface configuration command. The interface converts the sticky secure MAC addresses to dynamic secure addresses.

To delete a static secure MAC address from the address table, use the `no switchport port-security mac-address mac-address` interface configuration command.

To delete a dynamic secure MAC address from the address table, use the `clear port-security dynamic address mac-addr` privileged EXEC command. To delete all the dynamic addresses on an interface, use the `clear port-security dynamic interface interface-id` privileged EXEC command.

To delete a sticky secure MAC addresses from the address table, use the `clear port-security sticky mac-addr` privileged EXEC command. To delete all the sticky addresses on an interface, use the `clear port-security sticky interface-id` privileged EXEC command.

This example shows how to enable port security on Fast Ethernet port 1 and to set the maximum number of secure addresses to 50. The violation mode is the default, no static secure MAC addresses are configured, and sticky learning is enabled.

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface fastethernet0/1
Switch(config-if)# switchport mode access
Switch(config-if)# switchport port-security
Switch(config-if)# switchport port-security maximum 50
```
Switch(config-if)# switchport port-security mac-address sticky
Switch(config-if)# end
Switch# show port-security interface fastethernet0/1
Port Security: Enabled
Port status: SecureUp
Violation mode: Shutdown
Maximum MAC Addresses :50
Total MAC Addresses: 11
Configured MAC Addresses: 0
Sticky MAC Addresses :11
Aging time: 20 mins
Aging type: Inactivity
Secure_Static address aging: Enabled
Security Violation count: 0

This example shows how to configure a static secure MAC address and a sticky secure MAC address on Fast Ethernet port 12 and verify the configuration:

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface fastethernet0/12
Switch(config-if)# switchport mode access
Switch(config-if)# switchport port-security
Switch(config-if)# switchport port-security mac-address 0000.02000.0004
Switch(config-if)# switchport port-security mac-address sticky
Switch(config-if)# end
Switch# show port-security address
+----------------------------------------
<table>
<thead>
<tr>
<th>Vlan</th>
<th>Mac Address</th>
<th>Type</th>
<th>Ports</th>
<th>Remaining Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0000.0000.000a</td>
<td>SecureDynamic</td>
<td>Fa0/1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0000.0002.0003</td>
<td>SecureConfigured</td>
<td>Fa0/1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0000.0200.0004</td>
<td>SecureConfigured</td>
<td>Fa0/12</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0003.fd62.1d40</td>
<td>SecureConfigured</td>
<td>Fa0/5</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0003.fd62.1d45</td>
<td>SecureConfigured</td>
<td>Fa0/5</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0003.fd62.21d3</td>
<td>SecureSticky</td>
<td>Fa0/5</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0005.7428.1a45</td>
<td>SecureSticky</td>
<td>Fa0/8</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0005.7428.1a46</td>
<td>SecureSticky</td>
<td>Fa0/8</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0006.1218.2436</td>
<td>SecureSticky</td>
<td>Fa0/8</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0008.a343.b581</td>
<td>SecureSticky</td>
<td>Fa0/12</td>
<td>0</td>
</tr>
</tbody>
</table>
+----------------------------------------
Total Addresses in System :11
Max Addresses limit in System :128

Enabling and Configuring Port Security Aging

You can use port security aging to set the aging time for static and dynamic secure addresses on a port. Two types of aging are supported per port:

- **Absolute**—The secure addresses on the port are deleted after the specified aging time.
- **Inactivity**—The secure addresses on the port are deleted only if the secure addresses are inactive for the specified aging time.

Use this feature to remove and add PCs on a secure port without manually deleting the existing secure MAC addresses and to still limit the number of secure addresses on a port. You can enable or disable the aging of statically-configured secure addresses on a per-port basis.
Beginning in privileged EXEC mode, follow these steps to configure port security aging:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| Step 2  | interface interface-id | Specify the port on which you want to enable port security aging, and enter interface configuration mode.  
|         | **Note** | The switch does not support port security aging of sticky secure addresses. |
| Step 3  | switchport port-security aging {static | time time | type {absolute | inactivity}} | Enable or disable static aging for the secure port, or set the aging time or type.  
|         | Enter **static** to enable aging for statically configured secure addresses on this port.  
|         | For **time**, specify the aging time for this port. The valid range is from 0 to 1440 minutes. If the time is equal to 0, aging is disabled for this port.  
|         | For **type**, select one of these keywords:  
|         | • **absolute**—Sets the aging type as absolute aging. All the secure addresses on this port age out exactly after the **time** (minutes) specified lapses and are removed from the secure address list.  
|         | • **inactivity**—Sets the aging type as inactivity aging. The secure addresses on this port age out only if there is no data traffic from the secure source addresses for the specified time period. | |
| Step 4  | end | Return to privileged EXEC mode. |
| Step 5  | show port-security [interface interface-id | Verify your entries. |
|         | [address] | (Optional) Save your entries in the configuration file. |

To disable port security aging for all secure addresses on a port, use the **no switchport port-security aging time** interface configuration command. To disable aging for only statically configured secure addresses, use the **no switchport port-security aging static** interface configuration command.

This example shows how to set the aging time as 2 hours for the secure addresses on the Fast Ethernet interface 0/1:

```
Switch(config)# interface fastethernet0/1
Switch(config-if)# switchport port-security aging time 120
```

This example shows how to set the aging time as 2 minutes for the inactivity aging type with aging enabled for the configured secure addresses on the interface:

```
Switch(config-if)# switchport port-security aging time 2
Switch(config-if)# switchport port-security aging type inactivity
Switch(config-if)# switchport port-security aging static
```

You can verify the previous commands by entering the **show port-security interface interface-id** privileged EXEC command.
Displaying Port-Based Traffic Control Settings

The `show interfaces interface-id switchport` privileged EXEC command displays (among other characteristics) the interface traffic suppression and control configuration. The `show interfaces counters` privileged EXEC commands display the count of discarded packets. The `show storm-control` and `show port-security` privileged EXEC commands display those features.

To display traffic control information, use one or more of the privileged EXEC commands in Table 20-3.

### Table 20-3 Commands for Displaying Traffic Control Status and Configuration

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interfaces [interface-id] switchport</code></td>
<td>Displays the administrative and operational status of all switching (nonrouting) ports or the specified port, including port blocking and port protection settings.</td>
</tr>
<tr>
<td>`show storm-control [interface-id] [broadcast</td>
<td>multicast</td>
</tr>
<tr>
<td><code>show interfaces [interface-id] counters broadcast</code></td>
<td>Displays the storm-control broadcast suppression discard counter with the number of packets discarded for all interfaces or the specified interface.</td>
</tr>
<tr>
<td><code>show interfaces [interface-id] counters multicast</code></td>
<td>Displays the storm-control multicast suppression discard counter with the number of packets discarded for all interfaces or the specified interface.</td>
</tr>
<tr>
<td><code>show interfaces [interface-id] counters unicast</code></td>
<td>Displays the storm-control unicast suppression discard counter with the number of packets discarded for all interfaces or the specified interface.</td>
</tr>
<tr>
<td><code>show port-security [interface interface-id]</code></td>
<td>Displays port security settings for the switch or for the specified interface, including the maximum allowed number of secure MAC addresses for each interface, the number of secure MAC addresses on the interface, the number of security violations that have occurred, and the violation mode.</td>
</tr>
<tr>
<td><code>show port-security [interface interface-id] address</code></td>
<td>Displays all secure MAC addresses configured on all switch interfaces or on a specified interface with aging information for each address.</td>
</tr>
</tbody>
</table>
Configuring CDP

This chapter describes how to configure Cisco Discovery Protocol (CDP) on your Catalyst 3550 switch.

Note
For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release and the Cisco IOS Configuration Fundamentals Command Reference for Release 12.1.

This chapter consists of these sections:
- Understanding CDP, page 21-1
- Configuring CDP, page 21-2
- Monitoring and Maintaining CDP, page 21-5

Understanding CDP

CDP is a device discovery protocol that runs over Layer 2 (the data link layer) on all Cisco-manufactured devices (routers, bridges, access servers, and switches) and allows network management applications to discover Cisco devices that are neighbors of already known devices. With CDP, network management applications can learn the device type and the Simple Network Management Protocol (SNMP) agent address of neighboring devices running lower-layer, transparent protocols. This feature enables applications to send SNMP queries to neighboring devices.

CDP runs on all media that support Subnetwork Access Protocol (SNAP). Because CDP runs over the data-link layer only, two systems that support different network-layer protocols can learn about each other.

Each CDP-configured device sends periodic messages to a multicast address, advertising at least one address at which it can receive SNMP messages. The advertisements also contain time-to-live, or holdtime information, which is the length of time a receiving device holds CDP information before discarding it. Each device also listens to the messages sent by other devices to learn about neighboring devices.

On the switch, CDP enables the Cluster Management Suite to display a graphical view of the network. The switch uses CDP to find cluster candidates and maintain information about cluster members and other devices up to three cluster-enabled devices away from the command switch by default.

The switch supports CDP version 2.
Configuring CDP

These sections include CDP configuration information and procedures:

- Default CDP Configuration, page 21-2
- Configuring the CDP Characteristics, page 21-2
- Disabling and Enabling CDP, page 21-3
- Disabling and Enabling CDP on an Interface, page 21-4

Default CDP Configuration

Table 21-1 shows the default CDP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDP global state</td>
<td>Enabled</td>
</tr>
<tr>
<td>CDP interface state</td>
<td>Enabled</td>
</tr>
<tr>
<td>CDP timer (packet update frequency)</td>
<td>60 seconds</td>
</tr>
<tr>
<td>CDP holdtime (before discarding)</td>
<td>180 seconds</td>
</tr>
<tr>
<td>CDP version-2 advertisements</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Configuring the CDP Characteristics

You can configure the frequency of CDP updates, the amount of time to hold the information before discarding it, and whether or not to send version-2 advertisements.

Beginning in privileged EXEC mode, follow these steps to configure the CDP timer, holdtime, and advertisement type.

Note

Steps 2 through 4 are all optional and can be performed in any order.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 cdp timer seconds</td>
<td>(Optional) Set the transmission frequency of CDP updates in seconds.</td>
</tr>
<tr>
<td></td>
<td>The range is from 5 to 254; the default is 60 seconds.</td>
</tr>
<tr>
<td>Step 3 cdp holdtime seconds</td>
<td>(Optional) Specify the amount of time a receiving device should hold the information sent by your device before discarding it.</td>
</tr>
<tr>
<td></td>
<td>The range is from 10 to 255 seconds; the default is 180 seconds.</td>
</tr>
<tr>
<td>Step 4 cdp advertise-v2</td>
<td>(Optional) Configure CDP to send version-2 advertisements.</td>
</tr>
<tr>
<td></td>
<td>This is the default state.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Chapter 21      Configuring CDP

Configuring CDP

Use the no form of the CDP commands to return to the default settings.

This example shows how to configure and verify CDP characteristics.

Switch# configure terminal
Switch(config)# cdp timer 50
Switch(config)# cdp holdtime 120
Switch(config)# cdp advertise-v2
Switch(config)# end

Switch# show cdp
Global CDP information:
  Sending CDP packets every 50 seconds
  Sending a holdtime value of 120 seconds
  Sending CDPv2 advertisements is enabled

For additional CDP show commands, see the “Monitoring and Maintaining CDP” section on page 21-5.

Disabling and Enabling CDP

CDP is enabled by default.

Note
Creating and maintaining switch clusters is based on the regular exchange of CDP messages. Disabling CDP can interrupt cluster discovery. For more information, see Chapter 6, “Clustering Switches.”

Beginning in privileged EXEC mode, follow these steps to disable the CDP device discovery capability:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 no cdp run</td>
<td>Disable CDP.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Beginning in privileged EXEC mode, follow these steps to enable CDP when it has been disabled:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 cdp run</td>
<td>Enable CDP after disabling it.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
This example shows how to enable CDP if it has been disabled.

```
Switch# configure terminal
Switch(config)# cdp run
Switch(config)# end
```

### Disabling and Enabling CDP on an Interface

CDP is enabled by default on all supported interfaces to send and receive CDP information. Beginning in privileged EXEC mode, follow these steps to disable CDP on an interface:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and enter the interface on which you are disabling CDP.</td>
</tr>
<tr>
<td>3</td>
<td>no cdp enable</td>
<td>Disable CDP on an interface.</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Beginning in privileged EXEC mode, follow these steps to enable CDP on an interface when it has been disabled:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and enter the interface on which you are enabling CDP.</td>
</tr>
<tr>
<td>3</td>
<td>cdp enable</td>
<td>Enable CDP on an interface after disabling it.</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to enable CDP on an interface when it has been disabled.

```
Switch# configure terminal
Switch(config)# interface gigabitethernet0/5
Switch(config-if)# cdp enable
Switch(config-if)# end
```
# Monitoring and Maintaining CDP

To monitor and maintain CDP on your device, perform one or more of these tasks, beginning in privileged EXEC mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear cdp counters</td>
<td>Reset the traffic counters to zero.</td>
</tr>
<tr>
<td>clear cdp table</td>
<td>Delete the CDP table of information about neighbors.</td>
</tr>
<tr>
<td>show cdp</td>
<td>Display global information, such as frequency of transmissions and the holdtime for packets being sent.</td>
</tr>
<tr>
<td>show cdp entry entry-name [protocol</td>
<td>version]</td>
</tr>
<tr>
<td>show cdp interface [type number]</td>
<td>Display information about interfaces where CDP is enabled. You can limit the display to the type of interface or the number of the interface about which you want information (for example, entering <code>gigabitethernet 0/1</code> displays information only about Gigabit Ethernet port 1).</td>
</tr>
<tr>
<td>show cdp neighbors [type number] [detail]</td>
<td>Display information about neighbors, including device type, interface type and number, holdtime settings, capabilities, platform, and port ID. You can limit the display to neighbors on a specific type or number of interface or expand the display to provide more detailed information.</td>
</tr>
<tr>
<td>show cdp traffic</td>
<td>Display CDP counters, including the number of packets sent and received and checksum errors.</td>
</tr>
</tbody>
</table>

This is an example of the output from the `show cdp` privileged EXEC commands:

```
Switch# show cdp
Global CDP information:
 Sending CDP packets every 50 seconds
 Sending a holdtime value of 120 seconds
 Sending CDPv2 advertisements is enabled
```
Configuring UDLD

This chapter describes how to configure the UniDirectional Link Detection (UDLD) protocol on your Catalyst 3550 switch.

Note

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter consists of these sections:

- Understanding UDLD, page 22-1
- Configuring UDLD, page 22-3
- Displaying UDLD Status, page 22-6

Understanding UDLD

UDLD is a Layer 2 protocol that enables devices connected through fiber-optic or twisted-pair Ethernet cables to monitor the physical configuration of the cables and detect when a unidirectional link exists. All connected devices must support UDLD for the protocol to successfully identify and disable unidirectional links. When UDLD detects a unidirectional link, it administratively shuts down the affected port and alerts you. Unidirectional links can cause a variety of problems, including spanning-tree topology loops.

UDLD works with the Layer 1 mechanisms to determine the physical status of a link. At Layer 1, autonegotiation takes care of physical signaling and fault detection. UDLD performs tasks that autonegotiation cannot perform, such as detecting the identities of neighbors and shutting down misconnected interfaces. When you enable both autonegotiation and UDLD, Layer 1 and Layer 2 detections work together to prevent physical and logical unidirectional connections and the malfunctioning of other protocols.

A unidirectional link occurs whenever traffic sent by the local device is received by the neighbor but traffic from the neighbor is not received by the local device. If one of the fiber strands in a pair is disconnected, as long as autonegotiation is active, the link does not stay up. In this case, the logical link is undetermined, and UDLD does not take any action. If both fibers are working normally from a Layer 1 perspective, UDLD at Layer 2 determines whether those fibers are connected correctly and whether traffic is flowing bidirectionally between the correct neighbors. This check cannot be performed by autonegotiation because autonegotiation operates at Layer 1.
UDLD operates by using two mechanisms:

- Neighbor database maintenance

  UDLD learns about other UDLD-capable neighbors by periodically sending a hello packet (also called an advertisement or probe) on every active interface to keep each device informed about its neighbors.

  When the switch receives a hello message, it caches the information until the age time (hold time or time-to-live) expires. If the switch receives a new hello message before an older cache entry ages, the switch replaces the older entry with the new one.

  Whenever an interface is disabled and UDLD is running, whenever UDLD is disabled on an interface, or whenever the switch is reset, UDLD clears all existing cache entries for the interfaces affected by the configuration change. UDLD sends at least one message to inform the neighbors to flush the part of their caches affected by the status change. The message is intended to keep the caches synchronized.

- Event-driven detection and echoing

  UDLD relies on echoing as its detection mechanism. Whenever a UDLD device learns about a new neighbor or receives a resynchronization request from an out-of-sync neighbor, it restarts the detection window on its side of the connection and sends echo messages in reply. Because this behavior is the same on all UDLD neighbors, the sender of the echoes expects to receive an echo in reply. If the detection window ends and no valid reply message is received, the link is considered unidirectional, and the interface is shut down.

Figure 22-1 shows an example of a unidirectional link condition.
Configuring UDLD

This section describes how to configure UDLD on your switch. It contains this configuration information:

- Default UDLD Configuration, page 22-3
- Enabling UDLD Globally, page 22-4
- Enabling UDLD on an Interface, page 22-4
- Resetting an Interface Shut Down by UDLD, page 22-5

Default UDLD Configuration

Table 22-1 shows the default UDLD configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDLD global enable state</td>
<td>Globally disabled</td>
</tr>
<tr>
<td>UDLD per-interface enable state for fiber-optic media</td>
<td>Disabled on all Ethernet fiber-optic interfaces</td>
</tr>
<tr>
<td>UDLD per-interface enable state for twisted-pair (copper) media</td>
<td>Disabled on all Ethernet 10/100 and 1000BASE-TX interfaces</td>
</tr>
<tr>
<td>UDLD aggressive mode</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

UDLD is not supported on ATM interfaces. A UDLD-capable interface also cannot detect a unidirectional link if it is connected to a UDLD-incapable port of another switch.
Enabling UDLD Globally

Beginning in privileged EXEC mode, follow these steps to enable UDLD in the aggressive or normal mode and to set the configurable message timer on all fiber-optic interfaces on the switch:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>udld {aggressive</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>This command affects fiber-optic interfaces only. Use the udld interface configuration command to enable UDLD on other interface types. For more information, see the “Enabling UDLD on an Interface” section on page 22-4.</td>
</tr>
</tbody>
</table>

Step 3	end	Return to privileged EXEC mode.
Step 4	show udld	Verify your entries.
Step 5	copy running-config startup-config	(Optional) Save your entries in the configuration file.

To disable UDLD globally, use the no udld enable global configuration command to disable normal mode UDLD on all fiber-optic ports. Use the no udld aggressive global configuration command to disable aggressive mode UDLD on all fiber-optic ports.

Enabling UDLD on an Interface

Beginning in privileged EXEC mode, follow these steps to enable UDLD in the aggressive or normal mode on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
</tbody>
</table>
Configuring UDLD

To disable UDLD on a non-fiber-optic interface, use the `no udld enable` command.

**Note**

On fiber-optic interfaces, the `no udld enable` command reverts the interface configuration to the `udld enable` global configuration command setting.

To disable UDLD on a fiber-optic interface, use the `udld disable` command to revert to the `udld enable` global configuration command setting. This command is not supported on non-fiber-optic interfaces.

**Resetting an Interface Shut Down by UDLD**

Beginning in privileged EXEC mode, follow these steps to reset all interfaces shut down by UDLD:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>udld reset</code></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>show udld</code></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>copy running-config startup-config</code></td>
</tr>
</tbody>
</table>

You can also bring up the interface by using these commands:

- The `shutdown` interface configuration command followed by the `no shutdown` interface configuration command restarts the disabled interface.
- The `no udld enable` global configuration command re-enables UDLD globally.
- The `udld disable` interface configuration command re-enables UDLD on the specified interface.
Displaying UDLD Status

To display the UDLD status for the specified interface or for all interfaces, use the `show udld [interface-id]` privileged EXEC command.

For detailed information about the fields in the display, refer to the command reference for this release.
Configuring SPAN and RSPAN

This chapter describes how to configure Switched Port Analyzer (SPAN) and Remote SPAN (RSPAN) on your Catalyst 3550 switch.

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter consists of these sections:

- Understanding SPAN and RSPAN, page 23-1
- Configuring SPAN, page 23-8
- Configuring RSPAN, page 23-16
- Displaying SPAN and RSPAN Status, page 23-23

Understanding SPAN and RSPAN

You can analyze network traffic passing through ports or VLANs by using SPAN to send a copy of the traffic to another port on the switch that has been connected to a SwitchProbe device or other Remote Monitoring (RMON) probe or security device. SPAN mirrors received or transmitted (or both) traffic on a source port and received traffic on one or more source ports or source VLANs, to a destination port for analysis.

For example, in Figure 23-1, all traffic on port 5 (the source port) is mirrored to port 10 (the destination port). A network analyzer on port 10 receives all network traffic from port 5 without being physically attached to port 5.
Chapter 23  Configuring SPAN and RSPAN

Understanding SPAN and RSPAN

Only traffic that enters or leaves source ports or traffic that enters source VLANs can be monitored by using SPAN; traffic that gets routed to ingress source ports or source VLANs cannot be monitored. For example, if incoming traffic is being monitored, traffic that gets routed from another VLAN to the source VLAN is not monitored; however, traffic that is received on the source VLAN and routed to another VLAN is monitored.

RSPAN extends SPAN by enabling remote monitoring of multiple switches across your network. The traffic for each RSPAN session is carried over a user-specified RSPAN VLAN that is dedicated for that RSPAN session in all participating switches. The SPAN traffic from the sources is copied onto the RSPAN VLAN through a reflector port and then forwarded over trunk ports that are carrying the RSPAN VLAN to any RSPAN destination sessions monitoring the RSPAN VLAN, as shown in Figure 23-2.

SPAN and RSPAN do not affect the switching of network traffic on source ports or source VLANs; a copy of the packets received or sent by the source interfaces are sent to the destination interface.

You can use the SPAN or RSPAN destination port to inject traffic from a network security device. For example, if you connect a Cisco Intrusion Detection System (IDS) Sensor Appliance to a destination port, the IDS device can send TCP Reset packets to close down the TCP session of a suspected attacker.
SPAN and RSPAN Concepts and Terminology

This section describes concepts and terminology associated with SPAN and RSPAN configuration.

SPAN Session

A local SPAN session is an association of a destination port with source ports and source VLANs. An RSPAN session is an association of source ports and source VLANs across your network with an RSPAN VLAN. The destination source is the RSPAN VLAN.

You configure SPAN sessions by using parameters that specify the source of network traffic to monitor. Traffic monitoring in a SPAN session has these restrictions:

- You can monitor incoming traffic on a series or range of ports and VLANs.
- You can monitor outgoing traffic on a single port; you cannot monitor outgoing traffic on multiple ports.
- You cannot monitor outgoing traffic on VLANs.

You can configure two separate SPAN or RSPAN sessions with separate or overlapping sets of SPAN source ports and VLANs. Both switched and routed ports can be configured as SPAN sources and destinations.

SPAN sessions do not interfere with the normal operation of the switch. However, an oversubscribed SPAN destination, for example, a 10-Mbps port monitoring a 100-Mbps port, results in dropped or lost packets.

You can configure SPAN sessions on disabled ports; however, a SPAN session does not become active unless you enable the destination port and at least one source port or VLAN for that session. The `show monitor session session_number` privileged EXEC command displays the operational status of a SPAN session.

A SPAN session remains inactive after system power-on until the destination port is operational.

Traffic Types

SPAN sessions include these traffic types:

- Receive (Rx) SPAN—The goal of receive (or ingress) SPAN is to monitor as much as possible all the packets received by the source interface or VLAN before any modification or processing is performed by the switch. A copy of each packet received by the source is sent to the destination port for that SPAN session. You can monitor a series or range of ingress ports or VLANs in a SPAN session.

  On tagged packets (Inter-Switch Link [ISL] or IEEE 802.1Q), the tagging is removed at the ingress port. At the destination port, if tagging is enabled, the packets appear with the ISL or 802.1Q headers. If no tagging is specified, packets appear in the native format.

  Packets that are modified because of routing are copied without modification for Rx SPAN; that is, the original packet is copied. Packets that are modified because of quality of service (QoS)—for example, modified Differentiated Services Code Point (DSCP)—are copied with modification for Rx SPAN.
Some features that can cause a packet to be dropped during receive processing have no effect on SPAN; the destination port receives a copy of the packet even if the actual incoming packet is dropped. These features include IP standard and extended input access control lists (ACLs), IP standard and extended output ACLs for unicast and ingress QoS policing, VLAN maps, ingress QoS policing, and policy-based routing. Switch congestion that causes packets to be dropped also has no effect on SPAN.

- **Transmit (Tx) SPAN**—The goal of transmit (or egress) SPAN is to monitor as much as possible all the packets sent by the source interface after all modification and processing is performed by the switch. A copy of each packet sent by the source is sent to the destination port for that SPAN session. The copy is provided after the packet is modified.

  Only one egress source port is allowed per SPAN session. VLAN monitoring is not supported in the egress direction.

  Packets that are modified because of routing—for example, with a time-to-live (TTL) or MAC-address modification—are duplicated at the destination port. On packets that are modified because of QoS, the modified packet might not have the same DSCP (IP packet) or CoS (non-IP packet) as the SPAN source.

  Some features that can cause a packet to be dropped during transmit processing might also affect the duplicated copy for SPAN. These features include VLAN maps, IP standard and extended output ACLs on multicast packets, and egress QoS policing. In the case of output ACLs, if the SPAN source drops the packet, the SPAN destination would also drop the packet. In the case of egress QoS policing, if the SPAN source drops the packet, the SPAN destination might not drop it. If the source port is oversubscribed, the destination ports will have different dropping behavior.

- **Both**—In a SPAN session, you can monitor a single port for both received and sent packets.

**Source Port**

A source port (also called a *monitored port*) is a switched or routed port that you monitor for network traffic analysis. In a single local SPAN session or RSPAN source session, you can monitor source port traffic such as received (Rx), transmitted (Tx), or bidirectional (both); however, on a VLAN, you can monitor only received traffic. The switch supports any number of source ports (up to the maximum number of available ports on the switch) and any number of source ingress VLANs (up to the maximum number of VLANs supported).

A source port has these characteristics:

- It can be any port type (for example, EtherChannel, Fast Ethernet, Gigabit Ethernet, and so forth).
- It can be monitored in multiple SPAN sessions.
- It cannot be a destination port.
- Each source port can be configured with a direction (ingress, egress, or both) to monitor. For EtherChannel sources, the monitored direction would apply to all the physical ports in the group.
- Source ports can be in the same or different VLANs.
- For VLAN SPAN sources, all active ports in the source VLAN are included as source ports.

You can configure a trunk port as a source port. By default, all VLANs active on the trunk are monitored. You can limit SPAN traffic monitoring on trunk source ports to specific VLANs by using VLAN filtering. Only switched traffic in the selected VLANs is sent to the destination port. This feature affects only traffic forwarded to the destination SPAN port and does not affect the switching of normal traffic. This feature is not allowed in sessions with VLAN sources.
Destination Port

Each local SPAN session or RSPAN destination session must have a destination port (also called a monitoring port) that receives a copy of traffic from the source ports and VLANs.

The destination port has these characteristics:

- It must reside on the same switch as the source port (for a local SPAN session).
- It can be any Ethernet physical port.
- It can participate in only one SPAN session at a time (a destination port in one SPAN session cannot be a destination port for a second SPAN session).
- It cannot be a source port or a reflector port.
- It cannot be an EtherChannel group or a VLAN.
- It can be a physical port that is assigned to an EtherChannel group, even if the EtherChannel group has been specified as a SPAN source. The port is removed from the group while it is configured as a SPAN destination port.
- The port does not transmit any traffic except that required for the SPAN session.
- If ingress traffic forwarding is enabled for a network security device, the destination port forwards traffic at Layer 2.
- It does not participate in spanning tree while the SPAN session is active.
- When it is a destination port, it does not participate in any of the Layer 2 protocols (STP, VTP, CDP, DTP, PagP, or LACP).
- A destination port that belongs to a source VLAN of any SPAN session is excluded from the source list and is not monitored.
- No address learning occurs on the destination port.

Reflector Port

The reflector port is the mechanism that copies packets onto an RSPAN VLAN. The reflector port forwards only the traffic from the RSPAN source session with which it is affiliated. Any device connected to a port set as a reflector port loses connectivity until the RSPAN source session is disabled.

The reflector port has these characteristics:

- It is a port set to loopback.
- It cannot be an EtherChannel group, it does not trunk, and it cannot do protocol filtering.
- It can be a physical port that is assigned to an EtherChannel group, even if the EtherChannel group is specified as a SPAN source. The port is removed from the group while it is configured as a reflector port.
- A port used as a reflector port cannot be a SPAN source or destination port, nor can a port be a reflector port for more than one session at a time.
- It is invisible to all VLANs.
- The native VLAN for looped-back traffic on a reflector port is the RSPAN VLAN.
- The reflector port loops back untagged traffic to the switch. The traffic is then placed on the RSPAN VLAN and flooded to any trunk ports that carry the RSPAN VLAN.
- Spanning tree is automatically disabled on a reflector port.
If the bandwidth of the reflector port is not sufficient for the traffic volume from the corresponding source ports and VLANs, the excess packets are dropped. A 10/100 port reflects at 100 Mbps. A Gigabit port reflects at 1 Gbps.

**VLAN-Based SPAN**

VLAN-based SPAN (VSPAN) is the monitoring of the network traffic in one or more VLANs. You can configure VSPAN to monitor only received (Rx) traffic, which applies to all the ports for that VLAN.

Use these guidelines for VSPAN sessions:

- Only traffic on the monitored VLAN is sent to the destination port.
- If a destination port belongs to a source VLAN, it is excluded from the source list and is not monitored.
- If ports are added to or removed from the source VLANs, the traffic on the source VLAN received by those ports is added to or removed from the sources being monitored.
- VLAN pruning and the VLAN allowed list have no effect on SPAN monitoring.
- VSPAN only monitors traffic that enters the switch, not traffic that is routed between VLANs. For example, if a VLAN is being Rx-monitored and the multilayer switch routes traffic from another VLAN to the monitored VLAN, that traffic is not monitored and is not received on the SPAN destination port.
- You cannot use filter VLANs in the same session with VLAN sources.
- You can monitor only Ethernet VLANs.

**SPAN Traffic**

You can use local SPAN to monitor all network traffic, including multicast and bridge protocol data unit (BPDU) packets, and Cisco Discovery Protocol (CDP), VLAN Trunk Protocol (VTP), Dynamic Trunking Protocol (DTP), Spanning Tree Protocol (STP), Port Aggregation Protocol (PAGP), and Link Aggregation Control Protocol (LACP) packets. You cannot use RSPAN to monitor Layer 2 protocols.

See the “RSPAN Configuration Guidelines” section on page 23-16 for more information.

In some SPAN configurations, multiple copies of the same source packet are sent to the SPAN destination port. For example, a bidirectional (both Rx and Tx) SPAN session is configured for the sources a1 Rx monitor and the a2 Rx and Tx monitor to destination port d1. If a packet enters the switch through a1 and is switched to a2, both incoming and outgoing packets are sent to destination port d1. Both packets are the same (unless a Layer 3 rewrite occurs, in which case the packets are different because of the added Layer 3 information).
SPAN and RSPAN Interaction with Other Features

SPAN interacts with these features:

- **Routing**—Ingress SPAN does not monitor routed traffic. VSPAN only monitors traffic that enters the switch, not traffic that is routed between VLANs. For example, if a VLAN is being Rx-monitored and the multilayer switch routes traffic from another VLAN to the monitored VLAN, that traffic is not monitored and not received on the SPAN destination port.

- **Spanning Tree Protocol (STP)**—A destination port or a reflector port does not participate in STP while its SPAN or RSPAN session is active. The destination or reflector port can participate in STP after the SPAN or RSPAN session is disabled. On a source port, SPAN does not affect the STP status. STP can be active on trunk ports carrying an RSPAN VLAN.

- **Cisco Discovery Protocol (CDP)**—A SPAN destination port does not participate in CDP while the SPAN session is active. After the SPAN session is disabled, the port again participates in CDP.

- **VLAN Trunking Protocol (VTP)**—You can use VTP to prune an RSPAN VLAN between switches.

- **VLAN and trunking**—You can modify VLAN membership or trunk settings for source, destination, or reflector ports at any time. However, changes in VLAN membership or trunk settings for a destination or reflector port do not take effect until you disable the SPAN or RSPAN session. Changes in VLAN membership or trunk settings for a source port immediately take effect, and the respective SPAN sessions automatically adjust accordingly.

- **EtherChannel**—You can configure an EtherChannel group as a source port but not as a SPAN destination port. When a group is configured as a SPAN source, the entire group is monitored.

  If a port is added to a monitored EtherChannel group, the new port is added to the SPAN source port list. If a port is removed from a monitored EtherChannel group, it is automatically removed from the source port list. If the port is the only port in the EtherChannel group, the EtherChannel group is removed from SPAN.

  If a physical port that belongs to an EtherChannel group is configured as a SPAN source, destination, or reflector port, it is removed from the group. After the port is removed from the SPAN session, it rejoins the EtherChannel group. Ports removed from an EtherChannel group remain members of the group, but they are in the down or standalone state.

  If a physical port that belongs to an EtherChannel group is a destination or reflector port and the EtherChannel group is a source, the port is removed from the EtherChannel group and from the list of monitored ports.

- **QoS**—For ingress monitoring, the packets sent to the SPAN destination port might be different from the packets actually received at the SPAN source port because the packets are forwarded after ingress QoS classification and policing. The packet DSCP might not be the same as the received packet.

  For egress monitoring, the packets sent out the SPAN destination port might not be the same as the packets sent out of SPAN source ports because the egress QoS policing at the SPAN source port might change the packet classification. QoS policing is not applied at SPAN destination ports.

- **Multicast traffic** can be monitored. For egress and ingress port monitoring, only a single unedited packet is sent to the SPAN destination port. It does not reflect the number of times the multicast packet is sent.

- **Port security**—A secure port cannot be a SPAN destination port.

  For SPAN sessions, do not enable port security on ports that are egress monitored when ingress forwarding is enabled on the destination port. For RSPAN source sessions, do not enable port security on any ports that are egress monitored.
802.1X—You can enable 802.1X on a port that is a SPAN destination or reflector port; however, 802.1X is disabled until the port is removed as a SPAN destination or reflector port. You can enable 802.1X on a SPAN source port.

For SPAN sessions, do not enable 802.1X on ports that are egress monitored when ingress forwarding is enabled on the destination port. For RSPAN source sessions, do not enable 802.1X on any ports that are egress monitored.

### SPAN and RSPAN Session Limits

You can configure (and store in NVRAM) a maximum of two SPAN or RSPAN sessions on each switch. You can divide the two sessions between SPAN, RSPAN source, and RSPAN destination sessions. You can configure multiple source ports or source VLANs for each session.

### Default SPAN and RSPAN Configuration

Table 23-1 shows the default SPAN and RSPAN configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAN state</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Source port traffic to monitor</td>
<td>Both received and sent traffic (both); for additional source ports or VLANs, only received (rx) traffic can be monitored.</td>
</tr>
<tr>
<td>Encapsulation type (destination port)</td>
<td>Native form (no encapsulation type header).</td>
</tr>
<tr>
<td>Ingress forwarding (destination port)</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>

### Configuring SPAN

This section describes how to configure SPAN on your switch. It contains this configuration information:

- SPAN Configuration Guidelines, page 23-9
- Creating a SPAN Session and Specifying Ports to Monitor, page 23-10
- Creating a SPAN Session and Enabling Ingress Traffic, page 23-11
- Removing Ports from a SPAN Session, page 23-13
- Specifying VLANs to Monitor, page 23-14
- Specifying VLANs to Filter, page 23-15
SPAN Configuration Guidelines

Follow these guidelines when configuring SPAN:

- SPAN sessions can coexist with RSPAN sessions within the limits described in the “SPAN and RSPAN Session Limits” section on page 23-8.
- The destination port cannot be a source port; a source port cannot be a destination port.
- You can have only one destination port per SPAN session. You cannot have two SPAN sessions using the same destination port.
- An EtherChannel port can be a SPAN source port; it cannot be a SPAN destination port.
- An 802.1X port can be a SPAN source port. You can enable 802.1X on a port that is a SPAN destination or reflector port; however, 802.1X is disabled until the port is removed as a SPAN destination or reflector port.
- For SPAN source ports, you can monitor transmitted traffic for a single port and received traffic for a series or range of ports or VLANs.
- When you configure a switch port as a SPAN destination port, it is no longer a normal switch port; only monitored traffic passes through the SPAN destination port.
- A trunk port can be a source port or a destination port. Outgoing packets through the SPAN destination port carry the configured encapsulation headers—either Inter-Switch Link (ISL) or IEEE 802.1Q. If no encapsulation type is defined, the packets are sent in native form.
- You can configure a disabled port to be a source or destination port, but the SPAN function does not start until the destination port and at least one source port or source VLAN are enabled.
- For received traffic, you can mix multiple source port and source VLANs within a single SPAN session. You cannot mix source VLANs and filter VLANs within a SPAN session; you can have source VLANs or filter VLANs, but not both at the same time.
- You can limit SPAN traffic to specific VLANs by using the filter vlan keyword. If a trunk port is being monitored, only traffic on the VLANs specified with this keyword is monitored. By default, all VLANs are monitored on a trunk port.
- A SPAN destination port never participates in any VLAN spanning tree. SPAN does include BPDUs in the monitored traffic, so any spanning-tree BPDUs received on the SPAN destination port for a SPAN session were copied from the SPAN source ports.
- When SPAN is enabled, configuration changes have these results:
  - If you change the VLAN configuration of a destination port, the change is not effective until SPAN is disabled.
  - If you disable all source ports or the destination port, the SPAN function stops until both a source and the destination port are enabled.
  - If the source is a VLAN, the number of ports being monitored changes when you move a port in or out of the monitored VLAN.
Creating a SPAN Session and Specifying Ports to Monitor

Beginning in privileged EXEC mode, follow these steps to create a SPAN session and specify the source (monitored) and destination (monitoring) ports:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>no monitor session [session_number</td>
</tr>
<tr>
<td>Step 3</td>
<td>monitor session session_number source interface interface-id [*, -] [both</td>
</tr>
<tr>
<td>Step 4</td>
<td>monitor session session_number destination interface interface-id [encapsulation {dot1q</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show monitor [session session_number]</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

This example shows how to set up a SPAN session, session 1, for monitoring source port traffic to a destination port. First, any existing SPAN configuration for session 1 is cleared, and then bidirectional traffic is mirrored from source port 1 to destination port 10.

Switch(config)# no monitor session 1
Switch(config)# monitor session 1 source interface fastEthernet0/1
Switch(config)# monitor session 1 destination interface fastEthernet0/10
   encapsulation dot1q
Switch(config)# end

Creating a SPAN Session and Enabling Ingress Traffic

Beginning in privileged EXEC mode, follow these steps to create a SPAN session, to specify the source
and destination ports, and to enable ingress traffic on the destination port for a network security device
(such as a Cisco IDS Sensor Appliance):

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
<th>Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 2 no monitor session session_number</td>
<td>Clear any existing SPAN configuration for the session.</td>
<td></td>
</tr>
<tr>
<td>Step 3 monitor session session_number source</td>
<td>Specify the SPAN session and the source port (monitored port).</td>
<td></td>
</tr>
<tr>
<td>interface interface-id [., -] [both</td>
<td>tx] Specify the source port to monitor. Valid interfaces include physical interfaces and port-channel logical interfaces (port-channel port-channel-number).</td>
<td></td>
</tr>
<tr>
<td>Step 3 monitor session session_number source</td>
<td>Specify the traffic direction to monitor. If you do not specify a traffic direction, the source interface sends both sent and received traffic. Only received (rx) traffic can be monitored on additional source ports.</td>
<td></td>
</tr>
<tr>
<td>interface interface-id [., -] [both</td>
<td>tx] Specify the traffic direction to monitor. If you do not specify a traffic direction, the source interface sends both sent and received traffic. Only received (rx) traffic can be monitored on additional source ports.</td>
<td></td>
</tr>
<tr>
<td>Step 3 monitor session session_number source</td>
<td>Specify the traffic direction to monitor. If you do not specify a traffic direction, the source interface sends both sent and received traffic. Only received (rx) traffic can be monitored on additional source ports.</td>
<td></td>
</tr>
<tr>
<td>interface interface-id [., -] [both</td>
<td>tx] Specify the traffic direction to monitor. If you do not specify a traffic direction, the source interface sends both sent and received traffic. Only received (rx) traffic can be monitored on additional source ports.</td>
<td></td>
</tr>
<tr>
<td>Step 3 monitor session session_number source</td>
<td>Specify the traffic direction to monitor. If you do not specify a traffic direction, the source interface sends both sent and received traffic. Only received (rx) traffic can be monitored on additional source ports.</td>
<td></td>
</tr>
<tr>
<td>interface interface-id [., -] [both</td>
<td>tx] Specify the traffic direction to monitor. If you do not specify a traffic direction, the source interface sends both sent and received traffic. Only received (rx) traffic can be monitored on additional source ports.</td>
<td></td>
</tr>
<tr>
<td>Step 3 monitor session session_number source</td>
<td>Specify the traffic direction to monitor. If you do not specify a traffic direction, the source interface sends both sent and received traffic. Only received (rx) traffic can be monitored on additional source ports.</td>
<td></td>
</tr>
<tr>
<td>interface interface-id [., -] [both</td>
<td>tx] Specify the traffic direction to monitor. If you do not specify a traffic direction, the source interface sends both sent and received traffic. Only received (rx) traffic can be monitored on additional source ports.</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 23 Configuring SPAN and RSPAN

### Configuring SPAN

This example shows how to configure the destination port for ingress traffic on VLAN 5 by using a security device that does not support 802.1Q encapsulation.

```
Switch(config)# monitor session 1 destination interface Fa 0/5 ingress vlan 5
```

This example shows how to configure the destination port for ingress traffic on VLAN 5 by using a security device that supports 802.1Q encapsulation.

```
Switch(config)# monitor session 1 destination interface Fa 0/5 encapsulation dot1q ingress vlan 5
```

This example shows how to disable ingress traffic forwarding on the destination port.

```
Switch(config)# monitor session 1 destination interface Fa 0/5 encapsulation dot1q
```

#### Step 4

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `monitor session session_number destination interface interface-id [encapsulation (dot1q [ingress vlan vlan_id] | ISL [ingress]] | ingress vlan vlan_id]` | Specify the SPAN session, the destination port (monitoring port), the packet encapsulation, and the ingress VLAN. For `session_number`, specify 1 or 2. For `interface-id`, specify the destination port. Valid interfaces include physical interfaces. (Optional) Specify the encapsulation of the packets transmitted on the SPAN destination port. If no encapsulation is specified, all transmitted packets will be sent in native format (untagged).  
  - Enter `encapsulation dot1q` to send native VLAN packets untagged and all other VLAN tx packets tagged `dot1q`.  
  - Enter `encapsulation isl` to send all tx packets encapsulated using ISL. (Optional) Specify whether forwarding is enabled for ingress traffic on the SPAN destination port.  
    - For native (untagged) and dot1q encapsulation, specify `ingress vlan vlan_id` to enable ingress forwarding with `vlan_id` as the native VLAN; `vlan_id` will also be used as the native VLAN for transmitted packets  
    - Specify `ingress` to enable ingress forwarding when using ISL encapsulation. |

#### Step 5

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

#### Step 6

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show monitor [session session_number]</code></td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>

#### Step 7

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Removing Ports from a SPAN Session

Beginning in privileged EXEC mode, follow these steps to remove a port as a SPAN source for a session:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>no monitor session session_number source interface interface-id [,,] [both</td>
</tr>
<tr>
<td></td>
<td>Specify the characteristics of the source port (monitored port) and SPAN session to remove.</td>
</tr>
<tr>
<td></td>
<td>For session, specify 1 or 2.</td>
</tr>
<tr>
<td></td>
<td>For interface-id, specify the source port to no longer monitor. Valid interfaces include physical interfaces and port-channel logical interfaces (port-channel port-channel-number).</td>
</tr>
<tr>
<td></td>
<td>(Optional) Use [,,] to specify a series or range of interfaces if they were configured. This option is valid when monitoring only received traffic. Enter a space before and after the comma; enter a space before and after the hyphen.</td>
</tr>
<tr>
<td></td>
<td>(Optional) Specify the direction of traffic (both, rx, or tx) to no longer monitor. If you do not specify a traffic direction, both transmit and receive are disabled.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>show monitor [session session_number]</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove a source or destination port from the SPAN session, use the no monitor session session_number source interface interface-id global configuration command or the no monitor session session_number destination interface interface-id global configuration command. To change the encapsulation type back to the default (native), use the monitor session session_number destination interface interface-id without the encapsulation keyword.

This example shows how to remove port 1 as a SPAN source for SPAN session 1:

```
Switch(config)# no monitor session 1 source interface fastEthernet0/1
Switch(config)# end
```

This example shows how to disable received traffic monitoring on port 1, which was configured for bidirectional monitoring:

```
Switch(config)# no monitor session 1 source interface fastEthernet0/1 rx
```

The monitoring of traffic received on port 1 is disabled, but traffic sent from this port continues to be monitored.
Specifying VLANs to Monitor

VLAN monitoring is similar to port monitoring. Beginning in privileged EXEC mode, follow these steps to specify VLANs to monitor:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> no monitor session {session_number</td>
<td>all</td>
</tr>
<tr>
<td></td>
<td>For session_number, specify 1 or 2.</td>
</tr>
<tr>
<td></td>
<td>Specify all to remove all SPAN sessions, local to remove all local</td>
</tr>
<tr>
<td></td>
<td>sessions, or remote to remove all remote SPAN sessions.</td>
</tr>
<tr>
<td><strong>Step 3</strong> monitor session session_number source vlan vlan-id [,</td>
<td>-] rx</td>
</tr>
<tr>
<td></td>
<td>You can monitor only received (rx) traffic on VLANs.</td>
</tr>
<tr>
<td></td>
<td>For session_number, specify 1 or 2.</td>
</tr>
<tr>
<td></td>
<td>For vlan-id, the range is 1 to 4094; do not enter leading zeros.</td>
</tr>
<tr>
<td></td>
<td>(Optional) Use a comma (,) to specify a series of VLANs, or use a</td>
</tr>
<tr>
<td></td>
<td>hyphen (-) to specify a range of VLANs. Enter a space before and after</td>
</tr>
<tr>
<td></td>
<td>the comma; enter a space before and after the hyphen.</td>
</tr>
<tr>
<td><strong>Step 4</strong> monitor session session_number destination interface</td>
<td>Specify the SPAN session and the destination port (monitoring port).</td>
</tr>
<tr>
<td>interface-id {encapsulation {dot1q</td>
<td>isl}}</td>
</tr>
<tr>
<td></td>
<td>For interface-id, specify the destination port. Valid interfaces include</td>
</tr>
<tr>
<td></td>
<td>physical interfaces.</td>
</tr>
<tr>
<td></td>
<td>(Optional) Specify the encapsulation header for outgoing packets. If</td>
</tr>
<tr>
<td></td>
<td>not specified, packets are sent in native form.</td>
</tr>
<tr>
<td></td>
<td>• isl—Use ISL encapsulation.</td>
</tr>
<tr>
<td></td>
<td>• dot1q—Use 802.1Q encapsulation.</td>
</tr>
<tr>
<td><strong>Step 5</strong> end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong> show monitor {session session_number}</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 7</strong> copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove one or more source VLANs or destination ports from the SPAN session, use the no monitor session session_number source vlan vlan-id rx global configuration command or the no monitor session session_number destination interface interface-id global configuration command.

This example shows how to clear any existing configuration on SPAN session 2, configure SPAN session 2 to monitor received traffic on all ports belonging to VLANs 1 through 3, and send it to destination port 7. The configuration is then modified to also monitor received traffic on all ports belonging to VLAN 10.

```
Switch(config)# no monitor session 2
Switch(config)# monitor session 2 source vlan 1 - 3 rx
Switch(config)# monitor session 2 destination interface gigabitethernet0/7
Switch(config)# monitor session 2 source vlan 10 rx
Switch(config)# end
```
Specifying VLANs to Filter

Beginning in privileged EXEC mode, follow these steps to limit SPAN source traffic to specific VLANs:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>no monitor session {session_number</td>
</tr>
<tr>
<td>Step 3</td>
<td>monitor session session_number source interface interface-id rx</td>
</tr>
<tr>
<td>Step 4</td>
<td>monitor session session_number filter vlan vlan-id [,</td>
</tr>
<tr>
<td>Step 5</td>
<td>monitor session session_number destination interface interface-id</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
</tr>
<tr>
<td>Step 7</td>
<td>show monitor [session session_number]</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To monitor all VLANs on the trunk port, use the no monitor session session_number filter global configuration command.

This example shows how to clear any existing configuration on SPAN session 2, configure SPAN session 2 to monitor traffic received on trunk port 4, and send traffic for only VLANs 1 through 5 and 9 to destination port 8.

Switch(config)# no monitor session 2
Switch(config)# monitor session 2 source interface gigabitethernet0/4 rx
Switch(config)# monitor session 2 filter vlan 1 - 5 , 9
Switch(config)# monitor session 2 destination interface gigabitethernet0/8
Switch(config)# end
Configuring RSPAN

This section describes how to configure RSPAN on your switch. It contains this configuration information:

- RSPAN Configuration Guidelines, page 23-16
- Creating an RSPAN Session, page 23-17
- Creating an RSPAN Destination Session, page 23-18
- Creating an RSPAN Destination Session and Enabling Ingress Traffic, page 23-19
- Removing Ports from an RSPAN Session, page 23-20
- Specifying VLANs to Monitor, page 23-21
- Specifying VLANs to Filter, page 23-22

RSPAN Configuration Guidelines

Follow these guidelines when configuring RSPAN:

- All the items in the “SPAN Configuration Guidelines” section on page 23-9 apply to RSPAN.

Note
As RSPAN VLANs have special properties, you should reserve a few VLANs across your network for use as RSPAN VLANs; do not assign access ports to these VLANs.

Note
You can apply an output access control list (ACL) to RSPAN traffic to selectively filter or monitor specific packets. Specify these ACLs on the RSPAN VLAN in the RSPAN source switches.

- RSPAN sessions can coexist with SPAN sessions within the limits described in the “SPAN and RSPAN Session Limits” section on page 23-8.
- For RSPAN configuration, you can distribute the source ports and the destination ports across multiple switches in your network.
- A port cannot serve as an RSPAN source port or RSPAN destination port while designated as an RSPAN reflector port.
- When you configure a switch port as a reflector port, it is no longer a normal switch port; only looped-back traffic passes through the reflector port.
- RSPAN does not support BPDU packet monitoring or other Layer 2 switch protocols.
- The RSPAN VLAN is configured only on trunk ports and not on access ports. To avoid unwanted traffic in RSPAN VLANs, make sure that the VLAN remote-span feature is supported in all the participating switches. Access ports on the RSPAN VLAN are silently disabled.
- RSPAN VLANs are included as sources for port-based RSPAN sessions when source trunk ports have active RSPAN VLANs. RSPAN VLANs can also be sources in SPAN sessions.
- You can configure any VLAN as an RSPAN VLAN as long as these conditions are met:
  - No access port is configured in the RSPAN VLAN.
  - The same RSPAN VLAN is used for an RSPAN session in all the switches.
  - All participating switches support RSPAN.
The RSPAN VLAN cannot be VLAN 1 (the default VLAN) or VLAN IDs 1002 through 1005 (reserved to Token Ring and FDDI VLANs).

- You should create an RSPAN VLAN before configuring an RSPAN source or destination session.
- If you enable VTP and VTP pruning, RSPAN traffic is pruned in the trunks to prevent the unwanted flooding of RSPAN traffic across the network for VLAN-IDs that are lower than 1005.
- Because RSPAN traffic is carried across a network on an RSPAN VLAN, the original VLAN association of the mirrored packets is lost. Therefore, RSPAN can only support forwarding of traffic from an IDS device onto a single user-specified VLAN.

Creating an RSPAN Session

First create an RSPAN VLAN that does not exist for the RSPAN session in any of the switches that will participate in RSPAN. With VTP enabled in the network, you can create the RSPAN VLAN in one switch, and VTP propagates it to the other switches in the VTP domain for VLAN-IDs that are lower than 1005. See the “Creating or Modifying an Ethernet VLAN” section on page 11-8 for more information about creating an RSPAN VLAN.

Use VTP pruning to get efficient flow of RSPAN traffic, or manually delete the RSPAN VLAN from all trunks that do not need to carry the RSPAN traffic.

After creating the RSPAN VLAN, begin in privileged EXEC mode, and follow these steps to start an RSPAN source session and to specify the source (monitored) ports and the destination RSPAN VLAN.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>no monitor session {session_number</td>
<td>all</td>
</tr>
<tr>
<td>Step 3</td>
<td>monitor session session_number source interface interface-id [ ,</td>
<td>- ] [both</td>
</tr>
</tbody>
</table>
Configuring SPAN and RSPAN

Chapter 23

Configuring SPAN

Configuring RSPAN

This example shows how to clear any existing RSPAN configuration for session 1, configure RSPAN session 1 to monitor multiple source interfaces, and configure the destination RSPAN VLAN and the reflector-port.

Switch(config)# no monitor session 1
Switch(config)# monitor session 1 source interface fastEthernet0/10 tx
Switch(config)# monitor session 1 source interface fastEthernet0/2 rx
Switch(config)# monitor session 1 source interface fastEthernet0/3 rx
Switch(config)# monitor session 1 source interface port-channel 102 rx
Switch(config)# monitor session 1 destination remote vlan 901 reflector-port fastEthernet0/1
Switch(config)# end

Creating an RSPAN Destination Session

Beginning in privileged EXEC mode, follow these steps to create an RSPAN destination session and to specify the source RSPAN VLAN and the destination port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>monitor session session_number destination remote vlan vlan-id reflector-port interface</td>
</tr>
<tr>
<td></td>
<td>Specify the RSPAN session, the destination remote VLAN, and the reflector port.</td>
</tr>
<tr>
<td></td>
<td>For session_number, enter 1 or 2.</td>
</tr>
<tr>
<td></td>
<td>For vlan-id, specify the RSPAN VLAN to carry the monitored traffic to the destination port. (See the “Creating or Modifying an Ethernet VLAN” section on page 11-8 for more information about creating an RSPAN VLAN.)</td>
</tr>
<tr>
<td></td>
<td>For interface, specify the interface that will flood the RSPAN traffic onto the RSPAN VLAN.</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>show monitor [session session_number]</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to clear any existing RSPAN configuration for session 1, configure RSPAN session 1 to monitor multiple source interfaces, and configure the destination RSPAN VLAN and the reflector-port.

Switch(config)# no monitor session 1
Switch(config)# monitor session 1 source interface fastEthernet0/10 tx
Switch(config)# monitor session 1 source interface fastEthernet0/2 rx
Switch(config)# monitor session 1 source interface fastEthernet0/3 rx
Switch(config)# monitor session 1 source interface port-channel 102 rx
Switch(config)# monitor session 1 destination remote vlan 901 reflector-port fastEthernet0/1
Switch(config)# end
Chapter 23 Configuring SPAN and RSPAN

Configuring RSPAN

This example shows how to configure VLAN 901 as the source remote VLAN and port 5 as the destination interface:

```
Switch(config)# monitor session 1 source remote vlan 901
Switch(config)# monitor session 1 destination interface fastEthernet0/5
Switch(config)# end
```

Creating an RSPAN Destination Session and Enabling Ingress Traffic

Beginning in privileged EXEC mode, follow these steps to create an RSPAN destination session, to specify the source RSPAN VLAN, and to enable ingress traffic on the destination port for a network security device (such as a Cisco IDS Sensor Appliance):

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>monitor session session_number source remote vlan vlan-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>monitor session session_number destination interface interface-id [encapsulation {dot1q ingress vlan vlan-id}</td>
</tr>
<tr>
<td></td>
<td>}</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
</tbody>
</table>
Configuring RSPAN

Chapter 23 Configuring SPAN and RSPAN

Step 5

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show monitor [session session_number]</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Removing Ports from an RSPAN Session

Beginning in privileged EXEC mode, follow these steps to remove a port as an RSPAN source for a session:

Step 1

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>

Step 2

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| no monitor session session_number source interface interface-id [+, -] [both | rx | tx] | Specify the characteristics of the RSPAN source port (monitored port) to remove. 
For session_number, specify 1 or 2. 
For interface-id, specify the source port to no longer monitor. Valid interfaces include physical interfaces and port-channel logical interfaces (port-channel port-channel-number). 
(Optional) Use [+, -] to specify a series or range of interfaces if they were configured. Enter a space before and after the comma; enter a space before and after the hyphen. 
(Optional) Specify the direction of traffic (both, rx, or tx) to no longer monitor. If you do not specify a traffic direction, both transmit and receive are disabled. |

Step 3

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Step 4

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show monitor [session session_number]</td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>

Step 5

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to remove port 1 as an RSPAN source for RSPAN session 1:

Switch(config)# no monitor session 1 source interface fastEthernet0/1
Switch(config)# end

This example shows how to disable received traffic monitoring on port 1, which was configured for bidirectional monitoring:

Switch(config)# no monitor session 1 source interface fastEthernet0/1 rx

The monitoring of traffic received on port 1 is disabled, but traffic sent from this port continues to be monitored.
Specifying VLANs to Monitor

VLAN monitoring is similar to port monitoring. Beginning in privileged EXEC mode, follow these steps to specify VLANs to monitor:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>no monitor session {session_number</td>
</tr>
<tr>
<td></td>
<td>Clear any existing SPAN configuration for the session.</td>
</tr>
<tr>
<td></td>
<td>For session_number, specify 1 or 2.</td>
</tr>
<tr>
<td></td>
<td>Specify all to remove all SPAN sessions, local to remove all local sessions, or remote to remove all remote SPAN sessions.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>monitor session session_number source vlan vlan-id [,</td>
</tr>
<tr>
<td></td>
<td>Specify the RSPAN session and the source VLANs (monitored VLANs). You can monitor only received (rx) traffic on VLANs.</td>
</tr>
<tr>
<td></td>
<td>For session_number, specify 1 or 2.</td>
</tr>
<tr>
<td></td>
<td>For vlan-id, the range is 1 to 4094; do not enter leading zeros.</td>
</tr>
<tr>
<td></td>
<td>(Optional) Use a comma (,) to specify a series of VLANs, or use a hyphen (-) to specify a range of VLANs. Enter a space before and after the comma; enter a space before and after the hyphen.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>monitor session session_number destination remote vlan vlan-id reflector port interface</td>
</tr>
<tr>
<td></td>
<td>Specify the RSPAN session, the destination remote VLAN, and the reflector port.</td>
</tr>
<tr>
<td></td>
<td>For session_number, enter 1 or 2.</td>
</tr>
<tr>
<td></td>
<td>For vlan-id, specify the RSPAN VLAN to carry the monitored traffic to the destination port.</td>
</tr>
<tr>
<td></td>
<td>For interface, specify the interface that will flood the RSPAN traffic to the RSPAN VLAN.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>show monitor [session session_number]</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove one or more source VLANs from the RSPAN session, use the `no monitor session session_number source vlan vlan-id rx` global configuration command.

This example shows how to clear any existing configuration on RSPAN session 2, configure RSPAN session 2 to monitor received traffic on all ports belonging to VLANs 1 through 3, and send it to destination remote VLAN 902 using reflector port 7. The configuration is then modified to also monitor received traffic on all ports belonging to VLAN 10.

```
Switch(config)# no monitor session 2
Switch(config)# monitor session 2 source vlan 1 - 3 rx
Switch(config)# monitor session 2 destination remote vlan 902 reflector-port gigabitethernet0/7
Switch(config)# end
```
Specifying VLANs to Filter

Beginning in privileged EXEC mode, follow these steps to limit RSPAN source traffic to specific VLANs:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 no monitor session {session_number</td>
<td>all</td>
</tr>
<tr>
<td>Step 3 monitor session session_number source interface interface-id rx</td>
<td>Specify the characteristics of the source port (monitored port) and RSPAN session. For session_number, specify 1 or 2. For interface-id, specify the source port to monitor. The interface specified must already be configured as a trunk port.</td>
</tr>
<tr>
<td>Step 4 monitor session session_number filter vlan vlan-id [,</td>
<td>-]</td>
</tr>
<tr>
<td>Step 5 monitor session session_number destination remote vlan vlan-id reflector port interface</td>
<td>Specify the RSPAN session, the destination remote VLAN, and the reflector port. For session_number, enter 1 or 2. For vlan-id, specify the RSPAN VLAN to carry the monitored traffic to the destination port. For interface, specify the interface that will flood the RSPAN traffic to the RSPAN VLAN.</td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7 show monitor [session session_number]</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 8 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To monitor all VLANs on the trunk port, use the no monitor session session_number filter vlan global configuration command.

This example shows how to clear any existing configuration on RSPAN session 2, configure RSPAN session 2 to monitor traffic received on trunk port 4, and send traffic for only VLANs 1 through 5 and 9 to destination remote VLAN 902 with port 8 as the reflector port.

Switch(config)# no monitor session 2
Switch(config)# monitor session 2 source interface gigabitethernet0/4 rx
Switch(config)# monitor session 2 filter vlan 1 - 5 , 9
Switch(config)# monitor session 2 destination remote vlan 902 reflector-port gigabitethernet0/8
Switch(config)# end
Displaying SPAN and RSPAN Status

To display the status of the current SPAN or RSPAN configuration, use the `show monitor` privileged EXEC command.

This is an example of output for the `show monitor` privileged EXEC command for SPAN source session 1:

```
Switch# show monitor session 1
Session 1

Type : Local Session
Source Ports :
 RX Only : None
 TX Only : None
 Both : Fa0/4
Source VLANs :
 RX Only : None
 TX Only : None
 Both : None
Source RSPAN VLAN : None
Destination Ports : Fa0/5
 Encapsulation: DOT1Q
 Ingress: Enabled, default VLAN = 5
Reflector Port : None
Filter VLANs : None
Dest RSPAN VLAN : None
```
Configuring RMON

This chapter describes how to configure Remote Network Monitoring (RMON) on your Catalyst 3550 switch. RMON is a standard monitoring specification that defines a set of statistics and functions that can be exchanged between RMON-compliant console systems and network probes. RMON provides you with comprehensive network-fault diagnosis, planning, and performance-tuning information.

Note
For complete syntax and usage information for the commands used in this chapter, refer to the Cisco IOS Configuration Fundamentals Command Reference for Release 12.1.

This chapter consists of these sections:
- Understanding RMON, page 24-1
- Configuring RMON, page 24-2
- Displaying RMON Status, page 24-6

Understanding RMON

RMON is an Internet Engineering Task Force (IETF) standard monitoring specification that allows various network agents and console systems to exchange network monitoring data. You can use the RMON feature with the Simple Network Management Protocol (SNMP) agent in the switch to monitor all the traffic flowing among switches on all connected LAN segments.
The switch supports these RMON groups (defined in RFC 1757):

- **Statistics (RMON group 1)**—Collects Ethernet, Fast Ethernet, and Gigabit Ethernet statistics on an interface.
- **History (RMON group 2)**—Collects a history group of statistics on Ethernet, Fast Ethernet, and Gigabit Ethernet interfaces for a specified polling interval.
- **Alarm (RMON group 3)**—Monitors a specific management information base (MIB) object for a specified interval, triggers an alarm at a specified value (rising threshold), and resets the alarm at another value (falling threshold). Alarms can be used with events; the alarm triggers an event, which can generate a log entry or an SNMP trap.
- **Event (RMON group 9)**—Determines the action to take when an event is triggered by an alarm. The action can be to generate a log entry or an SNMP trap.

Because switches supported by this IOS release use hardware counters for RMON data processing, the monitoring is more efficient, and little processing power is required.

**Configuring RMON**

This section describes how to configure RMON on your switch. It contains this configuration information:

- **Default RMON Configuration, page 24-3**
- **Configuring RMON Alarms and Events, page 24-3**
- **Configuring RMON Collection on an Interface, page 24-5**
**Default RMON Configuration**

RMON is disabled by default; no alarms or events are configured. Only RMON 1 is supported on the switch.

**Configuring RMON Alarms and Events**

You can configure your switch for RMON by using the command-line interface (CLI) or an SNMP-compatible network management station. We recommend that you use a generic RMON console application on the network management station (NMS) to take advantage of RMON’s network management capabilities. You must also configure SNMP on the switch to access RMON MIB objects. For more information, see Chapter 26, “Configuring SNMP.”

Beginning in privileged EXEC mode, follow these steps to enable RMON alarms and events:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>rmon alarm number variable interval [absolute</td>
</tr>
</tbody>
</table>

- For *number*, specify the alarm number. The range is 1 to 65535.
- For *variable*, specify the MIB object to monitor.
- For *interval*, specify the time in seconds the alarm monitors the MIB variable. The range is 1 to 4294967295 seconds.
- Specify the absolute keyword to test each MIB variable directly; specify the delta keyword to test the change between samples of a MIB variable.
- For *value*, specify a number at which the alarm is triggered and one for when the alarm is reset. The range for the rising threshold and falling threshold *values* is -2147483648 to 2147483647.
- (Optional) For *event-number*, specify the event number to trigger when the rising or falling threshold exceeds its limit.
- (Optional) For owner *string*, specify the owner of the alarm.
To disable an alarm, use the `no rmon alarm number` global configuration command on each alarm you configured. You cannot disable at once all the alarms that you configured. To disable an event, use the `no rmon event number` global configuration command. To learn more about alarms and events and how they interact with each other, refer to RFC 1757.

You can set an alarm on any MIB object. The following example configures RMON alarm number 10 by using the `rmon alarm` command. The alarm monitors the MIB variable `ifEntry.20.1` once every 20 seconds until the alarm is disabled and checks the change in the variable’s rise or fall. If the `ifEntry.20.1` value shows a MIB counter increase of 15 or more, such as from 100000 to 100015, the alarm is triggered. The alarm in turn triggers event number 1, which is configured with the `rmon event` command. Possible events can include a log entry or an SNMP trap. If the `ifEntry.20.1` value changes by 0, the alarm is reset and can be triggered again.

```
Switch(config)# rmon alarm 10 ifEntry.20.1 20 delta rising-threshold 15 1 falling-threshold 0 owner jjohnson
```

The following example creates RMON event number 1 by using the `rmon event` command. The event is defined as `High ifOutErrors` and generates a log entry when the event is triggered by the alarm. The user `jjones` owns the row that is created in the event table by this command. This example also generates an SNMP trap when the event is triggered.

```
Switch(config)# rmon event 1 log trap eventtrap description "High ifOutErrors" owner jjones
```
# Configuring RMON Collection on an Interface

You must first configure RMON alarms and events to display collection information. Beginning in privileged EXEC mode, follow these steps to collect group history statistics on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface on which to collect history.</td>
</tr>
<tr>
<td>Step 3 rmon collection history index [buckets bucket-number] [interval seconds] [owner ownername]</td>
<td>Enable history collection for the specified number of buckets and time period.</td>
</tr>
<tr>
<td></td>
<td>• For index, identify the RMON group of statistics. The range is 1 to 65535.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For buckets bucket-number, specify the maximum number of buckets desired for the RMON collection history group of statistics. The range is 1 to 65535. The default is 50 buckets.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For interval seconds, specify the number of seconds in each polling cycle.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For owner ownername, enter the name of the owner of the RMON group of statistics.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 show rmon history</td>
<td>Display the contents of the switch history table.</td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable history collection, use the no rmon collection history index interface configuration command.

Beginning in privileged EXEC mode, follow these steps to collect group Ethernet statistics on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface on which to collect statistics.</td>
</tr>
<tr>
<td>Step 3 rmon collection stats index [owner ownername]</td>
<td>Enable RMON statistic collection on the interface.</td>
</tr>
<tr>
<td></td>
<td>• For index, specify the RMON group of statistics. The range is from 1 to 65535.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For owner ownername, enter the name of the owner of the RMON group of statistics.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>
To disable the collection of group Ethernet statistics, use the `no rmon collection stats index` interface configuration command.

### Displaying RMON Status

To display the RMON status, use one or more of the privileged EXEC commands in Table 24-1:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show rmon</code></td>
<td>Displays general RMON statistics.</td>
</tr>
<tr>
<td><code>show rmon alarms</code></td>
<td>Displays the RMON alarm table.</td>
</tr>
<tr>
<td><code>show rmon events</code></td>
<td>Displays the RMON event table.</td>
</tr>
<tr>
<td><code>show rmon history</code></td>
<td>Displays the RMON history table.</td>
</tr>
<tr>
<td><code>show rmon statistics</code></td>
<td>Displays the RMON statistics table.</td>
</tr>
</tbody>
</table>

For information about the fields in these displays, refer to the *Cisco IOS Configuration Fundamentals Command Reference for Release 12.1*. 
Configuring System Message Logging

This chapter describes how to configure system message logging on your Catalyst 3550 switch.

For complete syntax and usage information for the commands used in this chapter, refer to the Cisco IOS Configuration Fundamentals Command Reference for Release 12.1.

This chapter consists of these sections:
- Understanding System Message Logging, page 25-1
- Configuring System Message Logging, page 25-2
- Displaying the Logging Configuration, page 25-12

Understanding System Message Logging

By default, a switch sends the output from system messages and debug privileged EXEC commands to a logging process. The logging process controls the distribution of logging messages to various destinations, such as the logging buffer, terminal lines, or a UNIX syslog server, depending on your configuration. The process also sends messages to the console.

The syslog format is compatible with 4.3 BSD UNIX.

When the logging process is disabled, messages are sent only to the console. The messages are sent as they are generated, so message and debug output are interspersed with prompts or output from other commands. Messages are displayed on the console after the process that generated them has finished.

You can set the severity level of the messages to control the type of messages displayed on the console and each of the destinations. You can timestamp log messages or set the syslog source address to enhance real-time debugging and management. For information on possible messages, refer to the system message guide for this release.

You can access logged system messages by using the switch command-line interface (CLI) or by saving them to a properly configured syslog server. The switch software saves syslog messages in an internal buffer. You can remotely monitor system messages by accessing the switch through Telnet, through the console port, or by viewing the logs on a syslog server.
Chapter 25      Configuring System Message Logging

These sections describe how to configure system message logging:

- System Log Message Format, page 25-2
- Default System Message Logging Configuration, page 25-3
- Disabling and Enabling Message Logging, page 25-4
- Setting the Message Display Destination Device, page 25-4
- Synchronizing Log Messages, page 25-6
- Enabling and Disabling Timestamps on Log Messages, page 25-7
- Enabling and Disabling Sequence Numbers in Log Messages, page 25-8
- Defining the Message Severity Level, page 25-8
- Limiting Syslog Messages Sent to the History Table and to SNMP, page 25-10
- Configuring UNIX Syslog Servers, page 25-10

System Log Message Format

System log messages can contain up to 80 characters and a percent sign (%), which follows the optional sequence number or timestamp information, if configured. Messages are displayed in this format:

```
seq no:timestamp: %facility-severity-MNEMONIC:description
```

The part of the message preceding the percent sign depends on the setting of the `service sequence-numbers`, `service timestamps log datetime`, or `service timestamps log uptime` global configuration command.

Table 25-1 describes the elements of syslog messages.

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>seq no:</td>
<td>Stamps log messages with a sequence number only if the <code>service sequence-numbers</code> global configuration command is configured. For more information, see the “Enabling and Disabling Sequence Numbers in Log Messages” section on page 25-8.</td>
</tr>
<tr>
<td>timestamp formats:</td>
<td>Date and time of the message or event. This information appears only if the `service timestamps log [datetime</td>
</tr>
<tr>
<td>mm/dd hh:mm:ss</td>
<td>(short uptime)</td>
</tr>
<tr>
<td>hh:mm:ss</td>
<td>(long uptime)</td>
</tr>
<tr>
<td>facility</td>
<td>The facility to which the message refers (for example, SNMP, SYS, and so forth). For a list of supported facilities, see Table 25-4 on page 25-12.</td>
</tr>
<tr>
<td>severity</td>
<td>Single-digit code from 0 to 7 that is the severity of the message. For a description of the severity levels, see Table 25-3 on page 25-9.</td>
</tr>
</tbody>
</table>
Chapter 25 Configuring System Message Logging

Table 25-1 System Log Message Elements (continued)

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNEMONIC</td>
<td>Text string that uniquely describes the message.</td>
</tr>
<tr>
<td>description</td>
<td>Text string containing detailed information about the event being reported.</td>
</tr>
</tbody>
</table>

This example shows a partial switch system message:

`00:00:46: %LINK-3-UPDOWN: Interface Port-channel1, changed state to up`
`00:00:47: %LINK-3-UPDOWN: Interface GigabitEthernet0/1, changed state to up`
`00:00:47: %LINK-3-UPDOWN: Interface GigabitEthernet0/2, changed state to up`
`00:00:48: %LINEPROTO-5-UPDOWN: Line protocol on Interface Vlan1, changed state to down`
`00:00:48: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/1, changed state to down 2`
`*Mar 1 18:46:11: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36)`
`18:47:02: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36)`
`*Mar 1 18:48:50.483 UTC: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36)`

Default System Message Logging Configuration

Table 25-2 shows the default system message logging configuration.

Table 25-2 Default System Message Logging Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>System message logging to the console</td>
<td>Enabled.</td>
</tr>
<tr>
<td>Console severity</td>
<td>Debugging (and numerically lower levels; see Table 25-3 on page 25-9).</td>
</tr>
<tr>
<td>Logging buffer size</td>
<td>4096 bytes.</td>
</tr>
<tr>
<td>Logging history size</td>
<td>1 message.</td>
</tr>
<tr>
<td>Timestamps</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Synchronous logging</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Logging server</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Syslog server IP address</td>
<td>None configured.</td>
</tr>
<tr>
<td>Server facility</td>
<td>Local7 (see Table 25-4 on page 25-12).</td>
</tr>
<tr>
<td>Server severity</td>
<td>Informational (and numerically lower levels; see Table 25-3 on page 25-9).</td>
</tr>
</tbody>
</table>
### Disabling and Enabling Message Logging

Message logging is enabled by default. It must be enabled to send messages to any destination other than the console. When enabled, log messages are sent to a logging process, which logs messages to designated locations asynchronously to the processes that generated the messages.

Beginning in privileged EXEC mode, follow these steps to disable message logging:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>no logging on</code> Disable message logging.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>show running-config</code> or <code>show logging</code> Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Disabling the logging process can slow down the switch because a process must wait until the messages are written to the console before continuing. When the logging process is disabled, messages are displayed on the console as soon as they are produced, often appearing in the middle of command output.

The `logging synchronous` global configuration command also affects the display of messages to the console. When this command is enabled, messages appear only after you press Return. For more information, see the “Synchronizing Log Messages” section on page 25-6.

To re-enable message logging after it has been disabled, use the `logging on` global configuration command.

### Setting the Message Display Destination Device

If message logging is enabled, you can send messages to specific locations in addition to the console. Beginning in privileged EXEC mode, use one or more of the following commands to specify the locations that receive messages:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>logging buffered [size]</code> Log messages to an internal buffer. The default buffer size is 4096. The range is 4096 to 4294967295 bytes.</td>
</tr>
</tbody>
</table>

**Note** Do not make the buffer size too large because the switch could run out of memory for other tasks. Use the `show memory` privileged EXEC command to view the free processor memory on the switch; however, this value is the maximum available, and the buffer size should not be set to this amount. |
The `logging buffered` global configuration command copies logging messages to an internal buffer. The buffer is circular, so newer messages overwrite older messages after the buffer is full. To display the messages that are logged in the buffer, use the `show logging` privileged EXEC command. The first message displayed is the oldest message in the buffer. To clear the contents of the buffer, use the `clear logging` privileged EXEC command.

To disable logging to the console, use the `no logging console` global configuration command. To disable logging to a file, use the `no logging file [severity-level-number | type]` global configuration command.
Synchronizing Log Messages

You can configure the system to synchronize unsolicited messages and `debug` privileged EXEC command output with solicited device output and prompts for a specific console port line or virtual terminal line. You can identify the types of messages to be output asynchronously based on the level of severity. You can also determine the maximum number of buffers for storing asynchronous messages for the terminal after which messages are dropped.

When synchronous logging of unsolicited messages and `debug` command output is enabled, unsolicited device output is displayed on the console or printed after solicited device output is displayed or printed. Unsolicited messages and `debug` command output is displayed on the console after the prompt for user input is returned. Therefore, unsolicited messages and `debug` command output are not interspersed with solicited device output and prompts. After the unsolicited messages are displayed, the console again displays the user prompt.

Beginning in privileged EXEC mode, follow these steps to configure synchronous logging:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Specify the line to be configured for synchronous logging of messages.</td>
</tr>
<tr>
<td>line [console</td>
<td>vty] line-number [ending-line-number]</td>
</tr>
<tr>
<td></td>
<td>• Use the <code>line vty line-number</code> command to specify which vty lines are to have synchronous logging enabled. You use a vty connection for configurations that occur through a Telnet session. The range of line numbers is from 0 to 15.</td>
</tr>
<tr>
<td></td>
<td>You can change the setting of all 16 vty lines at once by entering:</td>
</tr>
<tr>
<td></td>
<td><code>line vty 0 15</code></td>
</tr>
<tr>
<td></td>
<td>Or you can change the setting of the single vty line being used for your current connection. For example, to change the setting for vty line 2, enter:</td>
</tr>
<tr>
<td></td>
<td><code>line vty 2</code></td>
</tr>
<tr>
<td></td>
<td>When you enter this command, the mode changes to line configuration.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Enable synchronous logging of messages.</td>
</tr>
<tr>
<td>logging synchronous [level severity-level</td>
<td>all] [limit number-of-buffers]</td>
</tr>
<tr>
<td></td>
<td>• (Optional) Specifying <code>level all</code> means that all messages are printed asynchronously regardless of the severity level.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>limit number-of-buffers</code>, specify the number of buffers to be queued for the terminal after which new messages are dropped. The default is 20.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 25  Configuring System Message Logging

Configuring System Message Logging

To disable synchronization of unsolicited messages and debug output, use the `no logging synchronous [level severity-level | all] [limit number-of-buffers]` line configuration command.

**Enabling and Disabling Timestamps on Log Messages**

By default, log messages are not timestamped.

Beginning in privileged EXEC mode, follow these steps to enable timestamping of log messages:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>service timestamps log uptime</td>
</tr>
<tr>
<td></td>
<td>or service timestamps log datetime [msec] [localtime] [show-timezone]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable timestamps for both debug and log messages, use the `no service timestamps` global configuration command.

This example shows part of a logging display with the `service timestamps log datetime` global configuration command enabled:

```
*Mar 1 18:46:11: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36)
```

This example shows part of a logging display with the `service timestamps log uptime` global configuration command enabled:

```
00:00:46: %LINK-3-UPDOWN: Interface Port-channel1, changed state to up
```
Enabling and Disabling Sequence Numbers in Log Messages

Because there is a chance that more than one log message can have the same timestamp, you can display messages with sequence numbers so that you can unambiguously refer to a single message. By default, sequence numbers in log messages are not displayed.

Beginning in privileged EXEC mode, follow these steps to enable sequence numbers in log messages:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>service sequence-numbers</td>
<td>Enable sequence numbers.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable sequence numbers, use the `no service sequence-numbers` global configuration command.

This example shows part of a logging display with sequence numbers enabled:

```
000019: %SYS-5-CONFIG_I: Configured from console by vty2 (10.34.195.36)
```

Defining the Message Severity Level

You can limit messages displayed to the selected device by specifying the severity level of the message, which are described in Table 25-3.

Beginning in privileged EXEC mode, follow these steps to define the message severity level:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>logging console level</td>
<td>Limit messages logged to the console. By default, the console receives debugging messages and numerically lower levels (see Table 25-3 on page 25-9).</td>
</tr>
<tr>
<td>logging monitor level</td>
<td>Limit messages logged to the terminal lines. By default, the terminal receives debugging messages and numerically lower levels (see Table 25-3 on page 25-9).</td>
</tr>
<tr>
<td>logging trap level</td>
<td>Limit messages logged to the syslog servers. By default, syslog servers receive informational messages and numerically lower levels (see Table 25-3 on page 25-9).</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

For complete syslog server configuration steps, see the “Configuring UNIX Syslog Servers” section on page 25-10.
Chapter 25  Configuring System Message Logging

Configuring System Message Logging

Note

Specifying a level causes messages at that level and numerically lower levels to be displayed at the destination.

To disable logging to the console, use the no logging console global configuration command. To disable logging to a terminal other than the console, use the no logging monitor global configuration command. To disable logging to syslog servers, use the no logging trap global configuration command.

Table 25-3 describes the level keywords. It also lists the corresponding UNIX syslog definitions from the most severe level to the least severe level.

Table 25-3  Message Logging Level Keywords

<table>
<thead>
<tr>
<th>Level Keyword</th>
<th>Level</th>
<th>Description</th>
<th>Syslog Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>emergencies</td>
<td>0</td>
<td>System unstable</td>
<td>LOG_EMERG</td>
</tr>
<tr>
<td>alerts</td>
<td>1</td>
<td>Immediate action needed</td>
<td>LOG_ALERT</td>
</tr>
<tr>
<td>critical</td>
<td>2</td>
<td>Critical conditions</td>
<td>LOG_CRIT</td>
</tr>
<tr>
<td>errors</td>
<td>3</td>
<td>Error conditions</td>
<td>LOG_ERR</td>
</tr>
<tr>
<td>warnings</td>
<td>4</td>
<td>Warning conditions</td>
<td>LOG_WARNING</td>
</tr>
<tr>
<td>notifications</td>
<td>5</td>
<td>Normal but significant condition</td>
<td>LOG_NOTICE</td>
</tr>
<tr>
<td>informational</td>
<td>6</td>
<td>Informational messages only</td>
<td>LOG_INFO</td>
</tr>
<tr>
<td>debugging</td>
<td>7</td>
<td>Debugging messages</td>
<td>LOG_DEBUG</td>
</tr>
</tbody>
</table>

The software generates four other categories of messages:

- Error messages about software or hardware malfunctions, displayed at levels warnings through emergencies. These types of messages mean that the functionality of the switch is affected. For information on how to recover from these malfunctions, refer to the system message guide for this release.
- Output from the debug commands, displayed at the debugging level. Debug commands are typically used only by the Technical Assistance Center.
- Interface up or down transitions and system restart messages, displayed at the notifications level. This message is only for information; switch functionality is not affected.
- Reload requests and low-process stack messages, displayed at the informational level. This message is only for information; switch functionality is not affected.
Limiting Syslog Messages Sent to the History Table and to SNMP

If you enabled syslog message traps to be sent to an SNMP network management station by using the `snmp-server enable trap` global configuration command, you can change the level of messages sent and stored in the switch history table. You also can change the number of messages that are stored in the history table.

Messages are stored in the history table because SNMP traps are not guaranteed to reach their destination. By default, one message of the level `warning` and numerically lower levels (see Table 25-3 on page 25-9) are stored in the history table even if syslog traps are not enabled.

Beginning in privileged EXEC mode, follow these steps to change the level and history table size defaults:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>logging history level</code></td>
<td>Change the default level of syslog messages stored in the history file and sent to the SNMP server.</td>
</tr>
<tr>
<td></td>
<td>See Table 25-3 on page 25-9 for a list of <code>level</code> keywords.</td>
</tr>
<tr>
<td></td>
<td>By default, <code>warnings, errors, critical, alerts</code>, and <code>emergencies</code> messages are sent.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td><code>logging history size number</code></td>
<td>Specify the number of syslog messages that can be stored in the history table.</td>
</tr>
<tr>
<td></td>
<td>The default is to store one message. The range is 1 to 500 messages.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td></td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td></td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

When the history table is full (it contains the maximum number of message entries specified with the `logging history size` global configuration command), the oldest message entry is deleted from the table to allow the new message entry to be stored.

To return the logging of syslog messages to the default level, use the `no logging history` global configuration command. To return the number of messages in the history table to the default value, use the `no logging history size` global configuration command.

Configuring UNIX Syslog Servers

The next sections describe how to configure the UNIX server syslog daemon and how to define the UNIX system logging facility.
Chapter 25 Configuring System Message Logging

### Logging Messages to a UNIX Syslog Daemon

Before you can send system log messages to a UNIX syslog server, you must configure the syslog daemon on a UNIX server. Log in as root, and perform these steps:

**Note**

Some recent versions of UNIX syslog daemons no longer accept by default syslog packets from the network. If this is the case with your system, use the UNIX `man syslogd` command to determine what options must be added to or removed from the syslog command line to enable logging of remote syslog messages.

**Step 1**

Add a line such as the following to the file `/etc/syslog.conf`:

```
local7.debug /usr/adm/logs/cisco.log
```

The `local7` keyword specifies the logging facility to be used; see Table 25-4 on page 25-12 for information on the facilities. The `debug` keyword specifies the syslog level; see Table 25-3 on page 25-9 for information on the severity levels. The syslog daemon sends messages at this level or at a more severe level to the file specified in the next field. The file must already exist, and the syslog daemon must have permission to write to it.

**Step 2**

Create the log file by entering these commands at the UNIX shell prompt:

```
$ touch /var/log/cisco.log
$ chmod 666 /var/log/cisco.log
```

**Step 3**

Make sure the syslog daemon reads the new changes:

```
$ kill -HUP `cat /etc/syslog.pid`
```

For more information, see the `man syslog.conf` and `man syslogd` commands on your UNIX system.

### Configuring the UNIX System Logging Facility

When sending system log messages to an external device, you can cause the switch to identify its messages as originating from any of the UNIX syslog facilities.

Beginning in privileged EXEC mode, follow these steps to configure UNIX system facility message logging:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>logging host</code></td>
</tr>
<tr>
<td></td>
<td>Log messages to a UNIX syslog server host by entering its IP address.</td>
</tr>
<tr>
<td></td>
<td>To build a list of syslog servers that receive logging messages, enter this command more than once.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>logging trap level</code></td>
</tr>
<tr>
<td></td>
<td>Limit messages logged to the syslog servers.</td>
</tr>
<tr>
<td></td>
<td>Be default, syslog servers receive informational messages and lower. See Table 25-3 on page 25-9 for <code>level</code> keywords.</td>
</tr>
</tbody>
</table>
Displaying the Logging Configuration

To display the logging configuration and the contents of the log buffer, use the `show logging` privileged EXEC command. For information about the fields in this display, refer to the Cisco IOS Configuration Fundamentals Command Reference for Release 12.1.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td><strong>logging facility</strong> <code>facility-type</code> Configure the syslog facility. See Table 25-4 on page 25-12 for <code>facility-type</code> keywords. The default is <code>local7</code>.</td>
</tr>
<tr>
<td>Step 5</td>
<td><strong>end</strong> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td><strong>show running-config</strong> Verify your entries.</td>
</tr>
<tr>
<td>Step 7</td>
<td><strong>copy running-config startup-config</strong> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Table 25-4 lists the UNIX system facilities supported by the Cisco IOS software. For more information about these facilities, consult the operator’s manual for your UNIX operating system.

<table>
<thead>
<tr>
<th>Facility Type Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auth</td>
<td>Authorization system</td>
</tr>
<tr>
<td>cron</td>
<td>Cron facility</td>
</tr>
<tr>
<td>daemon</td>
<td>System daemon</td>
</tr>
<tr>
<td>kern</td>
<td>Kernel</td>
</tr>
<tr>
<td>local0-7</td>
<td>Locally defined messages</td>
</tr>
<tr>
<td>lpr</td>
<td>Line printer system</td>
</tr>
<tr>
<td>mail</td>
<td>Mail system</td>
</tr>
<tr>
<td>news</td>
<td>USENET news</td>
</tr>
<tr>
<td>syslog</td>
<td>System log</td>
</tr>
<tr>
<td>sys9</td>
<td>System use</td>
</tr>
<tr>
<td>sys10</td>
<td>System use</td>
</tr>
<tr>
<td>sys11</td>
<td>System use</td>
</tr>
<tr>
<td>sys12</td>
<td>System use</td>
</tr>
<tr>
<td>sys13</td>
<td>System use</td>
</tr>
<tr>
<td>sys14</td>
<td>System use</td>
</tr>
<tr>
<td>syslog</td>
<td>System log</td>
</tr>
<tr>
<td>user</td>
<td>User process</td>
</tr>
<tr>
<td>uucp</td>
<td>UNIX-to-UNIX copy system</td>
</tr>
</tbody>
</table>
Configuring SNMP

This chapter describes how to configure the Simple Network Management Protocol (SNMP) on your Catalyst 3550 switch.

Note

For complete syntax and usage information for the commands used in this chapter, refer to the switch command reference for this release and to the Cisco IOS Configuration Fundamentals Command Reference for Release 12.1.

This chapter consists of these sections:

- Understanding SNMP, page 26-1
- Configuring SNMP, page 26-5
- Displaying SNMP Status, page 26-16

Understanding SNMP

SNMP is an application-layer protocol that provides a message format for communication between managers and agents. The SNMP system consists of an SNMP manager, an SNMP agent, and a management information base (MIB). The SNMP manager can be part of a network management system (NMS) such as CiscoWorks. The agent and MIB reside on the switch. To configure SNMP on the switch, you define the relationship between the manager and the agent.

The SNMP agent contains MIB variables whose values the SNMP manager can request or change. A manager can get a value from an agent or store a value into the agent. The agent gathers data from the MIB, the repository for information about device parameters and network data. The agent can also respond to a manager’s requests to get or set data.

An agent can send unsolicited traps to the manager. Traps are messages alerting the SNMP manager to a condition on the network. Traps can mean improper user authentication, restarts, link status (up or down), MAC address tracking, closing of a TCP connection, loss of connection to a neighbor, or other significant events.

This section includes information about these topics:

- SNMP Versions, page 26-2
- SNMP Manager Functions, page 26-3
- SNMP Agent Functions, page 26-4
- SNMP Community Strings, page 26-4
SNMP Versions

This software release supports these SNMP versions:

- **SNMPv1**—The Simple Network Management Protocol, a Full Internet Standard, defined in RFC 1157.
- **SNMPv2C** replaces the Party-based Administrative and Security Framework of SNMPv2Classic with the community-string-based Administrative Framework of SNMPv2C while retaining the bulk retrieval and improved error handling of SNMPv2Classic. It has these features:
  - **SNMPv2**—Version 2 of the Simple Network Management Protocol, a Draft Internet Standard, defined in RFCs 1902 through 1907.
  - **SNMPv2C**—The community-string-based Administrative Framework for SNMPv2, an Experimental Internet Protocol defined in RFC 1901.
- **SNMPv3**—Version 3 of the SNMP is an interoperable standards-based protocol defined in RFCs 2273 to 2275. SNMPv3 provides secure access to devices by authenticating and encrypting packets over the network and includes these security features:
  - Message integrity—ensuring that a packet was not tampered with in transit
  - Authentication—determining that the message is from a valid source
  - Encryption—mixing the contents of a package to prevent it from being read by an unauthorized source.

**Note** To select encryption, enter the `priv` keyword. This keyword is available only when the cryptographic (encrypted) software image is installed.

Both SNMPv1 and SNMPv2C use a community-based form of security. The community of managers able to access the agent’s MIB is defined by an IP address access control list and password.

SNMPv2C includes a bulk retrieval mechanism and more detailed error message reporting to management stations. The bulk retrieval mechanism retrieves tables and large quantities of information, minimizing the number of round-trips required. The SNMPv2C improved error-handling includes expanded error codes that distinguish different kinds of error conditions; these conditions are reported through a single error code in SNMPv1. Error return codes in SNMPv2C report the error type.

SNMPv3 provides for both security models and security levels. A security model is an authentication strategy set up for a user and the group within which the user resides. A security level is the permitted level of security within a security model. A combination of the security level and the security model determine which security mechanism is used when handling an SNMP packet. Available security models are SNMPv1, SNMPv2C, and SNMPv3.

Table 26-1 identifies the characteristics of the different combinations of security models and levels.
Understanding SNMP

You must configure the SNMP agent to use the SNMP version supported by the management station. Because an agent can communicate with multiple managers, you can configure the software to support communications with one management station using the SNMPv1 protocol, one using the SNMPv2C protocol and another using SNMPv3.

### SNMP Manager Functions

The SNMP manager uses information in the MIB to perform the operations described in Table 26-2.

#### Table 26-1 SNMP Security Models and Levels

<table>
<thead>
<tr>
<th>Model</th>
<th>Level</th>
<th>Authentication</th>
<th>Encryption</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMPv1</td>
<td>noAuthNoPriv</td>
<td>Community string</td>
<td>No</td>
<td>Uses a community string match for authentication.</td>
</tr>
<tr>
<td>SNMPv2C</td>
<td>noAuthNoPriv</td>
<td>Community string</td>
<td>No</td>
<td>Uses a community string match for authentication.</td>
</tr>
<tr>
<td>SNMPv3</td>
<td>noAuthNoPriv</td>
<td>Username</td>
<td>No</td>
<td>Uses a username match for authentication.</td>
</tr>
<tr>
<td>SNMPv3</td>
<td>authNoPriv</td>
<td>MD5 or SHA</td>
<td>No</td>
<td>Provides authentication based on the HMAC-MD5 or HMAC-SHA algorithms.</td>
</tr>
<tr>
<td>SNMPv3</td>
<td>authPriv</td>
<td>MD5 or SHA</td>
<td>DES</td>
<td>Provides authentication based on the HMAC-MD5 or HMAC-SHA algorithms. Provides DES 56-bit encryption in addition to authentication based on the CBC-DES (DES-56) standard.</td>
</tr>
</tbody>
</table>

You must configure the SNMP agent to use the SNMP version supported by the management station. Because an agent can communicate with multiple managers, you can configure the software to support communications with one management station using the SNMPv1 protocol, one using the SNMPv2C protocol and another using SNMPv3.

### SNMP Manager Functions

The SNMP manager uses information in the MIB to perform the operations described in Table 26-2.

#### Table 26-2 SNMP Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>get-request</td>
<td>Retrieves a value from a specific variable.</td>
</tr>
<tr>
<td>get-next-request</td>
<td>Retrieves a value from a variable within a table.¹</td>
</tr>
<tr>
<td>get-bulk-request</td>
<td>Retrieves large blocks of data, such as multiple rows in a table, that would otherwise require the transmission of many small blocks of data.</td>
</tr>
<tr>
<td>get-response</td>
<td>Replies to a get-request, get-next-request, and set-request sent by an NMS.</td>
</tr>
<tr>
<td>set-request</td>
<td>Stores a value in a specific variable.</td>
</tr>
<tr>
<td>trap</td>
<td>An unsolicited message sent by an SNMP agent to an SNMP manager when some event has occurred.</td>
</tr>
</tbody>
</table>

¹. With this operation, an SNMP manager does not need to know the exact variable name. A sequential search is performed to find the needed variable from within a table.

². The get-bulk command only works with SNMPv2 or later.
SNMP Agent Functions

The SNMP agent responds to SNMP manager requests as follows:

- **Get a MIB variable**—The SNMP agent begins this function in response to a request from the NMS. The agent retrieves the value of the requested MIB variable and responds to the NMS with that value.

- **Set a MIB variable**—The SNMP agent begins this function in response to a message from the NMS. The SNMP agent changes the value of the MIB variable to the value requested by the NMS.

The SNMP agent also sends unsolicited trap messages to notify an NMS that a significant event has occurred on the agent. Examples of trap conditions include, but are not limited to, when a port or module goes up or down, when spanning-tree topology changes occur, and when authentication failures occur.

SNMP Community Strings

SNMP community strings authenticate access to MIB objects and function as embedded passwords. In order for the NMS to access the switch, the community string definitions on the NMS must match at least one of the three community string definitions on the switch.

A community string can have one of these attributes:

- **Read-only (RO)**—Gives read access to authorized management stations to all objects in the MIB except the community strings, but does not allow write access

- **Read-write (RW)**—Gives read and write access to authorized management stations to all objects in the MIB, but does not allow access to the community strings

- **Read-write-all**—Gives read and write access to authorized management stations to all objects in the MIB, including the community strings

---

**Note**

When a cluster is created, the command switch manages the exchange of messages among member switches and the SNMP application. The Cluster Management software appends the member switch number (@esN, where N is the switch number) to the first configured RW and RO community strings on the command switch and propagates them to the member switches. For more information, see Chapter 6, “Clustering Switches.”

Using SNMP to Access MIB Variables

An example of an NMS is the CiscoWorks network management software. CiscoWorks 2000 software uses the switch MIB variables to set device variables and to poll devices on the network for specific information. The results of a poll can be displayed as a graph and analyzed to troubleshoot internetworking problems, increase network performance, verify the configuration of devices, monitor traffic loads, and more.

As shown in Figure 26-1, the SNMP agent gathers data from the MIB. The agent can send traps, or notification of certain events, to the SNMP manager, which receives and processes the traps. Traps alert the SNMP manager to a condition on the network such as improper user authentication, restarts, link status (up or down), MAC address tracking, and so forth. The SNMP agent also responds to MIB-related queries sent by the SNMP manager in get-request, get-next-request, and set-request format.
SNMP Notifications

SNMP allows the switch to send notifications to SNMP managers when particular events occur. SNMP notifications can be sent as traps or inform requests. In command syntax, unless there is an option in the command to select either traps or informs, the keyword *traps* refers to either traps or informs, or both. Use the `snmp-server host` command to specify whether to send SNMP notifications as traps or informs.

Traps are unreliable because the receiver does not send an acknowledgment when it receives a trap, and the sender cannot determine if the trap was received. When an SNMP manager receives an inform request, it acknowledges the message with an SNMP response protocol data unit (PDU). If the sender does not receive a response, the inform request can be sent again. Because they can be re-sent, informs are more likely than traps to reach their intended destination.

The characteristics that make informs more reliable than traps also consume more resources in the switch and in the network. Unlike a trap, which is discarded as soon as it is sent, an inform request is held in memory until a response is received or the request times out. Traps are sent only once, but an inform might be re-sent or retried several times. The retries increase traffic and contribute to a higher overhead on the network. Therefore, traps and informs require a trade-off between reliability and resources. If it is important that the SNMP manager receive every notification, use inform requests. If traffic on the network or memory in the switch is a concern and notification is not required, use traps.

---

**Note**

SNMPv1 does not support informs.

Configuring SNMP

This section describes how to configure SNMP on your switch. It contains this configuration information:

- Default SNMP Configuration, page 26-6
- SNMP Configuration Guidelines, page 26-6
- Disabling the SNMP Agent, page 26-7
- Configuring Community Strings, page 26-7
- Configuring SNMP Groups and Users, page 26-9
- Configuring SNMP Notifications, page 26-11
- Setting the Agent Contact and Location Information, page 26-14
- Limiting TFTP Servers Used Through SNMP, page 26-14
- SNMP Examples, page 26-15
Default SNMP Configuration

Table 26-3 shows the default SNMP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMP agent</td>
<td>Enabled</td>
</tr>
<tr>
<td>SNMP community strings</td>
<td>Read-Only: Public</td>
</tr>
<tr>
<td></td>
<td>Read-Write: Private</td>
</tr>
<tr>
<td></td>
<td>Read-Write-all: Secret</td>
</tr>
<tr>
<td>SNMP trap receiver</td>
<td>None configured</td>
</tr>
<tr>
<td>SNMP traps</td>
<td>None enabled</td>
</tr>
<tr>
<td>SNMP version</td>
<td>If no version keyword is present, the default is version 1.</td>
</tr>
<tr>
<td>SNMPv3 authentication</td>
<td>If no keyword is entered, the default is the noauth (noAuthNoPriv) security level.</td>
</tr>
<tr>
<td>SNMP notification type</td>
<td>If no type is specified, all notifications are sent.</td>
</tr>
</tbody>
</table>

SNMP Configuration Guidelines

An SNMP group is a table that maps SNMP users to SNMP views. An SNMP user is a member of an SNMP group. An SNMP host is the recipient of an SNMP trap operation. An SNMP engine ID is a name for the local or remote SNMP engine.

Note

Before using alarm profiles to set the Catalyst 2955 switch to send SNMP alarm trap notifications to an SNMP server, you must first enable SNMP by using the snmp-server enable traps alarms global configuration command.

When configuring SNMP, follow these guidelines:

- When configuring an SNMP group, do not specify a notify view. The snmp-server host global configuration command autogenerates a notify view for the user and then adds it to the group associated with that user. Modifying the group's notify view affects all users associated with that group. Refer to the Cisco IOS Configuration Fundamentals Command Reference for Release 12.1 for information about when you should configure notify views.

- To configure a remote user, specify the IP address or port number for the remote SNMP agent of the device where the user resides.

- Before you configure remote users for a particular agent, configure the SNMP engine ID, using the snmp-server engineID global configuration with the remote option. The remote agent's SNMP engine ID and user password are used to compute the authentication and privacy digests. If you do not configure the remote engine ID first, the configuration command fails.

- When configuring SNMP informs, you need to configure the SNMP engine ID for the remote agent in the SNMP database before you can send proxy requests or informs to it.

- Changing the value of the SNMP engine ID has important side effects. A user's password (entered on the command line) is converted to an MD5 or SHA security digest based on the password and the local engine ID. The command-line password is then destroyed, as required by RFC 2274. Because
of this deletion, if the value of engineID changes, the security digests of SNMPv3 users become invalid, and you need to reconfigure SNMP users by using the `snmp-server user username` global configuration command. Similar restrictions require the reconfiguration of community strings when the engine ID changes.

## Disabling the SNMP Agent

Beginning in privileged EXEC mode, follow these steps to disable the SNMP agent:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>configure terminal</strong></td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>no snmp-server</strong></td>
</tr>
<tr>
<td></td>
<td>Disable the SNMP agent operation.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>end</strong></td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>show running-config</strong></td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>copy running-config startup-config</strong></td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

The `no snmp-server` global configuration command disables all running versions (version 1, version 2C, and version 3) on the device. No specific IOS command exists to enable SNMP. The first `snmp-server` global configuration command that you enter enables all versions of SNMP.

## Configuring Community Strings

You use the SNMP community string to define the relationship between the SNMP manager and the agent. The community string acts like a password to permit access to the agent on the switch. Optionally, you can specify one or more of these characteristics associated with the string:

- An access list of IP addresses of the SNMP managers that are permitted to use the community string to gain access to the agent
- A MIB view, which defines the subset of all MIB objects accessible to the given community
- Read and write or read-only permission for the MIB objects accessible to the community
Beginning in privileged EXEC mode, follow these steps to configure a community string on the switch:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>snmp-server community string [view view-name] [ro</td>
<td>rw] [access-list-number]</td>
</tr>
</tbody>
</table>

- For *string*, specify a string that acts like a password and permits access to the SNMP protocol. You can configure one or more community strings of any length.
- (Optional) For *view*, specify the view record accessible to the community.
- (Optional) Specify either read-only (*ro*) if you want authorized management stations to retrieve MIB objects, or specify read-write (*rw*) if you want authorized management stations to retrieve and modify MIB objects. By default, the community string permits read-only access to all objects.
- (Optional) For *access-list-number*, enter an IP standard access list numbered from 1 to 99 and 1300 to 1999.

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>access-list access-list-number {deny</td>
<td>permit} source [source-wildcard]</td>
</tr>
</tbody>
</table>

- For *access-list-number*, enter the access list number specified in Step 2.
- The *deny* keyword denies access if the conditions are matched. The *permit* keyword permits access if the conditions are matched.
- For *source*, enter the IP address of the SNMP managers that are permitted to use the community string to gain access to the agent.
- (Optional) For *source-wildcard*, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.

Recall that the access list is always terminated by an implicit deny statement for everything.

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Note: To disable access for an SNMP community, set the community string for that community to the null string (do not enter a value for the community string).

To remove a specific community string, use the **no snmp-server community string** global configuration command.
This example shows how to assign the string `comaccess` to SNMP, to allow read-only access, and to specify that IP access list 4 can use the community string to gain access to the switch SNMP agent:

```
Switch(config)# snmp-server community comaccess ro 4
```

## Configuring SNMP Groups and Users

You can specify an identification name (engineID) for the local or remote SNMP server engine on the switch. You can configure an SNMP server group that maps SNMP users to SNMP views, and you can add new users to the SNMP group.

Beginning in privileged EXEC mode, follow these steps to configure SNMP on the switch:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>snmp-server engineID {local engineid-string</td>
<td>Configure a name for either the local or remote copy of SNMP.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The <code>engineid-string</code> is a 24-character ID string with the name of the copy of SNMP. You need not specify the entire 24-character engine ID if it contains trailing zeros. Specify only the portion of the engine ID up to the point where only zeros remain in the value. For example, to configure an engine ID of 123400000000000000000000, you can enter this:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>snmp-server engineID local 1234</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If you select <code>remote</code>, specify the <code>ip-address</code> of the device that contains the remote copy of SNMP and the optional UDP port on the remote device. The default is 162.</td>
</tr>
</tbody>
</table>
### Chapter 26  Configuring SNMP

#### Step 3

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **snmp-server group** **groupname** {v1 | v2c | v3 [auth | noauth | priv]} [read readview] [write writeview] [notify notifyview] [access access-list] | Configure a new SNMP group on the remote device.  
- For **groupname**, specify the name of the group.  
- Specify a security model:  
  - **v1** is the least secure of the possible security models.  
  - **v2c** is the second least secure model. It allows transmission of informs and integers twice the normal width.  
  - **v3**, the most secure, requires you to select an authentication level:  
    - **auth**—Enables the Message Digest 5 (MD5) and the Secure Hash Algorithm (SHA) packet authentication.  
    - **noauth**—The noAuthNoPriv security level. This is the default if no keyword is specified.  
    - **priv**—Enables Data Encryption Standard (DES) packet encryption (also called **privacy**).  
  
- **Note** The **priv** keyword is available only when the cryptographic software image is installed.  
  - (Optional) Enter **read readview** with a string (not to exceed 64 characters) that is the name of the view in which you can only view the contents of the agent.  
  - (Optional) Enter **write writeview** with a string (not to exceed 64 characters) that is the name of the view in which you enter data and configure the contents of the agent.  
  - (Optional) Enter **notify notifyview** with a string (not to exceed 64 characters) that is the name of the view in which you specify a notify, inform, or trap.  
  - (Optional) Enter **access access-list** with a string (not to exceed 64 characters) that is the name of the access list.
Configuring SNMP

A trap manager is a management station that receives and processes traps. Traps are system alerts that the switch generates when certain events occur. By default, no trap manager is defined, and no traps are sent. Switches running this IOS release can have an unlimited number of trap managers.

Many commands use the word *traps* in the command syntax. Unless there is an option in the command to select either traps or informs, the keyword *traps* refers to either traps, informs, or both. Use the `snmp-server host` command to specify whether to send SNMP notifications as traps or informs.

Table 26-4 describes the supported switch traps (notification types). You can enable any or all of these traps and configure a trap manager to receive them.

### Table 26-4  Switch Notification Types

<table>
<thead>
<tr>
<th>Notification Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bgp</td>
<td>Generates BGP state change traps. This option is only available when the enhanced multilayer image is installed.</td>
</tr>
<tr>
<td>cluster</td>
<td>Generates a trap when the cluster configuration changes.</td>
</tr>
<tr>
<td>config</td>
<td>Generates a trap for SNMP configuration changes.</td>
</tr>
</tbody>
</table>
Some notification types cannot be controlled with the `snmp-server enable` global configuration command, for example, `tty` and `udp-port`. These notification types are always enabled. You can use the `snmp-server host` global configuration command to a specific host to receive the notification types listed in Table 26-4.

Beginning in privileged EXEC mode, follow these steps to configure the switch to send traps or informs to a host:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>snmp-server engineID remote ip-address engineid-string</code></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>`snmp-server user username groupname remote host [udp-port port] {v1</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>`snmp-server group [groupname {v1</td>
</tr>
</tbody>
</table>
## Configuring SNMP

### Step 5

```
snmp-server host host-addr
[traps | informs] [version {1 | 2c | 3 [auth | noauth | priv]}]
community-string [udp-port port]
[notification-type]
```

Specify the recipient of an SNMP trap operation.
- For `host-addr`, specify the name or Internet address of the host (the targeted recipient).
- (Optional) Enter `traps` (the default) to send SNMP traps to the host.
- (Optional) Enter `informs` to send SNMP informs to the host.
- (Optional) Specify the SNMP `version` (1, 2c, or 3). SNMPv1 is not available with informs.
- (Optional) For version 3, select authentication level `auth`, `noauth`, or `priv`.

Note: The `priv` keyword is available only when the cryptographic software image is installed.

- For `community-string`, enter the password-like community string sent with the notification operation.
- (Optional) For `udp-port`, enter the UDP port on the remote device.
- (Optional) For `notification-type`, use the keywords listed in Table 26-4 on page 26-11. If no type is specified, all notifications are sent.

### Step 6

```
snmp-server enable traps
notification-types
```

Enable the switch to send traps or informs and specify the type of notifications to be sent. For a list of notification types, see Table 26-4 on page 26-11, or enter this: `snmp-server enable traps ?`

To enable multiple types of traps, you must enter a separate `snmp-server enable traps` command for each trap type.

### Step 7

```
snmp-server trap-source interface-id
```

(Optional) Specify the source interface, which provides the IP address for the trap message. This command also sets the source IP address for informs.

### Step 8

```
snmp-server queue-length length
```

(Optional) Establish the message queue length for each trap host. The range is 1 to 1000; the default is 10.

### Step 9

```
snmp-server trap-timeout seconds
```

(Optional) Define how often to resend trap messages. The range is 1 to 1000; the default is 30 seconds.

### Step 10

```
end
```

Return to privileged EXEC mode.

### Step 11

```
show running-config
```

Verify your entries.

### Step 12

```
copy running-config startup-config
```

( Optional) Save your entries in the configuration file.

---

The `snmp-server host` command specifies which hosts receive the notifications. The `snmp-server enable trap` command globally enables the mechanism for the specified notification (for traps and informs). To enable a host to receive an inform, you must configure an `snmp-server host informs` command for the host and globally enable informs by using the `snmp-server enable traps` command.

To remove the specified host from receiving traps, use the `no snmp-server host host` global configuration command. The `no snmp-server host` command with no keywords disables traps, but not informs, to the host. To disable informs, use the `no snmp-server host informs` global configuration command. To disable a specific trap type, use the `no snmp-server enable traps notification-types` global configuration command.
### Setting the Agent Contact and Location Information

Beginning in privileged EXEC mode, follow these steps to set the system contact and location of the SNMP agent so that these descriptions can be accessed through the configuration file:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>snmp-server contact <em>text</em></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>snmp-server location <em>text</em></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>show running-config</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

* Optional: Save your entries in the configuration file.

#### Limiting TFTP Servers Used Through SNMP

Beginning in privileged EXEC mode, follow these steps to limit the TFTP servers used for saving and loading configuration files through SNMP to the servers specified in an access list:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>snmp-server tftp-server-list <em>access-list-number</em></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>access-list <em>access-list-number</em> {deny</td>
</tr>
</tbody>
</table>

* For *access-list-number*, enter an IP standard access list numbered from 1 to 99 and 1300 to 1999.

* For *source*, enter the IP address of the TFTP servers that can access the switch.

* (Optional) For *source-wildcard*, enter the wildcard bits, in dotted decimal notation, to be applied to the source. Place ones in the bit positions that you want to ignore.

Recall that the access list is always terminated by an implicit deny statement for everything.
SNMP Examples

This example shows how to enable all versions of SNMP. The configuration permits any SNMP manager to access all objects with read-only permissions using the community string *public*. This configuration does not cause the switch to send any traps.

```
Switch(config)# snmp-server community public
```

This example shows how to permit any SNMP manager to access all objects with read-only permission using the community string *public*. The switch also sends VTP traps to the hosts 192.180.1.111 and 192.180.1.33 using SNMPv1 and to the host 192.180.1.27 using SNMPv2C. The community string *public* is sent with the traps.

```
Switch(config)# snmp-server community public
Switch(config)# snmp-server enable traps vtp
Switch(config)# snmp-server host 192.180.1.27 version 2c public
Switch(config)# snmp-server host 192.180.1.111 version 1 public
Switch(config)# snmp-server host 192.180.1.33 public
```

This example shows how to allow read-only access for all objects to members of access list 4 that use the *comaccess* community string. No other SNMP managers have access to any objects. SNMP Authentication Failure traps are sent by SNMPv2C to the host *cisco.com* using the community string *public*.

```
Switch(config)# snmp-server community comaccess ro 4
Switch(config)# snmp-server enable traps snmp authentication
Switch(config)# snmp-server host cisco.com version 2c public
```

This example shows how to send Entity MIB traps to the host *cisco.com*. The community string is restricted. The first line enables the switch to send Entity MIB traps in addition to any traps previously enabled. The second line specifies the destination of these traps and overwrites any previous *snmp-server host* commands for the host *cisco.com*.

```
Switch(config)# snmp-server enable traps entity
Switch(config)# snmp-server host cisco.com restricted entity
```

This example shows how to enable the switch to send all traps to the host *myhost.cisco.com* using the community string *public*:

```
Switch(config)# snmp-server enable traps
Switch(config)# snmp-server host myhost.cisco.com public
```
Displaying SNMP Status

To display SNMP input and output statistics, including the number of illegal community string entries, errors, and requested variables, use the `show snmp` privileged EXEC command. You can also use the other privileged EXEC commands in Table 26-5 to display SNMP information. For information about the fields in the output displays, refer to the Cisco IOS Configuration Fundamentals Command Reference for Release 12.1.

**Table 26-5  Commands for Displaying SNMP Information**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show snmp</code></td>
<td>Displays SNMP statistics.</td>
</tr>
<tr>
<td>`show snmp engineID [local</td>
<td>remote]`</td>
</tr>
<tr>
<td><code>show snmp group</code></td>
<td>Displays information on each SNMP group on the network.</td>
</tr>
<tr>
<td><code>show snmp user</code></td>
<td>Displays information on each SNMP user name in the SNMP users table.</td>
</tr>
</tbody>
</table>
Configuring Network Security with ACLs

This chapter describes how to configure network security on your Catalyst 3550 switch by using access control lists (ACLs), which are also referred to in commands and tables as access lists.

Note
For complete syntax and usage information for the commands used in this chapter, refer to the switch command reference for this release and the “Configuring IP Services” section of the Cisco IOS IP and IP Routing Configuration Guide and the Cisco IOS IP and IP Routing Command Reference for IOS Release 12.1.

This chapter consists of these sections:

- Understanding ACLs, page 27-1
- Configuring IP ACLs, page 27-6
- Configuring Named MAC Extended ACLs, page 27-26
- Configuring VLAN Maps, page 27-29
- Using VLAN Maps with Router ACLs, page 27-36
- Displaying ACL Information, page 27-41

Note
To allocate system resources to maximize the number of security access control entries (ACEs) allowed on the switch, you can use the sdm prefer access global configuration command to set the Switch Database Management (sdm) feature to the access template. For more information on the SDM templates, see the “Optimizing System Resources for User-Selected Features” section on page 7-27. For information about determining resource usage for your configuration, see the “Displaying ACL Resource Usage and Configuration Problems” section on page 27-43.

Understanding ACLs

Packet filtering can help limit network traffic and restrict network use by certain users or devices. ACLs can filter traffic as it passes through a router and permit or deny packets at specified interfaces. An ACL is a sequential collection of permit and deny conditions that apply to packets. When a packet is received on an interface, the switch compares the fields in the packet against any applied ACLs to verify that the packet has the required permissions to be forwarded, based on the criteria specified in the access lists. It tests packets against the conditions in an access list one by one. The first match determines whether
Chapter 27      Configuring Network Security with ACLs

Understanding ACLs

The switch accepts or rejects the packets. Because the switch stops testing conditions after the first match, the order of conditions in the list is critical. If no conditions match, the switch rejects the packets. If there are no restrictions, the switch forwards the packet; otherwise, the switch drops the packet.

Switches traditionally operate at Layer 2 only, switching traffic within a VLAN, whereas routers route traffic between VLANs. The Catalyst 3550 switch can accelerate packet routing between VLANs by using Layer 3 switching. The switch bridges the packet, the packet is then routed internally without going to an external router, and then the packet is bridged again to send it to its destination. During this process, the switch can access-control all packets it switches, including packets bridged within a VLAN.

You configure access lists on a router or switch to provide basic security for your network. If you do not configure ACLs, all packets passing through the switch could be allowed onto all parts of the network. You can use ACLs to control which hosts can access different parts of a network or to decide which types of traffic are forwarded or blocked at router interfaces. For example, you can allow e-mail traffic to be forwarded but not Telnet traffic. ACLs can be configured to block inbound traffic, outbound traffic, or both. However, on Layer 2 interfaces, you can only apply ACLs in the inbound direction.

An ACL contains an ordered list of access control entries (ACEs). Each ACE specifies permit or deny and a set of conditions the packet must satisfy in order to match the ACE. The meaning of permit or deny depends on the context in which the ACL is used.

The switch supports two types of ACLs:

- IP ACLs filter IP traffic, including TCP, User Datagram Protocol (UDP), Internet Group Management Protocol (IGMP), and Internet Control Message Protocol (ICMP).
- Ethernet or MAC ACLs filter non-IP traffic.

Supported ACLs

The switch supports three applications of ACLs to filter traffic:

- Router ACLs access-control routed traffic between VLANs and are applied to Layer 3 interfaces. You can apply one router ACL in each direction on an interface.
- Port ACLs access-control traffic entering a Layer 2 interface. The switch does not support port ACLs in the outbound direction. You can apply only one IP access list and one MAC access list to a Layer 2 interface.
- VLAN ACLs or VLAN maps access-control all packets (bridged and routed). You can use VLAN maps to filter traffic between devices in the same VLAN. VLAN maps are configured to provide access-control based on Layer 3 addresses for IP. Unsupported protocols are access-controlled through MAC addresses by using Ethernet ACEs. After a VLAN map is applied to a VLAN, all packets (routed or bridged) entering the VLAN are checked against the VLAN map. Packets can either enter the VLAN through a switch port or through a routed port after being routed.

You can use both router ACLs and VLAN maps on the same switch. However, you cannot use port ACLs on a switch that contains input router ACLs or VLAN maps.

- When a switch has a Layer 2 interface with an applied IP access list or MAC access list, you can create IP access lists and VLAN maps, but you cannot apply an IP access list to an input Layer 3 interface on that switch, and you cannot apply a VLAN map to any of the switch VLANs. An error message is generated if you attempt to do so. You can still apply an IP access list to an output Layer 3 interface on a switch with port ACLs.
- When a switch has an input Layer 3 ACL or a VLAN map applied to it, you cannot apply an IP access list or MAC access list to a Layer 2 interface on that switch. An error message is generated if you attempt to do so. You can apply a port ACL if the switch has an ACL applied to an output Layer 3 interface.
If 802.1Q tunneling is configured on an interface, any 802.1Q encapsulated IP packets received on the
tunnel port can be filtered by MAC ACLs, but not by IP ACLs. This is because the switch does not
recognize the protocol inside the 802.1Q header. This restriction applies to router ACLs, port ACLs, and
VLAN maps. For more information about 802.1Q tunneling, refer to Chapter 14, “Configuring 802.1Q
and Layer 2 Protocol Tunneling.”

This switch also supports Quality of Service (QoS) classification ACLs. For more information, see the
“Classification Based on QoS ACLs” section on page 28-7.

**Router ACLs**

You can apply router ACLs on switch virtual interfaces (SVIs), which are Layer 3 interfaces to VLANs;
on physical Layer 3 interfaces; and on Layer 3 EtherChannel interfaces. Router ACLs are applied on
interfaces for specific directions (inbound or outbound). You can apply one IP access list in each
direction.

One ACL can be used with multiple features for a given interface, and one feature can use multiple
ACLs. When a single router ACL is used by multiple features, it is examined multiple times.

- Standard IP access lists use source addresses for matching operations.
- Extended IP access lists use source and destination addresses and optional protocol type information
  for matching operations.

The switch examines ACLs associated with features configured on a given interface and a direction. As
packets enter the switch on an interface, ACLs associated with all inbound features configured on that
interface are examined. After packets are routed and before they are forwarded to the next hop, all ACLs
associated with outbound features configured on the egress interface are examined.

ACLs permit or deny packet forwarding based on how the packet matches the entries in the ACL. For
example, you can use access lists to allow one host to access a part of a network, but prevent another
host from accessing the same part. In Figure 27-1, ACLs applied at the router input allow Host A to
access the Human Resources network, but prevent Host B from accessing the same network.

**Figure 27-1 Using ACLs to Control Traffic to a Network**
Port ACLs

You can also apply ACLs to Layer 2 interfaces on a switch. Port ACLs are supported on physical interfaces only and not on EtherChannel interfaces. Port ACLs are applied on interfaces for inbound traffic only. These access lists are supported on Layer 2 interfaces:

- Standard IP access lists using source addresses
- Extended IP access lists using source and destination addresses and optional protocol type information
- MAC extended access lists using source and destination MAC addresses and optional protocol type information

As with router ACLs, the switch examines ACLs associated with features configured on a given interface and permits or denies packet forwarding based on how the packet matches the entries in the ACL. However, ACLs can only be applied to Layer 2 interfaces in the inbound direction. In the example in Figure 27-1, if all workstations were in the same VLAN, ACLs applied at the Layer 2 input would allow Host A to access the Human Resources network, but prevent Host B from accessing the same network.

When you apply a port ACL to a trunk port, the ACL filters traffic on all VLANs present on the trunk port. When you apply a port ACL to a port with voice VLAN, the ACL filters traffic on both data and voice VLANs.

With port ACLs, you can filter IP traffic by using IP access lists and non-IP traffic by using MAC addresses. You can filter both IP and non-IP traffic on the same Layer 2 interface by applying both an IP access list and a MAC access list to the interface.

**Note**

You cannot apply more than one IP access list and one MAC access list to a Layer 2 interface. If an IP access list or MAC access list is already configured on a Layer 2 interface and you apply a new IP access list or MAC access list to the interface, the new ACL replaces the previously configured one.

VLAN Maps

VLAN maps can access-control all traffic. You can apply VLAN maps on the switch to all packets that are routed into or out of a VLAN or are bridged within a VLAN. VLAN maps are used strictly for security packet filtering. Unlike router ACLs, VLAN maps are not defined by direction (input or output).

You can configure VLAN maps to match Layer 3 addresses for IP traffic. All non-IP protocols are access-controlled through MAC addresses and Ethertype using MAC VLAN maps. (IP traffic is not access controlled by MAC VLAN maps.) You can enforce VLAN maps only on packets going through the switch; you cannot enforce VLAN maps on traffic between hosts on a hub or on another switch connected to this switch.

With VLAN maps, forwarding of packets is permitted or denied, based on the action specified in the map. Figure 27-2 illustrates how a VLAN map is applied to deny a specific type of traffic from Host A in VLAN 10 from being forwarded.
Handling Fragmented and Unfragmented Traffic

IP packets can be fragmented as they cross the network. When this happens, only the fragment containing the beginning of the packet contains the Layer 4 information, such as TCP or UDP port numbers, ICMP type and code, and so on. All other fragments are missing this information.

Some ACEs do not check Layer 4 information and therefore can be applied to all packet fragments. ACEs that do test Layer 4 information cannot be applied in the standard manner to most of the fragments in a fragmented IP packet. When the fragment contains no Layer 4 information and the ACE tests some Layer 4 information, the matching rules are modified:

- Permit ACEs that check the Layer 3 information in the fragment (including protocol type, such as TCP, UDP, and so on) are considered to match the fragment regardless of what the missing Layer 4 information might have been.
- Deny ACEs that check Layer 4 information never match a fragment unless the fragment contains Layer 4 information.

Consider access list 102, configured with these commands, applied to three fragmented packets:

```
Switch (config)# access-list 102 permit tcp any host 10.1.1.1 eq smtp
Switch (config)# access-list 102 deny tcp any host 10.1.1.2 eq telnet
Switch (config)# access-list 102 permit tcp any host 10.1.1.2
Switch (config)# access-list 102 deny tcp any any
```

### Note

In the first and second ACEs in the examples, the `eq` keyword after the destination address means to test for the TCP-destination-port well-known numbers equaling Simple Mail Transfer Protocol (SMTP) and Telnet, respectively.

- Packet A is a TCP packet from host 10.2.2.2, port 65000, going to host 10.1.1.1 on the SMTP port. If this packet is fragmented, the first fragment matches the first ACE (a permit) as if it were a complete packet because all Layer 4 information is present. The remaining fragments also match the first ACE, even though they do not contain the SMTP port information, because the first ACE only checks Layer 3 information when applied to fragments. The information in this example is that the packet is TCP and that the destination is 10.1.1.1.
- Packet B is from host 10.2.2.2, port 65001, going to host 10.1.1.2 on the Telnet port. If this packet is fragmented, the first fragment matches the second ACE (a deny) because all Layer 3 and Layer 4 information is present. The remaining fragments in the packet do not match the second ACE because they are missing Layer 4 information. Instead, they match the third ACE (a permit).
Because the first fragment was denied, host 10.1.1.2 cannot reassemble a complete packet, so packet B is effectively denied. However, the later fragments that are permitted will consume bandwidth on the network and resources of host 10.1.1.2 as it tries to reassemble the packet.

- Fragmented packet C is from host 10.2.2.2, port 65001, going to host 10.1.1.3, port ftp. If this packet is fragmented, the first fragment matches the fourth ACE (a deny). All other fragments also match the fourth ACE because that ACE does not check any Layer 4 information and because Layer 3 information in all fragments shows that they are being sent to host 10.1.1.3, and the earlier permit ACEs were checking different hosts.

## Configuring IP ACLs

Configuring IP ACLs on Layer 2 or Layer 3 switch or VLAN interfaces is the same as configuring ACLs on other Cisco routers. The process is briefly described here. For more detailed information on configuring router ACLs, refer to the “Configuring IP Services” chapter in the *Cisco IP and IP Routing Configuration Guide for IOS Release 12.1*. For detailed information about the commands, refer to *Cisco IOS IP and IP Routing Command Reference for IOS Release 12.1*. For a list of IOS features not supported on the Catalyst 3550 switch, see the “Unsupported Features” section on page 27-7.

**Caution**

By default, the router sends Internet Control Message Protocol (ICMP) unreachable messages when a packet is denied by an access group; these access-group denied packets are not dropped in hardware but are bridged to the switch CPU so that it can generate the ICMP-unreachable message. To drop access-group denied packets in hardware, you must disable ICMP unreachables by using the `no ip unreachables` interface configuration command. Note that the `ip unreachables` command is enabled by default.

This section includes the following information:

- Hardware and Software Handling of Router ACLs, page 27-6
- Unsupported Features, page 27-7
- Creating Standard and Extended IP ACLs, page 27-8
- Applying an IP ACL to an Interface or Terminal Line, page 27-19
- IP ACL Configuration Examples, page 27-21

## Hardware and Software Handling of Router ACLs

ACL processing is primarily accomplished in hardware, but requires forwarding of some traffic flows to the CPU for software processing. The forwarding rate for software-forwarded traffic is substantially less than for hardware-forwarded traffic. When traffic flows are both logged and forwarded, forwarding is done by hardware, but logging must be done by software. Because of the difference in packet handling capacity between hardware and software, if the sum of all flows being logged (both permitted flows and denied flows) is of great enough bandwidth, not all of the packets that are forwarded can be logged.

These factors can cause packets to be sent to the CPU:

- Using the `log` keyword
- Enabling ICMP unreachables
- Hardware reaching its capacity to store ACL configurations
If ACLs cause large numbers of packets to be sent to the CPU, the switch performance can be negatively affected.

Note

After the ACL configuration is stable for a specified interval, the system loads the configuration into hardware. Forwarding is blocked on any affected interfaces while the hardware is being updated. To change this behavior, you can use the mls aclmerge delay and the access-list hardware program nonblocking global configuration commands. Refer to the command reference for this release for descriptions of these commands.

When you enter the show ip access-lists privileged EXEC command, the match count displayed does not account for packets that are access controlled in hardware. Use the show access-lists hardware counters privileged EXEC command to obtain some basic hardware ACL statistics for switched and routed packets.

IP ACLs are handled as follows:

• The hardware controls permit and deny actions of standard and extended ACLs (input and output) for security access control.

• If log has not been specified, the flows that match a deny statement in a security ACL are dropped by the hardware if ip unreachables is disabled. The flows matching a permit statement are switched in hardware. Logging is not supported for port ACLs.

• Adding the log keyword to an ACE in a router ACL causes a copy of the packet to be sent to the CPU only for logging. If the ACE is a permit statement, the packet is still switched and routed in hardware.

Note

Logging is not supported on Layer 2 interfaces (port ACLs).

Unsupported Features

The Catalyst 3550 switch does not support these IOS router ACL-related features:

• Non-IP protocol ACLs (see Table 27-1 on page 27-8).

• Bridge-group ACLs.

• IP accounting.

• Inbound and outbound rate limiting (except with QoS ACLs).

• IP packets with a header length of less than five are not access controlled (results in an ICMP parameter error).

• Reflexive ACLs.

• Dynamic ACLs (except for certain specialized dynamic ACLs used by the switch clustering feature).

• For Layer 2 port ACLs, the switch does not support logging or outbound ACLs.
Creating Standard and Extended IP ACLs

This section summarizes how to create router IP ACLs. An ACL is a sequential collection of permit and deny conditions. The switch tests packets against the conditions in an access list one by one. The first match determines whether the switch accepts or rejects the packet. Because the switch stops testing conditions after the first match, the order of the conditions is critical. If no conditions match, the switch denies the packet.

These are the steps to use IP ACLs:

**Step 1** Create an ACL by specifying an access list number or name and access conditions.

**Step 2** Apply the ACL to interfaces or terminal lines. You can also apply standard and extended IP ACLs to VLAN maps.

The software supports these styles of ACLs or access lists for IP:

- Standard IP access lists use source addresses for matching operations.
- Extended IP access lists use source and destination addresses for matching operations and optional protocol-type information for finer granularity of control.

These sections describe access lists and the steps for using them:

- Access List Numbers, page 27-8
- Creating a Numbered Standard ACL, page 27-9
- Creating a Numbered Extended ACL, page 27-11
- Creating Named Standard and Extended IP ACLs, page 27-15
- Using Time Ranges with ACLs, page 27-17
- Including Comments in ACLs, page 27-19

Access List Numbers

The number you use to denote your ACL shows the type of access list that you are creating. Table 27-1 lists the access-list number and corresponding access list type and shows whether or not they are supported in the switch. The Catalyst 3550 switch supports IP standard and IP extended access lists, numbers 1 to 199 and 1300 to 2699.

<table>
<thead>
<tr>
<th>Access List Number</th>
<th>Type</th>
<th>Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–99</td>
<td>IP standard access list</td>
<td>Yes</td>
</tr>
<tr>
<td>100–199</td>
<td>IP extended access list</td>
<td>Yes</td>
</tr>
<tr>
<td>200–299</td>
<td>Protocol type-code access list</td>
<td>No</td>
</tr>
<tr>
<td>300–399</td>
<td>DECnet access list</td>
<td>No</td>
</tr>
<tr>
<td>400–499</td>
<td>XNS standard access list</td>
<td>No</td>
</tr>
<tr>
<td>500–599</td>
<td>XNS extended access list</td>
<td>No</td>
</tr>
<tr>
<td>600–699</td>
<td>AppleTalk access list</td>
<td>No</td>
</tr>
</tbody>
</table>
Configuring IP ACLs

**Creating a Numbered Standard ACL**

Beginning in privileged EXEC mode, follow these steps to create a numbered standard ACL:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1  configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| Step 2  access-list access-list-number { deny | permit } source [source-wildcard] [log] | Define a standard IP access list by using a source address and wildcard. The access-list-number is a decimal number from 1 to 99 or 1300 to 199. Enter deny or permit to specify whether to deny or permit access if conditions are matched. The source is the source address of the network or host from which the packet is being sent specified as:  
  - The 32-bit quantity in dotted-decimal format.  
  - The keyword any as an abbreviation for source and source-wildcard of 0.0.0.0 255.255.255.255. You do not need to enter a source-wildcard.  
  - The keyword host as an abbreviation for source and source-wildcard of source 0.0.0.0.  
  (Optional) The source-wildcard applies wildcard bits to the source.  
  (Optional) Enter log to create an informational logging message about the packet that matches the entry to be sent to the console.  
**Note** The log keyword is ignored on ACLs applied to Layer 2 interfaces. |
| Step 3  end                       | Return to privileged EXEC mode.                                                                                                          |
Use the no access-list access-list-number global configuration command to delete the entire ACL. You cannot delete individual ACEs from numbered access lists.

Note When creating an ACL, remember that, by default, the end of the ACL contains an implicit deny statement for all packets that it did not find a match for before reaching the end. With standard access lists, if you omit the mask from an associated IP host address ACL specification, 0.0.0.0 is assumed to be the mask.

This example shows how to create a standard ACL to deny access to IP host 171.69.198.102, permit access to any others, and display the results.

Switch (config)# access-list 2 deny host 171.69.198.102
Switch (config)# access-list 2 permit any
Switch(config)# end
Switch# show access-lists
Standard IP access list 2
  deny 171.69.198.102
  permit any

The switch always rewrites the order of standard access lists so that entries with host matches and entries with matches having a don't care mask of 0.0.0.0 are moved to the top of the list, above any entries with non-zero don't care masks. Therefore, in show command output and in the configuration file, the ACEs do not necessarily appear in the order in which they were entered.

The switch software can provide logging messages about packets permitted or denied by a standard IP access list. That is, any packet that matches the ACL causes an informational logging message about the packet to be sent to the console. The level of messages logged to the console is controlled by the logging console commands controlling the syslog messages.

Note Because routing is done in hardware and logging is done in software, if a large number of packets match a permit or deny ACE containing a log keyword, the software might not be able to match the hardware processing rate, and not all packets will be logged.

The first packet that triggers the ACL causes a logging message right away, and subsequent packets are collected over 5-minute intervals before they are displayed or logged. The logging message includes the access list number, whether the packet was permitted or denied, the source IP address of the packet, and the number of packets from that source permitted or denied in the prior 5-minute interval.

Note An output ACL cannot log multicast packets. Logging is not supported for ACLs applied to Layer 2 interfaces.

After creating an ACL, you must apply it to a line or interface, as described in the “Applying an IP ACL to an Interface or Terminal Line” section on page 27-19.
Creating a Numbered Extended ACL

Although standard ACLs use only source addresses for matching, you can use extended ACL source and destination addresses for matching operations and optional protocol type information for finer granularity of control. When you are creating ACEs in numbered extended access lists, remember that after you create the ACL, any additions are placed at the end of the list. You cannot reorder the list or selectively add or remove ACEs from a numbered list.

Some protocols also have specific parameters and keywords that apply to that protocol. Extended ACLs support these IP protocols (protocol keywords are in parentheses in bold):

- Authentication Header Protocol (ahp),
- Enhanced Interior Gateway Routing Protocol (eigrp),
- Encapsulation Security Payload (esp),
- generic routing encapsulation (gre),
- Internet Control Message Protocol (icmp),
- Internet Group Management Protocol (igmp),
- Interior Gateway Routing Protocol (igrp),
- any Interior Protocol (ip),
- IP in IP tunneling (ipinip),
- KA9Q NOS-compatible IP over IP tunneling (nos),
- Open Shortest Path First routing (ospf),
- Payload Compression Protocol (pcp),
- Protocol Independent Multicast (pim),
- Transmission Control Protocol (tcp), or
- User Datagram Protocol (udp).

Note: ICMP echo-reply cannot be filtered. All other ICMP codes or types can be filtered.

For more details on the specific keywords relative to each protocol, refer to Cisco IP and IP Routing Command Reference for IOS Release 12.1.

Note: The Catalyst 3550 switch does not support dynamic or reflexive access lists. It also does not support filtering based on the type of service (ToS) minimize-monetary-cost bit.

Supported parameters can be grouped into these categories: TCP, UDP, ICMP, IGMP, or other IP.
Beginning in privileged EXEC mode, follow these steps to create an extended ACL:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>

**Step 1**

**Step 2a**

```
access-list access-list-number
(deny | permit) protocol
source source-wildcard
destination destination-wildcard
[precedence precedence]
[tos tos] [fragments] [log]
[log-input] [time-range
time-range-name] [dscp dscp]
```

**Define an extended IP access list and the access conditions.**

The `access-list-number` is a decimal number from 100 to 199 or 2000 to 2699. Enter `deny` or `permit` to specify whether to deny or permit the packet if conditions are matched.

For `protocol`, enter the name or number of an IP protocol: `ahp`, `eigrp`, `esp`, `gre`, `icmp`, `igmp`, `igrp`, `ip`, `ipinip`, `nos`, `ospf`, `pcp`, `pim`, `tcp`, or `udp`, or an integer in the range 0 to 255 representing an IP protocol number. To match any Internet protocol (including ICMP, TCP, and UDP) use the keyword `ip`.

The `source` is the number of the network or host from which the packet is sent. The `source-wildcard` applies wildcard bits to the source.

The `destination` is the network or host number to which the packet is sent. The `destination-wildcard` applies wildcard bits to the destination.

Source, source-wildcard, destination, and destination-wildcard can be specified as:

- The 32-bit quantity in dotted-decimal format.
- The keyword `any` for 0.0.0.0 255.255.255.255 (any host).
- The keyword `host` for a single host 0.0.0.0.

The other keywords are optional and have these meanings:

- `precedence`—Enter to match packets with a precedence level specified as a number from 0 to 7 or by name: `routine` (0), `priority` (1), `immediate` (2), `flash` (3), `flash-overide` (4), `critical` (5), `internet` (6), `network` (7).
- `fragments`—Enter to check non-initial fragments.
- `tos`—Enter to match by type of service level, specified by a number from 0 to 15 or a name: `normal` (0), `max-reliability` (2), `max-throughput` (4), `min-delay` (8).
- `log`—Enter to create an informational logging message to be sent to the console about the packet that matches the entry or `log-input` to include the input interface in the log entry. Logging is not supported for ACLs applied to Layer 2 interfaces (port ACLs).
- `time-range`—For an explanation of this keyword, see the “Using Time Ranges with ACLs” section on page 27-17.
- `dscp`—Enter to match packets with the DSCP value specified by a number from 0 to 63, or use the question mark (?) to see a list of available values.

**Note** If you enter a `dscp` value, you cannot enter `tos` or `precedence`. You can enter both a `tos` and a `precedence` value with no `dscp`.
Chapter 27      Configuring Network Security with ACLs

Configuring IP ACLs

In access-list configuration mode, define an extended IP access list using an abbreviation for a source and source wildcard of 0.0.0.0 255.255.255.255 and an abbreviation for a destination and destination wildcard of 0.0.0.0 255.255.255.255.

You can use the **any** keyword in place of source and destination address and wildcard.

Define an extended IP access list using an abbreviation for a source and source wildcard of source 0.0.0.0 and an abbreviation for a destination and destination wildcard of destination 0.0.0.0.

You can use the **host** keyword in place of source and destination wildcard or mask.

(Optional) Define an extended TCP access list and the access conditions.

Enter **tcp** for Transmission Control Protocol.

The parameters are the same as those described in Step 2a with these exceptions:

(Original) Enter an **operator** and **port** to compare source (if positioned after source source-wildcard) or destination (if positioned after destination destination-wildcard) port. Possible operators include **eq** (equal), **gt** (greater than), **lt** (less than), **neq** (not equal), and **range** (inclusive range). Operators require a port number (range requires two port numbers separated by a space).

Enter the **port** number as a decimal number (from 0 to 65535) or the name of a TCP port. To see TCP port names, use the ? or refer to “Configuring IP Services” section of *Cisco IOS IP and IP Routing Command Reference for IOS Release 12.1*. Use only TCP port numbers or names when filtering TCP.

The additional optional keywords have these meanings:

- **established**—Enter to match an established connection. This has the same function as matching on the **ack** or **rst** flag.
- **flag**—Enter one of these flags to match by the specified TCP header bits: **ack** (acknowledge), **fin** (finish), **psh** (push), **rst** (reset), **syn** (synchronize), or **urg** (urgent).

(Optional) Define an extended UDP access list and the access conditions.

Enter **udp** for the User Datagram Protocol.

The UDP parameters are the same as those described for TCP except that [**operator** [**port**]] port number or name must be a UDP port number or name, and the **flag** and **established** parameters are not valid for UDP.
Chapter 27
Configuring Network Security with ACLs

Step 2d

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list access-list-number {deny</td>
</tr>
</tbody>
</table>

(Optional) Define an extended ICMP access list and the access conditions. Enter icmp for Internet Control Message Protocol.

The ICMP parameters are the same as those described for most IP protocols in Step 2a, with the addition of the ICMP message type and code parameters. These optional keywords have these meanings:
- icmp-type—Enter to filter by ICMP message type, a number from 0 to 255.
- icmp-code—Enter to filter ICMP packets that are filtered by ICMP message type by the ICMP message code, a number from 0 to 255.
- icmp-message—Enter to filter ICMP packets by ICMP message type name or ICMP message type code and name. To see a list of ICMP message type names and ICMP message type and code names, use the ? or refer to the “Configuring IP Services” section of Cisco IOS IP and IP Routing Command Reference for IOS Release 12.1.

Step 2e

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list access-list-number {deny</td>
</tr>
</tbody>
</table>

(Optional) Define an extended IGMP access list and the access conditions. Enter igmp for Internet Group Management Protocol.

The IGMP parameters are the same as those described for most IP protocols in Step 2a, with the addition of this optional parameter.
- igmp-type—To match IGMP message type, enter a number from 0 to 15, or enter the message name (dvmrp, host-query, host-report, pim, or trace).

Step 3

show access-lists [number | name]

Verify the access list configuration.

Step 4

copy running-config startup-config

(Optional) Save your entries in the configuration file.

Use the no access-list access-list-number global configuration command to delete the entire access list. You cannot delete individual ACEs from numbered access lists.

This example shows how to create and display an extended access list to deny Telnet access from any host in network 171.69.198.0 to any host in network 172.20.52.0 and permit any others. (The eq keyword after the destination address means to test for the TCP destination port number equaling Telnet.)

Switch(config)# access-list 102 deny tcp 171.69.198.0 0.0.0.255 172.20.52.0 0.0.0.255 eq telnet
Switch(config)# access-list 102 permit tcp any any
Switch(config)# end
Switch# show access-lists
Extended IP access list 102
  deny tcp 171.69.198.0 0.0.0.255 172.20.52.0 0.0.0.255 eq telnet
  permit tcp any any

After an ACL is created, any additions (possibly entered from the terminal) are placed at the end of the list. You cannot selectively add or remove access list entries from a numbered access list.

Note

When you are creating an ACL, remember that, by default, the end of the access list contains an implicit deny statement for all packets if it did not find a match before reaching the end.

After creating an ACL, you must apply it to a line or interface, as described in the “Applying an IP ACL to an Interface or Terminal Line” section on page 27-19.
Creating Named Standard and Extended IP ACLs

You can identify IP ACLs with an alphanumeric string (a name) rather than a number. You can use named ACLs to configure more IP access lists in a switch than if you were to use numbered access lists. If you identify your access list with a name rather than a number, the mode and command syntax are slightly different. However, not all commands that use IP access lists accept a named access list.

The name you give to a standard or extended ACL can also be a number in the supported range of access list numbers. That is, the name of a standard IP ACL can be 1 to 99; the name of an extended IP ACL can be 100 to 199. The advantage of using named ACLs instead of numbered lists is that you can delete individual entries from a named list.

Consider these guidelines and limitations before configuring named ACLs:

- Not all commands that accept a numbered ACL accept a named ACL. ACLs for packet filters and route filters on interfaces can use a name. VLAN maps also accept a name.
- A standard ACL and an extended ACL cannot have the same name.
- Numbered ACLs are also available, as described in the “Creating Standard and Extended IP ACLs” section on page 27-8.
- You can apply standard and extended ACLs (named or numbered) to VLAN maps.

Beginning in privileged EXEC mode, follow these steps to create a standard ACL using names:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip access-list standard name</td>
<td>Define a standard IP access list using a name, and enter access-list configuration mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Note</strong> The name can be a number from 1 to 99.</td>
</tr>
<tr>
<td>Step 3</td>
<td>deny {source [source-wildcard]</td>
<td>host source</td>
</tr>
<tr>
<td>or</td>
<td>permit {source [source-wildcard]</td>
<td>host source</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Note</strong> The log keyword is not supported for ACLs applied to Layer 2 interfaces (port ACLs).</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show access-lists [number</td>
<td>name]</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove a named standard ACL, use the **no ip access-list standard name** global configuration command.
Beginning in privileged EXEC mode, follow these steps to create an extended ACL using names:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip access-list extended name</td>
</tr>
</tbody>
</table>

**Note** The name can be a number from 100 to 199.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>{ deny</td>
</tr>
</tbody>
</table>

See the “Creating a Numbered Extended ACL” section on page 27-11 for definitions of protocols and other keywords.

- **host source**—A source and source wildcard of source 0.0.0.0.
- **host destination**—A destination and destination wildcard of destination 0.0.0.0.
- **any**—A source and source wildcard or destination and destination wildcard of 0.0.0.0 255.255.255.255.

**Note** The log keyword is not supported for ACLs applied to Layer 2 interfaces (port ACLs).

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show access-lists [number</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To remove a named extended ACL, use the **no ip access-list extended name** global configuration command.

When you are creating standard extended ACLs, remember that, by default, the end of the ACL contains an implicit deny statement for everything if it did not find a match before reaching the end. For standard ACLs, if you omit the mask from an associated IP host address access list specification, 0.0.0.0 is assumed to be the mask.

After you create an ACL, any additions are placed at the end of the list. You cannot selectively add ACL entries to a specific ACL. However, you can use **no permit** and **no deny** access-list configuration mode commands to remove entries from a named ACL. This example shows how you can delete individual ACEs from the named access list **border-list**:

```
Switch(config)# ip access-list extended border-list
Switch(config-ext-nacl)# no permit ip host 10.1.1.3 any
```

Being able to selectively remove lines from a named ACL is one reason you might use named ACLs instead of numbered ACLs.

After creating an ACL, you must apply it to a line or interface, as described in the “Applying an IP ACL to an Interface or Terminal Line” section on page 27-19.
Using Time Ranges with ACLs

You can selectively apply extended ACLs based on the time of day and week by using the `time-range` global configuration command. First, define a time-range name and set the times and the dates or the days of the week in the time range. Then enter the time-range name when applying an ACL to set restrictions to the access list. You can use the time range to define when the permit or deny statements in the ACL are in effect, for example, during a specified time period or on specified days of the week. The `time-range` keyword and argument are referenced in the named and numbered extended ACL task tables in the previous sections, the “Creating Standard and Extended IP ACLs” section on page 27-8 and the “Creating Named Standard and Extended IP ACLs” section on page 27-15.

These are two of the many benefits of using time ranges:

- You have more control over permitting or denying a user access to resources, such as an application (identified by an IP address/mask pair and a port number).
- You can control logging messages. ACL entries can be set to log traffic only at certain times of the day. Therefore, you can simply deny access without needing to analyze many logs generated during peak hours.

**Note**

The time range relies on the switch system clock; therefore, you need a reliable clock source. We recommend that you use Network Time Protocol (NTP) to synchronize the switch clock. For more information, see the “Managing the System Time and Date” section on page 7-1.

Beginning in privileged EXEC mode, follow these steps to configure a time-range parameter for an ACL:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>time-range <code>time-range-name</code></td>
<td>Assign a meaningful name (for example, <code>workhours</code>) to the time range to be created, and enter time-range configuration mode. The name cannot contain a space or quotation mark and must begin with a letter.</td>
</tr>
<tr>
<td>absolute <code>[start time date]</code> <code>[end time date]</code></td>
<td>Specify when the function it will be applied to is operational.</td>
</tr>
<tr>
<td>or <code>periodic day-of-the-week hh:mm to [day-of-the-week] hh:mm</code></td>
<td>You can enter multiple <code>periodic</code> statements. For example, you could configure different hours for weekdays and weekends.</td>
</tr>
<tr>
<td>or `periodic { weekdays</td>
<td>weekend</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show time-range</td>
<td>Verify the time-range configuration.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove a configured time-range limitation, use the `no time-range time-range-name` global configuration command.

Repeat the steps if you have multiple items that you want operational at different times.
This example shows how to configure time ranges for workhours and for company holidays and how to verify your configuration.

Switch(config)# time-range workhours
Switch(config-time-range)# periodic weekdays 8:00 to 12:00
Switch(config-time-range)# periodic weekdays 13:00 to 17:00
Switch(config-time-range)# exit
Switch(config)# time-range new_year_day_2000
Switch(config-time-range)# absolute start 00:00 1 Jan 2000 end 23:59 1 Jan 2000
Switch(config-time-range)# exit
Switch(config)# time-range thanksgiving_2000
Switch(config-time-range)# absolute start 00:00 22 Nov 2000 end 23:59 23 Nov 2000
Switch(config-time-range)# exit
Switch(config)# time-range christmas_2000
Switch(config-time-range)# absolute start 00:00 24 Dec 2000 end 23:50 25 Dec 2000
Switch(config-time-range)# exit
Switch# show time-range
time-range entry: christmas_2000 (inactive)
  absolute start 00:00 24 December 2000 end 23:50 25 December 2000
time-range entry: new_year_day_2000 (inactive)
  absolute start 00:00 01 January 2000 end 23:59 01 January 2000
time-range entry: thanksgiving_2000 (inactive)
  absolute start 00:00 22 November 2000 end 23:59 23 November 2000
time-range entry: workhours (inactive)
  periodic weekdays 8:00 to 12:00
  periodic weekdays 13:00 to 17:00

For a time range to be applied, you must enter the time-range name in an extended ACL that can implement time ranges. This example shows how to create and verify extended access list 188 that denies TCP traffic from any source to any destination during the defined holiday time ranges and permits all TCP traffic during work hours.

Switch(config)# access-list 188 deny tcp any any time-range new_year_day_2000
Switch(config)# access-list 188 deny tcp any any time-range thanksgiving_2000
Switch(config)# access-list 188 deny tcp any any time-range christmas_2000
Switch(config)# access-list 188 permit tcp any any time-range workhours
Switch(config)# exit
Switch# show access-lists
Extended IP access list 188
  deny tcp any any time-range new_year_day_2000 (inactive)
  deny tcp any any time-range thanksgiving_2000 (inactive)
  deny tcp any any time-range christmas_2000 (inactive)
  permit tcp any any time-range workhours (inactive)

This example uses named ACLs to permit and deny the same traffic.

Switch(config)# ip access-list extended deny_access
Switch(config-ext-nacl)# deny tcp any any time-range new_year_day_2000
Switch(config-ext-nacl)# deny tcp any any time-range thanksgiving_2000
Switch(config-ext-nacl)# deny tcp any any time-range christmas_2000
Switch(config-ext-nacl)# exit
Switch(config)# ip access-list extended may_access
Switch(config-ext-nacl)# permit tcp any any time-range workhours
Switch(config-ext-nacl)# exit
Switch# show ip access-lists
Extended IP access list deny_access
  deny tcp any any time-range new_year_day_2000 (inactive)
  deny tcp any any time-range thanksgiving_2000 (inactive)
  deny tcp any any time-range christmas_2000 (inactive)
Extended IP access list may_access
  permit tcp any any time-range workhours (inactive)
Including Comments in ACLs

You can use the `remark` keyword to include comments (remarks) about entries in any IP standard or extended ACL. The remarks make the ACL easier for you to understand and scan. Each remark line is limited to 100 characters.

The remark can go before or after a permit or deny statement. You should be consistent about where you put the remark so that it is clear which remark describes which permit or deny statement. For example, it would be confusing to have some remarks before the associated permit or deny statements and some remarks after the associated statements.

For IP numbered standard or extended ACLs, use the `access-list access-list number remark remark` global configuration command to include a comment about an access list. To remove the remark, use the `no` form of this command.

In this example, the workstation belonging to Jones is allowed access, and the workstation belonging to Smith is not allowed access:

```
Switch(config)# access-list 1 remark Permit only Jones workstation through
Switch(config)# access-list 1 permit 171.69.2.88
Switch(config)# access-list 1 remark Do not allow Smith workstation through
Switch(config)# access-list 1 deny 171.69.3.13
```

For an entry in a named IP ACL, use the `remark` access-list configuration command. To remove the remark, use the `no` form of this command.

In this example, the Jones subnet is not allowed to use outbound Telnet:

```
Switch(config)# ip access-list extended telnetting
Switch(config-ext-nacl)# remark Do not allow Jones subnet to telnet out
Switch(config-ext-nacl)# deny tcp host 171.69.2.88 any eq telnet
```

Applying an IP ACL to an Interface or Terminal Line

After you create an IP ACL, you can apply it to one or more interfaces or terminal lines. ACLs can be applied on either outbound or inbound Layer 3 interfaces, but only to inbound Layer 2 interfaces. This section describes how to accomplish this task for both terminal lines and network interfaces. Note these guidelines:

- When controlling access to a line, you must use a number. Only numbered ACLs can be applied to lines.
- When controlling access to an interface, you can use a name or number.
- Set identical restrictions on all the virtual terminal lines because a user can attempt to connect to any of them.
- If you apply an ACL to a Layer 3 interface and routing is not enabled on your switch, the ACL only filters packets that are intended for the CPU, such as SNMP, Telnet, or Web traffic. You do not have to enable routing to apply ACLs to Layer 2 interfaces.
- Port ACLs are not supported on the same switch with input router ACLs and VLAN maps.
  - If you try to apply an ACL to a Layer 2 interface on a switch that has an input Layer 3 ACL or a VLAN map applied to it, a `conflict` error message is generated. You can apply an ACL to a Layer 2 interface if the switch has output Layer 3 ACLs applied.
  - If you try to apply an ACL to an input Layer 3 interface on a switch that has a Layer 2 ACL applied to it, a `conflict` error message is generated. You can apply an ACL to an output Layer 3 interface if the switch has Layer 2 ACLs applied.
A Layer 2 interface can have one IP access list applied to the input; a Layer 3 interface can have one IP access list applied to the input and one IP access list applied to the output. If you apply an IP ACL to an interface that already has an IP ACL configured (in that direction), the new ACL replaces the previously configured one.

You can apply a port ACL only to a physical Layer 2 interface; you cannot apply port ACLs to EtherChannel interfaces.

Beginning in privileged EXEC mode, follow these steps to restrict incoming and outgoing connections between a virtual terminal line and the addresses in an ACL:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 line [console</td>
<td>vty] line-number</td>
</tr>
<tr>
<td></td>
<td>· console—Enter to specify the console terminal line. The console port is DCE.</td>
</tr>
<tr>
<td></td>
<td>· vty—Enter to specify a virtual terminal for remote console access. The line-number is the first line number in a contiguous group that you want to configure when the line type is specified. The range is from 0 to 16.</td>
</tr>
<tr>
<td>Step 3 access-class access-list-number {in</td>
<td>out}</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Display the access list configuration.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove access restrictions on a terminal line, use the no access-class access-list-number {in | out} line configuration command.

Beginning in privileged EXEC mode, follow these steps to apply an IP access list to control access to a Layer 2 or Layer 3 interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Identify a specific interface for configuration, and enter interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>The interface can be a Layer 2 interface (port ACL) or a Layer 3 interface (router ACL).</td>
</tr>
<tr>
<td>Step 3 ip access-group access-list-number</td>
<td>Control access to the specified interface by using the IP access list. You can enter a standard or extended IP access number or name.</td>
</tr>
<tr>
<td>name) {in</td>
<td>out}</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Display the access list configuration.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To remove the specified access group, use the `no ip access-group {access-list-number | name} {in | out}` interface configuration command.

This example shows how to apply access list 2 on Gigabit Ethernet interface 0/3 to filter packets entering the interface:

```
Switch(config)# interface gigabitethernet0/3
Router(config-if)# ip access-group 2 in
```

**Note**

When you apply the `ip access-group` interface configuration command to a Layer 3 interface (an SVI, a Layer 3 EtherChannel, or a routed port), the interface must have been configured with an IP address. Layer 3 access groups filter packets that are routed or are received by Layer 3 processes on the CPU. They do not affect packets bridged within a VLAN.

For inbound ACLs, after receiving a packet, the switch checks the packet against the ACL. If the ACL permits the packet, the switch continues to process the packet. If the ACL rejects the packet, the switch discards the packet.

For outbound ACLs (Layer 3 interfaces only), after receiving and routing a packet to a controlled interface, the switch checks the packet against the ACL. If the ACL permits the packet, the switch sends the packet. If the ACL rejects the packet, the switch discards the packet.

If the input interface is configured to send ICMP Unreachable messages, these messages are sent whenever a packet is discarded, regardless of whether the packet was discarded because of an ACL on the input interface or because of an ACL on the output interface. ICMP Unreachables are normally limited to no more than one every one-half second per input interface, but this can be changed by using the `ip icmp rate-limit unreachable` global configuration command.

When you apply an undefined ACL to an interface, the switch acts as if the ACL has not been applied to the interface and permits all packets. Remember this behavior if you use undefined ACLs for network security.

### IP ACL Configuration Examples

This section provides examples of configuring IP ACLs. For detailed information about compiling ACLs, refer to the Security Configuration Guide and the “IP Services” chapter of the Cisco IOS IP and IP Routing Configuration Guide for IOS Release 12.1.

**Figure 27-3** shows a small networked office environment with the routed port 0/2 connected to Server A, containing benefits and other information that all employees can access, and routed port 0/3 connected to Server B, containing confidential payroll data. All users can access Server A, but Server B has restricted access.

Use router ACLs to do this in one of these ways:

- Create a standard IP ACL, and filter traffic coming to the server from port 0/3.
- Create an extended IP ACL, and filter traffic coming from the server into port 0/3.
Configuring IP ACLs

This example uses a standard ACL to filter traffic coming into Server B from port 0/3, permitting traffic only from Accounting’s source addresses 172.20.128.64 to 172.20.128.95.

Switch(config)# access-list 6 permit 172.20.128.64 0.0.0.31
Switch(config)# end
Switch(config)# show access-lists
Standard IP access list 6
   permit 172.20.128.64, wildcard bits 0.0.0.31
Switch(config)# interface gigabitethernet0/3
Switch(config-if)# ip access-group 6 out

The ACL is applied to traffic coming out of routed port 0/3 from the specified source address.

This example uses an extended ACL to filter traffic coming from Server B into port 0/3, permitting traffic from any source address (in this case Server B) to only the Accounting destination addresses 172.20.128.64 to 172.20.128.95.

Switch(config)# access-list 106 permit ip any 172.20.128.64 0.0.0.31
Switch(config)# end
Switch(config)# show access-lists
Extended IP access list 106
   permit ip any 172.20.128.64 0.0.0.31
Switch(config)# interface gigabitethernet0/3
Switch(config-if)# ip access-group 106 in

The ACL is then applied to traffic going into routed port 0/3, permitting it to go only to the specified destination addresses. Note that with extended ACLs, you must enter the protocol (IP) before the source and destination information.
Numbered ACLs

In this example, network 36.0.0.0 is a Class A network whose second octet specifies a subnet; that is, its subnet mask is 255.255.0.0. The third and fourth octets of a network 36.0.0.0 address specify a particular host. Using access list 2, the switch accepts one address on subnet 48 and reject all others on that subnet. The last line of the list shows that the switch accepts addresses on all other network 36.0.0.0 subnets. The ACL is then applied to packets entering Gigabit Ethernet interface 0/1.

```
Switch(config)# access-list 2 permit 36.48.0.3
Switch(config)# access-list 2 deny 36.48.0.0 0.0.255.255
Switch(config)# access-list 2 permit 36.0.0.0 0.255.255.255
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# ip access-group 2 in
```

Extended ACLs

In this example, the first line permits any incoming TCP connections with destination ports greater than 1023. The second line permits incoming TCP connections to the Simple Mail Transfer Protocol (SMTP) port of host 128.88.1.2. The third line permits incoming ICMP messages for error feedback.

```
Switch(config)# access-list 102 permit tcp any 128.88.0.0 0.0.255.255 gt 1023
Switch(config)# access-list 102 permit tcp any host 128.88.1.2 eq 25
Switch(config)# access-list 102 permit icmp any any
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# ip access-group 102 in
```

For another example of using an extended ACL, suppose that you have a network connected to the Internet, and you want any host on the network to be able to form TCP connections to any host on the Internet. However, you do not want IP hosts to be able to form TCP connections to hosts on your network, except to the mail (SMTP) port of a dedicated mail host.

SMTP uses TCP port 25 on one end of the connection and a random port number on the other end. The same port numbers are used throughout the life of the connection. Mail packets coming in from the Internet have a destination port of 25. Outbound packets have the port numbers reversed. Because the secure system behind the router always accepts mail connections on port 25, the incoming and outgoing services are separately controlled. The ACL must be configured as an input ACL on the outbound interface and an output ACL on the inbound interface.

In this example, the network is a Class B network with the address 128.88.0.0, and the mail host address is 128.88.1.2. The `established` keyword is used only for the TCP to show an established connection. A match occurs if the TCP datagram has the ACK or RST bits set, which show that the packet belongs to an existing connection. Gigabit Ethernet interface 0/1 is the interface that connects the router to the Internet.

```
Switch(config)# access-list 102 permit tcp any 128.88.0.0 0.0.255.255 established
Switch(config)# access-list 102 permit tcp any host 128.88.1.2 eq 25
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# ip access-group 102 in
```

Named ACLs

The following configuration creates a standard ACL named `internet_filter` and an extended ACL named `marketing_group`. The `internet_filter` ACL allows all traffic from the source address 1.2.3.4.

```
Switch(config)# ip access-list standard internet_filter
Switch(config-ext-nacl)# permit 1.2.3.4
Switch(config-ext-nacl)# exit
```
Configuring IP ACLs

Chapter 27  Configuring Network Security with ACLs

Configuring IP ACLs

The marketing_group ACL allows any TCP Telnet traffic to the destination address and wildcard 171.69.0.0 0.0.255.255 and denies any other TCP traffic. It permits any ICMP traffic, denies UDP traffic from any source to the destination address range 171.69.0.0 through 179.69.255.255 with a destination port less than 1024, denies any other IP traffic, and provides a log of the result.

Switch(config)# ip access-list extended marketing_group
Switch(config-ext-nacl)# permit tcp any 171.69.0.0 0.0.255.255 eq telnet
Switch(config-ext-nacl)# deny tcp any any
Switch(config-ext-nacl)# permit icmp any any
Switch(config-ext-nacl)# deny udp any 171.69.0.0 0.0.255.255 lt 1024
Switch(config-ext-nacl)# deny ip any any log
Switch(config-ext-nacl)# exit

The ACLs are applied to Gigabit Ethernet port 0/5, which is configured as a Layer 3 port, with the Internet_filter ACL applied to incoming traffic and the marketing_group ACL applied to outgoing traffic.

Switch(config)# interface gigabitethernet0/5
Switch(config-if)# no switchport
Switch(config-if)# ip address 2.0.5.1 255.255.255.0
Switch(config-if)# ip access-group Internet_filter out
Switch(config-if)# ip access-group marketing_group in

Time Range Applied to an IP ACL

This example denies Hypertext Transfer Protocol (HTTP) traffic on IP on Monday through Friday between the hours of 8:00 a.m. and 6:00 p.m. The example allows UDP traffic only on Saturday and Sunday from noon to 8:00 p.m.

Switch(config)# time-range no-http
Switch(config)# periodical weekdays 8:00 to 18:00

Switch(config)# time-range udp-yes
Switch(config)# periodical weekend 12:00 to 20:00

Switch(config)# ip access-list extended strict
Switch(config-ext-nacl)# deny tcp any any eq www time-range no-http
Switch(config-ext-nacl)# permit udp any any time-range udp-yes

Switch(config-ext-nacl)# exit
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# ip access-group strict in

Commented IP ACL Entries

In this example of a numbered ACL, the workstation belonging to Jones is allowed access, and the workstation belonging to Smith is not allowed access:

Switch(config)# access-list 1 remark Permit only Jones workstation through
Switch(config)# access-list 1 permit 171.69.2.88
Switch(config)# access-list 1 remark Do not allow Smith workstation through
Switch(config)# access-list 1 deny 171.69.3.13

In this example of a numbered ACL, the Winter and Smith workstations are not allowed to browse the Web:

Switch(config)# access-list 100 remark Do not allow Winter to browse the web
Switch(config)# access-list 100 deny host 171.69.3.85 any eq www
Switch(config)# access-list 100 remark Do not allow Smith to browse the web
Switch(config)# access-list 100 deny host 171.69.3.13 any eq www
In this example of a named ACL, the Jones subnet is not allowed access:

Switch(config)# ip access-list standard prevention
Switch(config-standard-nacl)# remark Do not allow Jones subnet through
Switch(config-standard-nacl)# deny 171.69.0.0 0.0.255.255

In this example of a named ACL, the Jones subnet is not allowed to use outbound Telnet:

Switch(config)# ip access-list extended telnetting
Switch(config-ext-nacl)# remark Do not allow Jones subnet to telnet out
Switch(config-ext-nacl)# deny tcp 171.69.0.0 0.0.255.255 any eq telnet

ACL Logging

Note

Logging is not supported on port ACLs.

Two variations of logging are supported on router ACLs. The log keyword sends an informational logging message to the console about the packet that matches the entry; the log-input keyword includes the input interface in the log entry.

In this example, standard named access list stan1 denies traffic from 10.1.1.0 0.0.0.255, allows traffic from all other sources, and includes the log keyword.

Switch(config)# ip access-list standard stan1
Switch(config-standard-nacl)# deny 10.1.1.0 0.0.0.255 log
Switch(config-standard-nacl)# permit any log
Switch(config-standard-nacl)# exit
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# ip access-group stan1 in
Switch(config-if)# end

Switch# show logging
Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns)
  Console logging: level debugging, 37 messages logged
  Monitor logging: level debugging, 0 messages logged
  Buffer logging: level debugging, 37 messages logged
  File logging: disabled
  Trap logging: level debugging, 39 message lines logged

Log Buffer (4096 bytes):

00:00:48: NTP: authentication delay calculation problems

<output truncated>

00:09:34:%SEC-6-IPACCESSLOGS:list stan1 permitted 0.0.0.0 1 packet
00:09:59:%SEC-6-IPACCESSLOGS:list stan1 denied 10.1.1.15 1 packet
00:10:11:%SEC-6-IPACCESSLOGS:list stan1 permitted 0.0.0.0 1 packet
00:15:33:%SEC-6-IPACCESSLOGS:list stan1 denied 10.1.1.15 2009 packets

This example is a named extended access list ext1 that permits ICMP packets from any source to 10.1.1.0 0.0.0.255 and denies all UDP packets.

Switch(config)# ip access-list extended ext1
Switch(config-ext-nacl)# permit icmp any 10.1.1.0 0.0.0.255 log
Switch(config-ext-nacl)# deny udp any any log
Switch(config-standard-nacl)# exit
Switch(config)# interface gigabitethernet0/3
Switch(config-if)# ip access-group ext1 in
This is an example of a log for an extended IP ACL:

```
01:24:23:%SEC-6-IPACCESSLOGDP:list ext1 permitted icmp 10.1.1.15 -> 10.1.1.61 (0/0), 1 packet
01:25:14:%SEC-6-IPACCESSLOGDP:list ext1 permitted icmp 10.1.1.15 -> 10.1.1.61 (0/0), 7 packets
01:26:12:%SEC-6-IPACCESSLOGP:list ext1 denied udp 0.0.0.0(0) -> 255.255.255.255(0), 1 packet
01:31:33:%SEC-6-IPACCESSLOGP:list ext1 denied udp 0.0.0.0(0) -> 255.255.255.255(0), 8 packets
```

Note that all logging entries for IP ACLs start with `%SEC-6-IPACCESSLOG` with minor variations in format depending on the kind of ACL and the access entry that has been matched.

This is an example of an output message when the `log-input` keyword is entered:

```
00:04:21:%SEC-6-IPACCESSLOGDP:list inputlog permitted icmp 10.1.1.10 (Vlan1 0001.42ef.a400) -> 10.1.1.61 (0/0), 1 packet
```

A log message for the same sort of packet using the `log` keyword does not include the input interface information:

```
00:05:47:%SEC-6-IPACCESSLOGDP:list inputlog permitted icmp 10.1.1.10 -> 10.1.1.61 (0/0), 1 packet
```

### Configuring Named MAC Extended ACLs

You can filter non-IP traffic on a VLAN and on a physical Layer 2 interface by using MAC addresses and named MAC extended ACLs. The procedure is similar to that of configuring other extended named ACLs. You can use a number to name the access list, but MAC access list numbers from 700 to 799 are not supported.

#### Note

Named MAC extended ACLs cannot be applied to Layer 3 interfaces.

For more information about the supported non-IP protocols in the `mac access-list extended` command, refer to the command reference for this release.

#### Note

Though visible in the command-line help strings, `appletalk` is not supported as a matching condition for the `deny` and `permit` MAC access-list configuration mode commands nor is matching on the EtherType of any SNAP-encapsulated packet with a nonzero Organizational Unique Identifier (OUI).

Beginning in privileged EXEC mode, follow these steps to create a named MAC extended ACL:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>mac access-list extended name</code></td>
<td>Define an extended MAC access list using a name.</td>
</tr>
</tbody>
</table>
Chapter 27  Configuring Network Security with ACLs

Configuring Named MAC Extended ACLs

Use the `no mac access-list extended name` global configuration command to delete the entire ACL. You can also delete individual ACEs from named MAC extended ACLs.

This example shows how to create and display an access list named `mac1`, denying only EtherType DECSnet Phase IV traffic, but permitting all other types of traffic.

```
Switch(config)# mac access-list extended mac1
Switch(config-ext-macl)# deny any any decnet-iv
Switch(config-ext-macl)# permit any any
```

### Command and Purpose

| Step 3 | {deny | permit} {any | host source MAC address | source MAC address mask} {any | host destination MAC address | destination MAC address mask} {type mask | lsap lsap mask | aarp | amber | dec-spanning | decnet-iv | diagnostic | dsm | etype-6000 | etype-8042 | lat | lave-sca | mop-console | mop-dump | msdos | mumps | netbios | vines-echo | vines-ip | xns-idp | 0-65535} [cos cos] |
| Purpose | In extended MAC access-list configuration mode, specify to **permit** or **deny any** source MAC address, a source MAC address with a mask, or a specific **host** source MAC address and **any** destination MAC address, destination MAC address with a mask, or a specific destination MAC address. (Optional) You can also enter these options:
|   |   | type mask—An arbitrary EtherType number of a packet with Ethernet II or SNAP encapsulation in decimal, hex, or octal with optional mask of `don’t care` bits applied to the EtherType before testing for a match.
|   |   | lsap lsap mask—An LSAP number of a packet with 802.2 encapsulation in decimal, hex, or octal with optional mask of `don’t care` bits.
|   |   | cos cos—An IEEE 802.1Q cost of service number from 0 to 7 used to set priority.

| Step 4 | end | Return to privileged EXEC mode.
| Step 5 | show access-lists [number | name] | Show the access list configuration.
| Step 6 | copy running-config startup-config | (Optional) Save your entries in the configuration file.

Use the `no mac access-list extended name` global configuration command to delete the entire ACL. You can also delete individual ACEs from named MAC extended ACLs.
Apply a MAC ACL to a Layer 2 Interface

After you create a MAC ACL, you can apply it to a Layer 2 interface to filter non-IP traffic coming into that interface. When you apply the MAC ACL, consider these guidelines:

- You cannot apply an ACL to a Layer 2 interface on a switch if the switch has an input Layer 3 ACL or a VLAN map applied to it. An error message is generated if you attempt to do so. You can apply an ACL to a Layer 2 interface if the switch has output Layer 3 ACLs applied.
- A Layer 2 interface can have only one MAC access list. If you apply a MAC access list to a Layer 2 interface that has a MAC ACL configured, the new ACL replaces the previously configured one.

Beginning in privileged EXEC mode, follow these steps to apply a MAC access list to control access to a Layer 2 interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>mac access-group {name} {in}</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show mac access-group [interface interface-id]</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To remove the specified access group, use the **no mac access-group {name} in** interface configuration command.

This example shows how to apply MAC access list mac1 on Gigabit Ethernet interface 0/3 to filter packets entering the interface:

```
Switch(config)# interface gigabitethernet0/3
Router(config-if)# mac access-group mac1 in
```

**Note** The **mac access-group** interface configuration command is only valid when applied to a physical Layer 2 interface.

For inbound ACLs, after receiving a packet, the switch checks it against the ACL. If the ACL permits the packet, the switch continues to process the packet. If the ACL rejects the packet, the switch discards it.

When you apply an undefined ACL to an interface, the switch acts as if the ACL has not been applied to the interface and permits all packets. Remember this behavior if you use undefined ACLs for network security.
Configuring VLAN Maps

This section describes how to configure VLAN maps, which is the only way to control filtering within a VLAN. VLAN maps have no direction. To filter traffic in a specific direction by using a VLAN map, you need to include an ACL with specific source or destination addresses. If there is a match clause for that type of packet (IP or MAC) in the VLAN map, the default action is to drop the packet if the packet does not match any of the entries within the map. If there is no match clause for that type of packet, the default is to forward the packet.

Note
For complete syntax and usage information for the commands used in this section, refer to the command reference for this release.

To create a VLAN map and apply it to one or more VLANs, perform these steps:

Step 1 Create the standard or extended IP ACLs or named MAC extended ACLs that you want to apply to the VLAN. See the “Creating Standard and Extended IP ACLs” section on page 27-8 and the “Configuring Named MAC Extended ACLs” section on page 27-26.

Step 2 Enter the vlan access-map global configuration command to create a VLAN ACL map entry.

Step 3 In access map configuration mode, optionally enter an action—forward (the default) or drop—and enter the match command to specify an IP packet or a non-IP packet (with only a known MAC address) and to match the packet against one or more ACLs (standard or extended).

Note If the VLAN map has a match clause for the type of packet (IP or MAC) and the packet does not match the type, the default is to drop the packet. If there is no match clause in the VLAN map for that type of packet, and no action specified, the packet is forwarded.

Step 4 Use the vlan filter global configuration command to apply a VLAN map to one or more VLANs.

Note You cannot apply a VLAN map to a VLAN on a switch that has ACLs applied to Layer 2 interfaces (port ACLs).

This section contains these topics:

- VLAN Map Configuration Guidelines, page 27-30
- Creating a VLAN Map, page 27-30
- Applying a VLAN Map to a VLAN, page 27-33
- Using VLAN Maps in Your Network, page 27-33
### VLAN Map Configuration Guidelines

Follow these guidelines when configuring VLAN maps:

- If there is no router ACL configured to deny traffic on a routed VLAN interface (input or output), and no VLAN map configured, all traffic is permitted.

- Each VLAN map consists of a series of entries. The order of entries in an VLAN map is important. A packet that comes into the switch is tested against the first entry in the VLAN map. If it matches, the action specified for that part of the VLAN map is taken. If there is no match, the packet is tested against the next entry in the map.

- If the VLAN map has at least one match clause for the type of packet (IP or MAC) and the packet does not match any of these match clauses, the default is to drop the packet. If there is no match clause for that type of packet in the VLAN map, the default is to forward the packet.

- The system might take longer to boot if you have configured a very large number of ACLs.

- For information about using both router ACLs and VLAN maps, see the “Guidelines for Using Router ACLs and VLAN Maps” section on page 27-36.

- See the “Using VLAN Maps in Your Network” section on page 27-33 for configuration examples.

- When a switch has an IP access list or MAC access list applied to a Layer 2 interface, you can create VLAN maps, but you cannot apply a VLAN map to any of the switch VLANs. An error message is generated if you attempt to do so.

### Creating a VLAN Map

Each VLAN map consists of an ordered series of entries. Beginning in privileged EXEC mode, follow these steps to create, add to, or delete a VLAN map entry:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>vlan access-map name [number]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>action {drop</td>
</tr>
<tr>
<td>Step 4</td>
<td>match {ip</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the no vlan access-map name global configuration command to delete a map.
Use the `no vlan access-map name number` global configuration command to delete a single sequence entry from within the map.

Use the `no action` access-map configuration command to enforce the default action, which is to forward. VLAN maps do not use the specific permit or deny keywords. To deny a packet by using VLAN maps, create an ACL that would match the packet, and set the action to drop. A permit in the ACL counts as a match. A deny in the ACL means no match.

### Examples of ACLs and VLAN Maps

These examples show how to create ACLs and VLAN maps that for specific purposes.

#### Example 1

This example shows how to create an ACL and a VLAN map to deny a packet. In the first map, any packets that match the `ip1` ACL (TCP packets) would be dropped. You first create the `ip1` ACL to permit any TCP packet and no other packets. Because there is a match clause for IP packets in the VLAN map, the default action is to drop any IP packet that does not match any of the match clauses.

```
Switch(config)# ip access-list extended ip1
Switch(config-ext-nacl)# permit tcp any any
Switch(config-ext-nacl)# exit
Switch(config)# vlan access-map map_1 10
Switch(config-access-map)# match ip address ip1
Switch(config-access-map)# action drop
```

This example shows how to create a VLAN map to permit a packet. ACL `ip2` permits UDP packets and any packets that match the `ip2` ACL are forwarded.

```
Switch(config)# ip access-list extended ip2
Switch(config-ext-nacl)# permit udp any any
Switch(config-ext-nacl)# exit
Switch(config)# vlan access-map map_1 20
Switch(config-access-map)# match ip address ip2
Switch(config-access-map)# action forward
```

In this map, any IP packets that did not match any of the previous ACLs (that is, packets that are not TCP packets or UDP packets) would get dropped.

#### Example 2

In this example, the VLAN map has a default action of drop for IP packets and a default action of forward for MAC packets. Used with standard ACL 101 and extended named access lists `igmp-match` and `tcp-match`, the map will have the following results:

- Forward all UDP packets
- Drop all IGMP packets
- Forward all TCP packets
- Drop all other IP packets
- Forward all non-IP packets

```
Switch(config)# access-list 101 permit udp any any
Switch(config)# ip access-list extended igmp-match
Switch(config-ext-nacl)# permit igmp any any
Switch(config)# ip access-list extended tcp-match
Switch(config-ext-nacl)# permit tcp any any
Switch(config-ext-nacl)# exit
Switch(config)# vlan access-map drop-ip-default 10
```
Switch(config-access-map)# match ip address 101
Switch(config-access-map)# action forward
Switch(config)# vlan access-map drop-ip-default 20
Switch(config-access-map)# match ip address igmp-match
Switch(config-access-map)# action drop
Switch(config)# vlan access-map drop-ip-default 30
Switch(config-access-map)# match ip address tcp-match
Switch(config-access-map)# action forward

Example 3

In this example, the VLAN map has a default action of drop for MAC packets and a default action of forward for IP packets. Used with MAC extended access lists `good-hosts` and `good-protocols`, the map will have the following results:

- Forward MAC packets from hosts 0000.0c00.0111 and 0000.0c00.0211
- Forward MAC packets with decnet-iv or vines-ip protocols
- Drop all other non-IP packets
- Forward all IP packets

Switch(config)# mac access-list extended good-hosts
Switch(config-ext-macl)# permit host 000.0c00.0111 any
Switch(config-ext-macl)# permit host 000.0c00.0211 any
Switch(config-ext-nacl)# exit
Switch(config)# mac access-list extended good-protocols
Switch(config-ext-macl)# permit any any decnet-ip
Switch(config-ext-macl)# permit any any vines-ip
Switch(config-ext-nacl)# exit
Switch(config)# vlan access-map drop-mac-default 10
Switch(config-access-map)# match mac address good-hosts
Switch(config-access-map)# action forward
Switch(config)# vlan access-map drop-mac-default 20
Switch(config-access-map)# match mac address good-protocols
Switch(config-access-map)# action forward

Example 4

In this example, the VLAN map has a default action of drop for all packets (IP and non-IP). Used with access lists `tcp-match` and `good-hosts` from Examples 2 and 3, the map will have the following results:

- Forward all TCP packets
- Forward MAC packets from hosts 0000.0c00.0111 and 0000.0c00.0211
- Drop all other IP packets
- Drop all other MAC packets

Switch(config)# vlan access-map drop-all-default 10
Switch(config-access-map)# match ip address tcp-match
Switch(config-access-map)# action forward
Switch(config)# vlan access-map drop-all-default 20
Switch(config-access-map)# match mac address good-hosts
Switch(config-access-map)# action forward
Applying a VLAN Map to a VLAN

Beginning in privileged EXEC mode, follow these steps to apply a VLAN map to one or more VLANs:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 vlan filter mapname vlan-list list</td>
<td>Apply the VLAN map to one or more VLAN IDs.</td>
</tr>
<tr>
<td></td>
<td>The list can be a single VLAN ID (22), a</td>
</tr>
<tr>
<td></td>
<td>consecutive list (10-22), or a string</td>
</tr>
<tr>
<td></td>
<td>of VLAN IDs (12, 22, 30). Spaces around the</td>
</tr>
<tr>
<td></td>
<td>comma and hyphen are optional.</td>
</tr>
<tr>
<td>Step 3 show running-config</td>
<td>Display the access list configuration.</td>
</tr>
<tr>
<td>Step 4 copy running-config startup-config</td>
<td>(Optional) Save your entries in the</td>
</tr>
<tr>
<td></td>
<td>configuration file.</td>
</tr>
</tbody>
</table>

To remove the VLAN map, use the `no vlan filter mapname vlan-list list` global configuration command.

This example shows how to apply VLAN map 1 to VLANs 20 through 22:

```
Switch(config)# vlan filter map 1 vlan-list 20-22
```

Using VLAN Maps in Your Network

This section describes some typical uses for VLAN maps and includes these topics:

- Wiring Closet Configuration, page 27-33
- Denying Access to a Server on Another VLAN, page 27-35

Wiring Closet Configuration

In a wiring closet configuration, routing might not be enabled on the Catalyst 3550 switch. In this configuration, the switch can still support a VLAN map and a QoS classification ACL. In Figure 27-4, assume that Host X and Host Y are in different VLANs and are connected to wiring closet switches A and C. Traffic from Host X to Host Y is eventually being routed by Switch B, which has routing enabled. Traffic from Host X to Host Y can be access-controlled at the traffic entry point, Switch A.
If you do not want HTTP traffic switched from Host X to Host Y, you can configure a VLAN map on Switch A to drop all HTTP traffic from Host X (IP address 10.1.1.32) to Host Y (IP address 10.1.1.34) at Switch A and not bridge it to Switch B.

First, define the IP access list `http` that permits (matches) any TCP traffic on the HTTP port.

```
Switch(config)# ip access-list extended http
Switch(config-ext-nacl)# permit tcp host 10.1.1.32 host 10.1.1.34 eq www
```

Next, create VLAN access map `map2` so that traffic that matches the `http` access list is dropped and all other IP traffic is forwarded.

```
Switch(config)# vlan access-map map2 10
Switch(config-access-map)# match ip address http
Switch(config-access-map)# action drop
Switch(config-access-map)# exit
Switch(config)# ip access-list extended match_all
Switch(config-ext-nacl)# permit ip any any
Switch(config-ext-nacl)# exit
Switch(config)# vlan access-map map2 20
Switch(config-access-map)# match ip address match_all
Switch(config-access-map)# action forward
```

Then, apply VLAN access map `map2` to VLAN 1.

```
Switch(config)# vlan filter map2 vlan 1
```
Denying Access to a Server on Another VLAN

You can restrict access to a server on another VLAN. For example, server 10.1.1.100 in VLAN 10 needs to have access restricted as follows (see Figure 27-5):

- Hosts in subnet 10.1.2.0/8 in VLAN 20 should not have access.
- Hosts 10.1.1.4 and 10.1.1.8 in VLAN 10 should not have access.

![Figure 27-5 Deny Access to a Server on Another VLAN](image)

This example shows how to deny access to a server on another VLAN by creating the VLAN map SERVER1 that denies access to hosts in subnet 10.1.2.0/8, host 10.1.1.4, and host 10.1.1.8 and permits other IP traffic. The final step is to apply the map SERVER1 to VLAN 10.

**Step 1** Define the IP ACL that will match the correct packets.

```plaintext
Switch(config)# ip access-list extended SERVER1_ACL
Switch(config-ext-nacl)# permit ip 10.1.2.0 0.0.0.255 host 10.1.1.100
Switch(config-ext-nacl)# permit ip host 10.1.1.4 host 10.1.1.100
Switch(config-ext-nacl)# permit ip host 10.1.1.8 host 10.1.1.100
Switch(config-ext-nacl)# exit
```

**Step 2** Define a VLAN map using this ACL that will drop IP packets that match SERVER1_ACL and forward IP packets that do not match the ACL.

```plaintext
Switch(config)# vlan access-map SERVER1_MAP
Switch(config-access-map)# match ip address SERVER1_ACL
Switch(config-access-map)# action drop
Switch(config)# vlan access-map SERVER1_MAP 20
Switch(config-access-map)# action forward
Switch(config-access-map)# exit
```

**Step 3** Apply the VLAN map to VLAN 10.

```plaintext
Switch(config)# vlan filter SERVER1_MAP vlan-list 10.
```
Using VLAN Maps with Router ACLs

To access control both bridged and routed traffic, you can use VLAN maps only or a combination of router ACLs and VLAN maps. You can define router ACLs on both input and output routed VLAN interfaces, and you can define a VLAN map to access control the bridged traffic.

Note
You cannot combine VLAN maps or input router ACLs with port ACLs on a switch.

If a packet flow matches a VLAN-map deny clause in the ACL, regardless of the router ACL configuration, the packet flow is denied.

Note
When you use router ACLs with VLAN maps, packets that require logging on the router ACLs are not logged if they are denied by a VLAN map.

If the VLAN map has a match clause for the type of packet (IP or MAC) and the packet does not match the type, the default is to drop the packet. If there is no match clause in the VLAN map, and no action specified, the packet is forwarded if it does not match any VLAN map entry.

This section includes this information about using VLAN maps with router ACLs:

- Guidelines for Using Router ACLs and VLAN Maps, page 27-36
- Examples of Router ACLs and VLAN Maps Applied to VLANs, page 27-37

Guidelines for Using Router ACLs and VLAN Maps

These guidelines are for configurations where you need to have an router ACL and a VLAN map on the same VLAN. These guidelines do not apply to configurations where you are mapping router ACLs and VLAN maps on different VLANs.

The switch hardware provides one lookup for security ACLs for each direction (input and output); therefore, you must merge a router ACL and a VLAN map when they are configured on the same VLAN. Merging the router ACL with the VLAN map might significantly increase the number of ACEs.

If you must configure a router ACL and a VLAN map on the same VLAN, use these guidelines for both router ACL and VLAN map configuration:

- Whenever possible, try to write the ACL with all entries having a single action except for the final, default action of the other type. That is, write the ACL using one of these two forms:

  ```
 permit...
 permit...
 permit...
 deny ip any any
  ```

  or

  ```
 deny...
 deny...
 deny...
 permit ip any any
  ```

- To define multiple actions in an ACL (permit, deny), group each action type together to reduce the number of entries.
Avoid including Layer 4 information in an ACL; adding this information complicates the merging process. The best merge results are obtained if the ACLs are filtered based on IP addresses (source and destination) and not on the full flow (source IP address, destination IP address, protocol, and protocol ports). It is also helpful to use don’t care bits in the IP address, whenever possible.

If you need to specify the full-flow mode and the ACL contains both IP ACEs and TCP/UDP/ICMP ACEs with Layer 4 information, put the Layer 4 ACEs at the end of the list. This gives priority to the filtering of traffic based on IP addresses.

---

**Note**

After the ACL configuration is stable for a specified interval, the system loads the configuration into hardware. Forwarding is blocked on any affected interfaces while the hardware is being updated. To change this behavior, you can use the `mls aclmerge delay` and the `access-list hardware program nonblocking` global configuration commands. Refer to the command reference for this release for descriptions of these commands.

---

**Examples of Router ACLs and VLAN Maps Applied to VLANs**

This section gives examples of applying router ACLs and VLAN maps to a VLAN for switched, bridged, routed, and multicast packets. Although the following illustrations show packets being forwarded to their destination, each time the packet’s path crosses a line indicating a VLAN map or an ACL, it is also possible that the packet might be dropped, rather than forwarded.

**ACls and Switched Packets**

**Figure 27-6** shows how an ACL is applied on packets that are switched within a VLAN. Packets switched within the VLAN without being routed or forwarded by fallback bridging are only subject to the VLAN map of the input VLAN.

**Figure 27-6  Applying ACLs on Switched Packets**
ACLs and Bridged Packets

Figure 27-7 shows how an ACL is applied on fallback-bridged packets. For bridged packets, only Layer 2 ACLs are applied to the input VLAN. Only non-IP, non-ARP packets can be fallback-bridged.
ACLs and Routed Packets

Figure 27-8 shows how ACLs are applied on routed packets. For routed packets, the ACLs are applied in this order:

1. VLAN map for input VLAN
2. Input router ACL
3. Output router ACL
4. VLAN map for output VLAN

Figure 27-8 Applying ACLs on Routed Packets
ACLs and Multicast Packets

Figure 27-9 shows how ACLs are applied on packets that are replicated for IP multicasting. A multicast packet being routed has two different kinds of filters applied: one for destinations that are other ports in the input VLAN and another for each of the destinations that are in other VLANs to which the packet has been routed. The packet might be routed to more than one output VLAN, in which case a different router output ACL and VLAN map would apply for each destination VLAN.

The final result is that the packet might be permitted in some of the output VLANs and not in others. A copy of the packet is forwarded to those destinations where it is permitted. However, if the input VLAN map (VLAN 10 map in Figure 27-9) drops the packet, no destination receives a copy of the packet.

Figure 27-9 Applying ACLs on Multicast Packets
Displaying ACL Information

You can display the ACLs that are configured on the switch, and you can display the ACLs that have been applied to interfaces and VLANs. You can also display information about configuration conflicts or resource usage related to ACLs.

This section includes these topics:

- Displaying ACL Configuration, page 27-41
- Displaying ACL Resource Usage and Configuration Problems, page 27-43

Displaying ACL Configuration

You can display existing ACLs and when you use the `ip access-group` interface configuration command to apply ACLs to a Layer 2 or 3 interface, you can display the access groups on the interface. You can also display the MAC ACLs applied to a Layer 2 interface. You can use the privileged EXEC commands as described in Table 27-2 to display this information.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show access-lists [number</td>
<td>name]`</td>
</tr>
<tr>
<td>`show ip access-lists [number</td>
<td>name]`</td>
</tr>
<tr>
<td><code>show ip interface interface-id</code></td>
<td>Display detailed configuration and status of an interface. If IP is enabled on the interface and ACLs have been applied by using the <code>ip access-group</code> interface configuration command, the access groups are included in the display.</td>
</tr>
<tr>
<td><code>show running-config [interface interface-id]</code></td>
<td>Displays the contents of the configuration file for the switch or the specified interface, including all configured MAC and IP access lists and which access groups are applied to an interface.</td>
</tr>
<tr>
<td><code>show mac access-group [interface interface-id]</code></td>
<td>Displays MAC access lists applied to all Layer 2 interfaces or the specified Layer 2 interface.</td>
</tr>
</tbody>
</table>

This is an example of output from the `show access-lists` privileged EXEC command, displaying all standard and extended ACLs:

```
Switch# show access-lists
Standard IP access list 1
 permit 172.20.10.10
Standard IP access list 10
 permit 12.12.12.12
Standard IP access list 12
 deny 1.3.3.2
Standard IP access list 32
 permit 172.20.20.20
Standard IP access list 34
 permit 10.24.35.56
 permit 23.45.56.34
Extended IP access list 120
 permit eigrp host 12.3.6.5 host 25.36.1.24
Extended MAC access list mac1
```
This is an example of output from the `show ip access-lists` privileged EXEC command. It displays only IP standard and extended ACLs. Note that the named MAC extended ACL displayed in the previous example is not included in this display.

```
Switch# show ip access-lists
Standard IP access list 1
 permit 172.20.10.10
Standard IP access list 10
 permit 12.12.12.12
Standard IP access list 12
 deny 1.3.3.2
Standard IP access list 32
 permit 172.20.20.20
Standard IP access list 34
 permit 10.24.35.56
 permit 23.45.56.34
Extended IP access list 120
 permit eigrp host 12.3.6.5 host 25.36.1.24
```

This is an example of output from the `show mac access-group` privileged EXEC command when only one interface (Gigabit Ethernet interface 2) has a MAC access list (`macl-e1`) applied.

```
Switch# show mac access-group
Interface GigabitEthernet0/1:
 Inbound access-list is not set
Interface GigabitEthernet0/2:
 Inbound access-list is macl_e1
Interface GigabitEthernet0/3:
 Inbound access-list is not set
Interface GigabitEthernet0/4:
 Inbound access-list is not set
Interface GigabitEthernet0/5:
 Inbound access-list is not set
<output truncated>
```

You can also display information about VLAN access maps or VLAN filters. Use the privileged EXEC commands in Table 27-3 to display VLAN map information.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show vlan access-map [mapname]</code></td>
<td>Show information about all VLAN access-maps or the specified access map.</td>
</tr>
<tr>
<td>`show vlan filter [access-map name</td>
<td>vlan vlan-id]`</td>
</tr>
</tbody>
</table>

This is an example of output from the `show vlan access-map` privileged EXEC command:

```
Switch# show vlan access-map
Vlan access-map "map_1" 10
 Match clauses:
 ip address: ip1
 Action:
 drop
Vlan access-map "map_1" 20
 Match clauses:
 mac address: macl
 Action:
 forward
```
This is an example of output from the `show vlan filter` privileged EXEC command:

```
Switch# show vlan filter
VLAN Map map_1 is filtering VLANs:
 20-22
```

### Displaying ACL Resource Usage and Configuration Problems

The switch feature manager allocates resources to configured ACLs. When there are not enough hardware resources for a configuration or when there is a configuration conflict, an error message is generated. If the console is not set to receive error messages, you can use the `show fm` privileged EXEC commands to display feature-manager messages and to get more information about the resources handling ACLs on an interface. You can also use the `show tcam` privileged EXEC commands to get status information about the switch ternary content addressable memory (TCAM) capacity.

Table 27-4 lists the privileged EXEC commands that display ACL feature-manager information.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show fm vlan vlan-id</code> or <code>show fm interface interface-id</code></td>
<td>Display feature-manager information for the interface or the VLAN, including the hardware port-label or vlan-label number for the interface and feature-manager problems that have occurred.</td>
</tr>
<tr>
<td><code>show fm vlan-label label-id</code> or <code>show fm port-label label-id</code></td>
<td>Display information about the identified label, including which of the configured ACL features fit into hardware. VLAN labels are used for router ACLs and VLAN maps; port labels are used for port ACLs. The VLAN <code>label-id</code> range is from 0 to 255; the port <code>label-id</code> range is from 0 to 127.</td>
</tr>
<tr>
<td>`show tcam {inac</td>
<td>outac} tcam-id {port-labels [label-id]}</td>
</tr>
</tbody>
</table>

Refer to the command reference for this release for more detailed information about these commands.

This section describes how to display this information about these ACL issues:

- **Configuration Conflicts**, page 27-44
- **ACL Configuration Fitting in Hardware**, page 27-45
- **TCAM Usage**, page 27-47
Configuration Conflicts

If you attempt to enter an ACL configuration that is not allowed, for example, applying a port ACL to an interface on a switch that has router ACLs already configured, an error message is logged.

In this example, Gigabit port 1 is a Layer 2 interface. When you try to apply access list ip3, the error message shows that there are already ACLs applied to Layer 3 interfaces on the switch.

```
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# ip access-group ip3 in
Switch(config-if)#
 1d18h:%FM-3-CONFLICT:Port ACL ip3 conflicts with input router ACLs
```

You can enter the `show fm interface` privileged EXEC command for an interface to determine if there are ACL configuration conflicts or to learn the port-label number for the port. You can then enter the `show fm port-label` privileged EXEC command to display more details, as shown in this example:

```
Switch# show fm interface gigabitethernet0/1
Conflicts exist with layer 3 access groups.
Input Port Label:2
Switch# show fm port-label 2
Conflicts exist with layer 3 access groups.
Needed in CAM(s):1
Loaded into CAM(s):1
Sent to CPU by CAM(s):
 Interfaces: G10/1
 IP Access Group:ip3 0 VMRs
 DHCP Broadcast Suppression Disabled.
 MAC Access Group:(None) 0 VMRs
```

This example shows the result of trying to apply ACL 121 to an SVI, VLAN 1, when the switch already has ACLs applied to Layer 2 interfaces.

```
Switch(config)# interface vlan 1
Switch(config-if)# ip access-group 121 in
Switch(config-if)#
 1d18h:%FM-3-CONFLICT:Input router ACL 121 conflicts with port ACLs
```

You can enter the `show fm vlan` privileged EXEC command for a VLAN to display the conflict and to determine the VLAN `label-ids`, and then enter the `show fm vlan-label` command for more information.

```
Switch# show fm vlan 1
Conflicts exist with layer 2 access groups.
Input VLAN Label:1
Output VLAN Label:0 (default)
Priority:normal
Switch# show fm vlan-label 1
Conflicts exist with layer 2 access groups.
Input Features:
 Interfaces or VLANs: V11
 Priority:normal
 Vlan Map:(none)
 Access Group:121, 0 VMRs
 Multicast Boundary:(none), 0 VMRs
Output Features:
 Interfaces or VLANs:
 Priority:low
 Bridge Group Member:no
 Vlan Map:(none)
 Access Group:(none), 0 VMRs
```
ACL Configuration Fitting in Hardware

As previously stated, ACL processing in the Catalyst 3550 switch is mostly accomplished in hardware. However, if the hardware reaches its capacity to store ACL configurations, the switch software attempts to fit a simpler configuration into the hardware. This simpler configuration does not do all the filtering that has been configured, but instead sends some or all packets to the CPU to be filtered by software. In this way, all configured filtering will be accomplished, but performance is greatly decreased when the filtering is done in software.

For example, if the combination of an input router ACL applied to a VLAN interface and a VLAN map applied to the same VLAN does not fit into the hardware, these results might occur:

- If the VLAN map alone fits in hardware, the software sets up the hardware to send to the CPU all packets that need to be routed for filtering and possible routing (if the packet passes the filter). Packets that only require bridging within the input VLAN are still handled entirely by hardware and not sent to the CPU.
- If the VLAN map does not fit in the hardware, all packets on that VLAN must be both filtered and forwarded by software.

Any problem in fitting the configuration into hardware is logged. You can use the `show fm privileged EXEC commands to determine if any interface configuration or VLAN configuration did not fit into hardware.

Port ACL Examples

This is an example of a port access list that is too big for the available TCAM space.

```
Switch(config-if)# interface gigabitethernet0/3
Switch(config-if)# ip access-group 100 in
Switch(config-if)#
00:04:58:%FM-3-UNLOADING:Unloading port label 3 feature from TCAM 1
```

To verify the port label or to see if a label was assigned to an interface, you can enter the `show fm interface` command.

```
Switch# show fm interface gigabitethernet0/3
Input Port Label:3
```

Entering the `show fm port-label` privileged EXEC command shows that label 3 is needed in CAM 1 but that it is not loaded in CAM 1; instead, it is sent to the CPU.

```
Switch# show fm port-label 3
Needed in CAM(s):1
Loaded into CAM(s): 1
Sent to CPU by CAM(s): 1
Interfaces: G10/3
IP Access Group:100 3400 VMRs
DHCP Broadcast Suppression Disabled.
MAC Access Group:(None) 2 VMRs
```

The number of TCAMs on a switch varies (from 1 to 3) with switch model. On switches that have more than one TCAM, if the same port ACL has been applied to several interfaces, it is possible that the configuration fits into some, but not all, of the required TCAMs. In that case, a log message generated when the ACL is applied specifies which TCAM was unable to load the ACL.

```
Switch(config)# interface gigabitethernet0/10
Switch(config-if)# ip access-group 101 in
Switch(config-if)#
01:46:25:%FM-3-UNLOADING:Unloading port label 4 feature from TCAM 1
```
When you enter the `show fm port-label` command for label 4, the display shows which TCAMs have the feature loaded and which do not:

```
Switch# show fm port-label 4
Needed in CAM(s):1 3
Loaded into CAM(s):3
Sent to CPU by CAM(s):1
Interfaces: G10/3, G10/10
IP Access Group:101 379 VMRs
DHCP Broadcast Suppression Disabled.
MAC Access Group: (None) 2 VMRs
```

The display shows that port label 4 is needed in CAMs 1 and 3, but did not fit into CAM 1, because in this case CAM 1 already contained entries for other port labels and had less available space than CAM 3. The output shows that the label is loaded into CAM 3 and that CAM 1 sends packets on this label to the CPU because the entries for the port ACLs on port label 4 have been unloaded from CAM 1.

**VLAN or Router ACL Examples**

This example shows how to display the feature manager information for VLAN 1:

```
Switch# show fm vlan 1
Input VLAN Label:1
Output VLAN Label:0 (default)
Priority:normal
```

This output from the `show fm vlan-label` privileged EXEC command shows a merge failure on an input access group:

```
Switch# show fm vlan-label 1
Unloaded due to merge failure or lack of space:
 Input Access Group
 Merge Fail: input
Input Features:
 Interfaces or VLANs: V11
 Priority: normal
 Vlan Map: (none)
 Access Group: 131, 6788 VMRs
 Multicast Boundary: (none), 0 VMRs
Output Features:
 Interfaces or VLANs:
 Priority: low
 Bridge Group Member: no
 Vlan Map: (none)
 Access Group: (none), 0 VMRs
```
This output from the **show fm vlan-label** privileged EXEC command shows insufficient room for an input access group in the hardware:

```
Switch# show fm vlan-label 1
Unloaded due to merge failure or lack of space:
 InputAccessGroup
Input Features:
 Interfaces or VLANs: Vl1
 Priority: normal
 Vlan Map: (none)
 Access Group: bigone, 11 VMRs
 Multicast Boundary: (none), 0 VMRs
Output Features:
 Interfaces or VLANs:
 Priority: normal
 Bridge Group Member: no
 Vlan Map: (none)
 Access Group: (none), 0 VMRs
```

This output from the **show fm vlan-label** privileged EXEC command shows not enough room for the input access group or the output access group on the label. (Note that the access groups were configured on two different interfaces. Labels are assigned independently for input and output.)

```
Switch# show fm label 1
Unloaded due to merge failure or lack of space:
 InputAccessGroup OutputAccessGroup
Input Features:
 Interfaces or VLANs: Vl1
 Priority: normal
 Vlan Map: (none)
 Access Group: bigone, 11 VMRs
 Multicast Boundary: (none), 0 VMRs
Output Features:
 Interfaces or VLANs: Vl2
 Priority: normal
 Bridge Group Member: no
 Vlan Map: (none)
 Access Group: bigtwo, 11 VMRs
```

---

**Note**

When configuring ACLs on the switch, to allocate maximum hardware resources for ACLs, you can use the **sdm prefer access** global configuration command to set the Switch Database Management feature to the access template. For more information on the SDM templates, see the “Optimizing System Resources for User-Selected Features” section on page 7-27.

---

**TCAM Usage**

You can display the remaining capacity in a TCAM before or after configuring ACLs, and you can also display how much space is allotted in the TCAM to a particular interface or VLAN by using the **show tcam** privileged EXEC commands.

You can use the **show tcam size** to display the total size of the regions of TCAM in which the ACLs are entered.

```
Switch# show tcam inacl 1 size
Ingress ACL TCAM Size: 6592 Entries
```

To change the amount allocated to various TCAM regions, use the **sdm prefer** global configuration command to allocate more resources to ACLs, routing, or Layer 2 switching.
The **show tcam statistics** command for an input or output TCAM region displays how full that region is, including allocated and available masks and entries. This is an example of the output from the command:

Switch# show tcam inacl 1 statistics
Ingress ACL TCAM#1: Number of active labels: 3
Ingress ACL TCAM#1: Number of masks allocated: 14, available: 810
Ingress ACL TCAM#1: Number of entries allocated: 17, available: 6575

To determine how much of the TCAM is being used by ACL configuration on an interface or VLAN, use the **show fm interface** or **show fm vlan** command to determine the port label or vlan label being used for the port or VLAN ACL configuration. Then use the **show tcam port-label** or **show tcam vlan-label** command to display how much TCAM space is allocated to the label. VLAN labels are used for router ACLs and VLAN maps. Port labels are used for port ACLs.

Switch# show fm vlan 1
Input VLAN Label: 1
Output VLAN Label: 0 (default)
Priority: normal
Switch# show tcam inacl 1 vlan-labels 1
Label Value: 8193 (vlan label 1)
Number of entries: 779
Entry List
----------
Mask Index: 4
F7 00 00 00 00 00 00 00 00 00 00 00 80 FF C0 00 C0 FF FF 00 00
Entry Index: 32 Timestamp: 1
96 00 00 00 00 00 00 00 00 00 00 00 80 01 40 00 80 00 01 00 00 As Data(hex): 00260086
Mask Index: 5
F7 00 00 00 00 00 00 00 00 00 00 00 80 FF C0 00 C0 00 00 FF FF
Entry Index: 33 Timestamp: 4
96 00 00 00 00 00 00 00 00 00 00 00 80 01 40 00 80 00 00 00 B3 As Data(hex): 00260086
Mask Index: 6
F5 00 00 00 00 E0 00 00 00 00 80 FF C0 00 C0 00 00 00 00
Entry Index: 48 Timestamp: 1
94 00 00 00 00 E0 00 00 00 00 80 01 40 00 80 00 00 00 00 As Data(hex): 00210086
Mask Index: 7
F7 00 00 00 00 00 00 00 00 00 00 00 80 FF C0 00 C0 00 00 00 00
Entry Index: 49 Timestamp: 4
96 00 00 00 00 00 00 00 00 00 00 00 80 01 40 00 80 00 00 00 00 As Data(hex): 00210086
Mask Index: 8
F5 00 00 00 00 00 00 00 00 00 00 00 80 FF C0 00 C0 00 00 00 00
Entry Index: 64 Timestamp: 1
<output truncated>

**Note**

In the **show tcam vlan-label** output, the *Number of entries* field does not account for the two default entries and therefore omits two entries from the count. Default entries are not used for port labels, so the field is accurate for that output.
Configuring QoS

This chapter describes how to configure quality of service (QoS) by using automatic QoS (auto-QoS) commands or by using standard QoS commands. With QoS, you can give preferential treatment to certain traffic at the expense of others. Without QoS, the Catalyst 3550 switch offers best-effort service to each packet, regardless of the packet contents or size. It sends the packets without any assurance of reliability, delay bounds, or throughput.

Note
For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter consists of these sections:
- Understanding QoS, page 28-2
- Configuring Auto-QoS, page 28-17
- Displaying Auto-QoS Information, page 28-22
- Auto-QoS Configuration Example, page 28-23
- Configuring Standard QoS, page 28-24
- Displaying Standard QoS Information, page 28-69
- Standard QoS Configuration Examples, page 28-69

Note
When you are configuring QoS parameters for the switch, in order to allocate system resources to maximize the number of possible QoS access control entries (ACEs) allowed, you can use the `sdm prefer access` global configuration command to set the Switch Database Management feature to the access template. For more information on the SDM templates, see the “Optimizing System Resources for User-Selected Features” section on page 7-27.
Understanding QoS

Typically, networks operate on a best-effort delivery basis, which means that all traffic has equal priority and an equal chance of being delivered in a timely manner. When congestion occurs, all traffic has an equal chance of being dropped.

When you configure QoS, you can select specific network traffic, prioritize it according to its relative importance, and use congestion-management and congestion-avoidance techniques to give preferential treatment. Implementing QoS in your network makes network performance more predictable and bandwidth utilization more effective.

The QoS implementation is based on the DiffServ architecture, an emerging standard from the Internet Engineering Task Force (IETF). This architecture specifies that each packet is classified upon entry into the network. The classification is carried in the IP packet header, using 6 bits from the deprecated IP type of service (TOS) field to carry the classification (class) information. Classification can also be carried in the Layer 2 frame. These special bits in the Layer 2 frame or in the Layer 3 packet are described here and shown in Figure 28-1:

- Prioritization bits in Layer 2 frames:
  - Layer 2 Inter-Switch Link (ISL) frame headers have a 1-byte User field that carries an IEEE 802.1P class of service (CoS) value in the three least-significant bits. On interfaces configured as Layer 2 ISL trunks, all traffic is in ISL frames.
  - Layer 2 802.1Q frame headers have a 2-byte Tag Control Information field that carries the CoS value in the three most-significant bits, which are called the User Priority bits. On interfaces configured as Layer 2 802.1Q trunks, all traffic is in 802.1Q frames except for traffic in the native VLAN.
  - Other frame types cannot carry Layer 2 CoS values.
  - Layer 2 CoS values range from 0 for low priority to 7 for high priority.

- Prioritization bits in Layer 3 packets:
  - Layer 3 IP packets can carry either an IP precedence value or a Differentiated Services Code Point (DSCP) value. QoS supports the use of either value because DSCP values are backward-compatible with IP precedence values.
  - IP precedence values range from 0 to 7.
  - DSCP values range from 0 to 63.
Chapter 28  Configuring QoS

Understanding QoS

Figure 28-1 QoS Classification Bits in Frames and Packets

Encapsulated Packet

<table>
<thead>
<tr>
<th>Layer 2 header</th>
<th>IP header</th>
<th>Data</th>
</tr>
</thead>
</table>

Layer 2 ISL Frame

<table>
<thead>
<tr>
<th>ISL header (26 bytes)</th>
<th>Encapsulated frame 1... (24.5 KB)</th>
<th>FCS (4 bytes)</th>
</tr>
</thead>
</table>

3 bits used for CoS

Layer 2 802.1Q/P Frame

<table>
<thead>
<tr>
<th>Preamble</th>
<th>Start frame delimiter</th>
<th>DA</th>
<th>SA</th>
<th>Tag</th>
<th>PT</th>
<th>Data</th>
<th>FCS</th>
</tr>
</thead>
</table>

3 bits used for CoS (user priority)

Layer 3 IPv4 Packet

<table>
<thead>
<tr>
<th>Version length</th>
<th>ToS (1 byte)</th>
<th>Len</th>
<th>ID</th>
<th>Offset</th>
<th>TTL</th>
<th>Proto</th>
<th>FCS</th>
<th>IP-SA</th>
<th>IP-DA</th>
<th>Data</th>
</tr>
</thead>
</table>

IP precedence or DSCP

Layer 3 IPv6 packets are treated as non-IP packets and are bridged by the switch.

To give the same forwarding treatment to packets with the same class information and different treatment to packets with different class information, all switches and routers that access the Internet rely on class information. Class information in the packet can be assigned by end hosts or by switches or routers along the way, based on a configured policy, detailed examination of the packet, or both. Detailed examination of the packet is expected to happen closer to the network edge so that core switches and routers are not overloaded.

Switches and routers along the path can use class information to limit the amount of resources allocated per traffic class. The behavior of an individual device when handling traffic in the DiffServ architecture is called per-hop behavior. If all devices along a path have a consistent per-hop behavior, you can construct an end-to-end QoS solution.

Implementing QoS in your network can be a simple or complex task and depends on the QoS features offered by your internetworking devices, the traffic types and patterns in your network, and the granularity of control that you need over incoming and outgoing traffic.

These sections describe the QoS stages and how they work:

- Basic QoS Model, page 28-4
- Classification, page 28-5
- Policing and Marking, page 28-8
- Mapping Tables, page 28-10
- Queueing and Scheduling, page 28-11
- Packet Modification, page 28-17
Basic QoS Model

Figure 28-2 shows the basic QoS model. Actions at the ingress interface include classifying traffic, policing, and marking:

- Classifying distinguishes one kind of traffic from another. The process generates an internal DSCP for a packet, which identifies all the future QoS actions to be performed on this packet. For more information, see the “Classification” section on page 28-5.

- Policing determines whether a packet is in or out of profile by comparing the internal DSCP to the configured policer. The policer limits the bandwidth consumed by a flow of traffic. The result of this determination is passed to the marker. For more information, see the “Policing and Marking” section on page 28-8.

- Marking evaluates the policer and the configuration information for the action to be taken when a packet is out of profile and decides what to do with the packet (pass through a packet without modification, mark down the DSCP value in the packet, or drop the packet). For more information, see the “Policing and Marking” section on page 28-8.

Actions at the egress interface include queueing and scheduling:

- Queueing evaluates the internal DSCP and determines which of the four egress queues in which to place the packet. The DSCP value is mapped to a CoS value, which selects one of the queues. For more information, see the “Mapping Tables” section on page 28-10.

- Scheduling services the four egress queues based on their configured weighted round robin (WRR) weights and thresholds. One of the queues can be the expedite queue, which is serviced until empty before the other queues are serviced. Congestion avoidance techniques include tail drop and Weighted Random Early Detection (WRED) on Gigabit-capable Ethernet ports and tail drop (with only one threshold) on 10/100 Ethernet ports. For more information, see the “Queueing and Scheduling” section on page 28-11.

Note

Policing and marking also can occur on egress interfaces.

Figure 28-2  Basic QoS Model

```
<table>
<thead>
<tr>
<th>Classification</th>
<th>Generate DSCP</th>
<th>Policing</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspect packet and determine the DSCP based on ACLs or the configuration. Map the Layer 2 CoS value to a DSCP value.</td>
<td>Compare DSCP to the configured policer and determine if the packet is in profile or out of profile.</td>
<td>Based on whether the packet is in or out of profile and the configured parameters, determine whether to pass through, mark down, or drop the packet. The DSCP and CoS are marked or changed accordingly.</td>
<td>Based on the CoS, determine into which of the egress queues to place the packet. Then service the queues according to the configured weights.</td>
</tr>
</tbody>
</table>
```


Classification

Classification is the process of distinguishing one kind of traffic from another by examining the fields in the packet. Classification is enabled only if QoS is globally enabled on the switch. By default, QoS is globally disabled, so no classification occurs.

Note

Classification occurs on a physical interface or on a per-port per-VLAN basis. No support exists for classifying packets at the switch virtual interface level.

You specify which fields in the frame or packet that you want to use to classify incoming traffic.

For non-IP traffic, these are the classification options as shown in Figure 28-3:

- Use the port default. If the frame does not contain a CoS value, the switch assigns the default port CoS value to the incoming frame. Then, the switch uses the configurable CoS-to-DSCP map to generate the internal DSCP value.
- Trust the CoS value in the incoming frame (configure the port to trust CoS). Then, the switch uses the configurable CoS-to-DSCP map to generate the internal DSCP value. Layer 2 ISL frame headers carry the CoS value in the three least-significant bits of the 1-byte User field. Layer 2 802.1Q frame headers carry the CoS value in the three most-significant bits of the Tag Control Information field. CoS values range from 0 for low priority to 7 for high priority.

The trust DSCP and trust IP precedence configurations are meaningless for non-IP traffic. If you configure a port with either of these options and non-IP traffic is received, the switch assigns the default port CoS value and generates the internal DSCP from the CoS-to-DSCP map.

- Perform the classification based on the configured Layer 2 MAC access control list (ACL), which can examine the MAC source address, the MAC destination address, and the Ethertype field. If no ACL is configured, the packet is assigned the default DSCP of 0, which means best-effort traffic; otherwise, the policy map specifies the DSCP to assign to the incoming frame.

For IP traffic, these are the classification options as shown in Figure 28-3:

- Trust the IP DSCP in the incoming packet (configure the port to trust DSCP), and assign the same DSCP to the packet for internal use. The IETF defines the 6 most-significant bits of the 1-byte ToS field as the DSCP. The priority represented by a particular DSCP value is configurable. DSCP values range from 0 to 63.

  For ports that are on the boundary between two QoS administrative domains, you can modify the DSCP to another value by using the configurable DSCP-to-DSCP-mutation map.

- Trust the IP precedence in the incoming packet (configure the port to trust IP precedence), and generate a DSCP by using the configurable IP-precedence-to-DSCP map. The IP version 4 specification defines the three most-significant bits of the 1-byte ToS field as the IP precedence. IP precedence values range from 0 for low priority to 7 for high priority.

- Trust the CoS value (if present) in the incoming packet, and generate the DSCP by using the CoS-to-DSCP map.

- Perform the classification based on a configured IP standard or an extended ACL, which examines various fields in the IP header. If no ACL is configured, the packet is assigned the default DSCP of 0, which means best-effort traffic; otherwise, the policy map specifies the DSCP to assign to the incoming frame.

For information on the maps described in this section, see the “Mapping Tables” section on page 28-10. For configuration information on port trust states, see the “Configuring Classification By Using Port Trust States” section on page 28-29.
Figure 28-3 Classification Flowchart

Start

Read ingress interface configuration for classification.

Use port default (non-IP traffic).

Check if packet came with CoS label (tag).

Yes

Use Cos from frame.

Generate DSCP from CoS-to-DSCP map.

Done

No

Assign default port CoS.

Generate the DSCP based on IP precedence in packet. Use the IP-precedence-to-DSCP map.

Done

IP and non-IP traffic

Trust CoS (IP and non-IP traffic).

Trust IP precedence (IP traffic).

Assign DSCP identical to DSCP in packet.

(Optional) Modify the DSCP by using the DSCP-to-DSCP-mutation map.

Check if packet came with CoS label (tag).

Yes

Assign the default port CoS and generate a DSCP from the CoS-to-DSCP map.

Done

No

Are there any (more) QoS ACLs configured for this interface?

Yes

Read next ACL. Is there a match with a "permit" action?

Yes

Assign the DSCP as specified by ACL action.

Done

No

Assign the default DSCP (0).

Done

No

Generate the DSCP by using the CoS-to-DSCP map.

Done
Classification Based on QoS ACLs

You can use IP standard, IP extended, and Layer 2 MAC ACLs to define a group of packets with the same characteristics (class). In the QoS context, the permit and deny actions in the access control entries (ACEs) have different meanings than with security ACLs:

- If a match with a permit action is encountered (first-match principle), the specified QoS-related action is taken.
- If a match with a deny action is encountered, the ACL being processed is skipped, and the next ACL is processed.
- If no match with a permit action is encountered and all the ACEs have been examined, no QoS processing occurs on the packet, and the switch offers best-effort service to the packet.
- If multiple ACLs are configured on an interface, the lookup stops after the packet matches the first ACL with a permit action, and QoS processing begins.

**Note**

When creating an access list, remember that, by default, the end of the access list contains an implicit deny statement for everything if it did not find a match before reaching the end.

After a traffic class has been defined with the ACL, you can attach a policy to it. A policy might contain multiple classes with actions specified for each one of them. A policy might include commands to classify the class as a particular aggregate (for example, assign a DSCP) or rate-limit the class. This policy is then attached to a particular port on which it becomes effective.

You implement IP ACLs to classify IP traffic by using the `access-list` global configuration command; you implement Layer 2 MAC ACLs to classify non-IP traffic by using the `mac access-list extended` global configuration command. For configuration information, see the “Configuring a QoS Policy” section on page 28-35.

Classification Based on Class Maps and Policy Maps

A class map is a mechanism that you use to name and to isolate a specific traffic flow (or class) from all other traffic. The class map defines the criteria used to match against a specific traffic flow to further classify it; the criteria can include matching the access group defined by the ACL, matching a specific list of DSCP or IP precedence values, or matching a specific list of VLAN IDs associated with another class map that defines the actual criteria (for example, to match a standard or extended ACL). If you have more than one type of traffic that you want to classify, you can create another class map and use a different name. After a packet is matched against the class-map criteria, you further classify it through the use of a policy map.

A policy map specifies which traffic class to act on. Actions can include trusting the CoS, DSCP, or IP precedence values in the traffic class; setting a specific DSCP or IP precedence value in the traffic class; or specifying the traffic bandwidth limitations and the action to take when the traffic is out of profile. Before a policy map can be effective, you must attach it to an interface.

You create a class map by using the `class-map` global configuration command or the `class` policy-map configuration command; you should use the `class-map` command when the map is shared among many ports. When you enter the `class-map` command, the switch enters the class-map configuration mode. In this mode, you define the match criterion for the traffic by using the `match` class-map configuration command.
You create and name a policy map by using the `policy-map` global configuration command. When you enter this command, the switch enters the policy-map configuration mode. In this mode, you specify the actions to take on a specific traffic class by using the `class`, `trust`, or `set` policy-map configuration and policy-map class configuration commands. To make the policy map effective, you attach it to an interface by using the `service-policy` interface configuration command.

The policy map also can contain commands that define the policer, the bandwidth limitations of the traffic, and the action to take if the limits are exceeded. For more information, see the “Policing and Marking” section on page 28-8.

A policy map has these characteristics:

- A policy map can contain multiple class statements.
- A separate policy-map class can exist for each type of traffic received through an interface.
- The policy-map trust state and an interface trust state are mutually exclusive, and whichever is configured last takes affect.

For configuration information, see the “Configuring a QoS Policy” section on page 28-35.

### Policing and Marking

After a packet is classified and has an internal DSCP value assigned to it, the policing and marking process can begin as shown in Figure 28-4.

Policing involves creating a policer that specifies the bandwidth limits for the traffic. Packets that exceed the limits are out of profile or nonconforming. Each policer specifies the action to take for packets that are in or out of profile. These actions, carried out by the marker, include passing through the packet without modification, dropping the packet, or marking down the packet with a new DSCP value that is obtained from the configurable policed-DSCP map. For information on the policed-DSCP map, see the “Mapping Tables” section on page 28-10.

You can create these types of policers:

- Individual
  
  QoS applies the bandwidth limits specified in the policer separately to each matched traffic class. You configure this type of policer within a policy map by using the `police` policy-map configuration command.

- Aggregate
  
  QoS applies the bandwidth limits specified in an aggregate policer cumulatively to all matched traffic flows. You configure this type of policer by specifying the aggregate policer name within a policy map by using the `police aggregate` policy-map configuration command. You specify the bandwidth limits of the policer by using the `mls qos aggregate-policer` global configuration command. In this way, the aggregate policer is shared by multiple classes of traffic within a policy map.

Policing uses a token bucket algorithm. As each frame is received by the switch, a token is added to the bucket. The bucket has a hole in it and leaks at a rate that you specify as the average traffic rate in bits per second. Each time a token is added to the bucket, the switch performs a check to determine if there is enough room in the bucket. If there is not enough room, the packet is marked as nonconforming, and the specified policer action is taken (dropped or marked down).
Understanding QoS

How quickly the bucket fills is a function of the bucket depth (burst-byte), the rate at which the tokens are removed (rate-bps), and the duration of the burst above the average rate. The size of the bucket imposes an upper limit on the burst length and determines the number of frames that can be sent back-to-back. If the burst is short, the bucket does not overflow, and no action is taken against the traffic flow. However, if a burst is long and at a higher rate, the bucket overflows, and the policing actions are taken against the frames in that burst.

You configure the bucket depth (the maximum burst that is tolerated before the bucket overflows) by using the burst-byte option of the police policy-map class configuration command or the mls qos aggregate-policer global configuration command. You configure how fast (the average rate) that the tokens are removed from the bucket by using the rate-bps option of the police policy-map class configuration command or the mls qos aggregate-policer global configuration command.

When configuring policing and policers, keep these items in mind:

- By default, no policers are configured.
- Policers can be configured only on a physical port or on a per-port per-VLAN basis (specifies the bandwidth limits for the traffic on a per-VLAN basis, for a given port). Per-port per-VLAN policing is not supported on routed ports or on virtual (logical) interfaces. It is supported only on an ingress port configured as a trunk or as a static-access port.
- Only one policer can be applied to a packet per direction.
- Only the average rate and committed burst parameters are configurable.
- Policing can occur on ingress and egress interfaces:

  **Note** Per-port per-VLAN policing is supported only on ingress interfaces.
  - 128 policers are supported on ingress Gigabit-capable Ethernet ports.
  - 8 policers are supported on ingress 10/100 Ethernet ports.
  - 8 policers are supported on all egress ports.
  - Ingress policers can be individual or aggregate.

- On an interface configured for QoS, all traffic received through the interface is classified, policed, and marked according to the policy map attached to the interface. On a trunk interface configured for QoS, traffic in all VLANs received through the interface is classified, policed, and marked according to the policy map attached to the interface.

After you configure the policy map and policing actions, attach the policy to an ingress or egress interface by using the service-policy interface configuration command. For configuration information, see the “Classifying, Policing, and Marking Traffic by Using Policy Maps” section on page 28-43 and the “Classifying, Policing, and Marking Traffic by Using Aggregate Policers” section on page 28-49.
Mapping Tables

During QoS processing, the switch represents the priority of all traffic (including non-IP traffic) with an internal DSCP value:

- During classification, QoS uses configurable mapping tables to derive the internal DSCP (a 6-bit value) from received CoS or IP precedence (3-bit) values. These maps include the CoS-to-DSCP map and the IP-precedence-to-DSCP map.

  On an ingress interface configured in the DSCP-trusted state, if the DSCP values are different between the QoS domains, you can apply the configurable DSCP-to-DSCP-mutation map to the interface that is on the boundary between the two QoS domains.

- During policing, QoS can assign another DSCP value to an IP or non-IP packet (if the packet is out of profile and the policer specifies a marked down DSCP value). This configurable map is called the policed-DSCP map.

- Before the traffic reaches the scheduling stage, QoS uses the configurable DSCP-to-CoS map to derive a CoS value from the internal DSCP value. Through the CoS-to-egress-queue map, the CoS values select one of the four egress queues for output processing.
The CoS-to-DSCP, DSCP-to-CoS, and the IP-precedence-to-DSCP map have default values that might or might not be appropriate for your network.

The default DSCP-to-DSCP-mutation map and the default policed-DSCP map are null maps; they map an incoming DSCP value to the same DSCP value. The DSCP-to-DSCP-mutation map is the only map you apply to a specific Gigabit-capable Ethernet port or to a group of 10/100 Ethernet ports. All other maps apply to the entire switch.

For configuration information, see the “Configuring DSCP Maps” section on page 28-51.

Queueing and Scheduling

After a packet is policed and marked, the queueing and scheduling process begins as described in these sections:

- Queueing and Scheduling on Gigabit-Capable Ports, page 28-11
- Queueing and Scheduling on 10/100 Ethernet Ports, page 28-15

Queueing and Scheduling on Gigabit-Capable Ports

Figure 28-5 shows the queueing and scheduling flowchart for Gigabit-capable Ethernet ports.
Figure 28-5 Queueing and Scheduling Flowchart for Gigabit-Capable Ethernet Ports

Start

Read CoS value and the CoS-to-queue map.

Queue number

Determine high and low threshold of the queue, and determine the queue size.

T1 and T2 thresholds Queue size

Determine which DSCPs are mapped to each threshold. Read the DSCP-to-threshold map.

Are thresholds being exceeded? Yes Drop packet.

No

Put packet in the specified queue and service the queue according to WRR.

Done

Note

If the expedite queue is enabled, WRR services it until it is empty before servicing the other three queues.

During the queueing and scheduling process, the switch uses egress queues and WRR for congestion management, and tail drop or WRED algorithms for congestion avoidance on Gigabit-capable Ethernet ports.

Each Gigabit-capable Ethernet port has four egress queues, one of which can be the egress expedite queue. You can configure the buffer space allocated to each queue as a ratio of weights by using the `wrr-queue queue-limit` interface configuration command, where the relative size differences in the numbers show the relative differences in the queue sizes. To display the absolute value of the queue size, use the `show mls qos interface interface-id statistics` privileged EXEC command, and examine the FreeQ information.
You assign two drop thresholds to each queue, map DSCPs to the thresholds through the DSCP-to-threshold map, and enable either tail drop or WRED on the interface. The queue size, drop thresholds, tail-drop or WRED algorithm, and the DSCP-to-threshold map work together to determine when and which packets are dropped when the thresholds are exceeded. You configure the drop percentage thresholds by using either the `wrr-queue threshold` interface configuration command for tail drop or the `wrr-queue random-detect max-threshold` interface configuration command for WRED; in either case, you map DSCP values to the thresholds (DSCP-to-threshold map) by using the `wrr-queue dscp-map` interface configuration command. For more information, see the “Tail Drop” section on page 28-13 and “WRED” section on page 28-14.

The available bandwidth of the egress link is divided among the queues. You configure the queues to be serviced according to the ratio of WRR weights by using the `wrr-queue bandwidth` interface configuration command. The ratio represents the importance (weight) of a queue relative to the other queues. WRR scheduling prevents low-priority queues from being completely neglected during periods of high-priority traffic by sending some packets from each queue in turn. The number of packets sent corresponds to the relative importance of the queue. For example, if one queue has a weight of 3 and another has a weight of 4, three packets are sent from the first queue for every four that are sent from the second queue. By using this scheduling, low-priority queues can send packets even though the high-priority queues are not empty. Queues are selected by the CoS value that is mapped to an egress queue (CoS-to-egress-queue map) through the `wrr-queue cos-map` interface configuration command.

All four queues participate in the WRR unless the expedite queue is enabled, in which case, the fourth bandwidth weight is ignored and not used in the ratio calculation. The expedite queue is a priority queue, and it is serviced until empty before the other queues are serviced. You enable the expedite queue by using the `priority-queue out` interface configuration command.

You can combine the commands described in this section to prioritize traffic by placing packets with particular DSCPs into certain queues, allocate a larger queue size or service the particular queue more frequently, and adjust queue thresholds so that packets with lower priorities are dropped. For configuration information, see the “Configuring Egress Queues on Gigabit-Capable Ethernet Ports” section on page 28-57.

### Tail Drop

Tail drop is the default congestion-avoidance technique on Gigabit-capable Ethernet ports. With tail drop, packets are queued until the thresholds are exceeded. Specifically, all packets with DSCPs assigned to the first threshold are dropped until the threshold is no longer exceeded. However, packets assigned to the second threshold continue to be queued and sent as long as the second threshold is not exceeded.

You can modify the two tail-drop threshold percentages assigned to the four egress queues by using the `wrr-queue threshold` interface configuration command. Each threshold value is a percentage of the total number of allocated queue descriptors for the queue. The default threshold is 100 percent for thresholds 1 and 2.

You modify the DSCP-to-threshold map to determine which DSCPs are mapped to which threshold ID by using the `wrr-queue dscp-map` interface configuration command. By default, all DSCPs are mapped to threshold 1, and when this threshold is exceeded, all the packets are dropped.

If you use tail-drop thresholds, you cannot use WRED, and vice versa. If tail drop is disabled, WRED is automatically enabled with the previous configuration (or the default if it was not previously configured).
WRED

Cisco’s implementation of Random Early Detection (RED), called Weighted Random Early Detection (WRED), differs from other congestion-avoidance techniques because it attempts to anticipate and avoid congestion, rather than controlling congestion when it occurs.

WRED takes advantage of the Transmission Control Protocol (TCP) congestion control to try to control the average queue size by indicating to end hosts when they should temporarily stop sending packets. By randomly dropping packets before periods of high congestion, it tells the packet source to decrease its transmission rate. Assuming the packet source is using TCP, WRED tells it to decrease its transmission rate until all the packets reach their destination, meaning that the congestion is cleared.

WRED reduces the chances of tail drop by selectively dropping packets when the output interface begins to show signs of congestion. By dropping some packets early rather than waiting until the queue is full, WRED avoids dropping large numbers of packets at once. Thus, WRED allows the transmission line to be fully used at all times. WRED also drops more packets from large users than small. Therefore, sources that generate the most traffic are more likely to be slowed down versus sources that generate little traffic.

You can enable WRED and configure the two threshold percentages assigned to the four egress queues on a Gigabit-capable Ethernet port by using the `wrr-queue random-detect max-threshold` interface configuration command. Each threshold percentage represents where WRED starts to randomly drop packets. After a threshold is exceeded, WRED randomly begins to drop packets assigned to this threshold. As the queue limit is approached, WRED continues to drop more and more packets. When the queue limit is reached, WRED drops all packets assigned to the threshold. By default, WRED is disabled.

You modify the DSCP-to-threshold map to determine which DSCPs are mapped to which threshold ID by using the `wrr-queue dscp-map` interface configuration command. By default, all DSCPs are mapped to threshold 1, and when this threshold is exceeded, all the packets are randomly dropped.

If you use WRED thresholds, you cannot use tail drop, and vice versa. If WRED is disabled, tail drop is automatically enabled with the previous configuration (or the default if it was not previously configured).
Queueing and Scheduling on 10/100 Ethernet Ports

Figure 28-6 shows the queueing and scheduling flowchart for 10/100 Ethernet ports.

**Figure 28-6  Queueing and Scheduling Flowchart for 10/100 Ethernet Ports**

- Start
- Read the CoS value of CoS-to-queue map.
- Get minimum-reserve level and queue size.
- Is space available?
  - Yes: Put packet into specified queue and service queue according to WRR.
  - No: Drop packets until space is available.

**Note**

If the expedite queue is enabled, WRR services it until it is empty before servicing the other three queues.

During the queueing and scheduling process, the switch uses egress queues (to select the minimum-reserve level and buffer size) and WRR for congestion management.

Each 10/100 Ethernet port has four egress queues, one of which can be the egress expedite queue. Each queue can access one of eight minimum-reserve levels; each level has 100 packets of buffer space by default for queueing packets. When the buffer specified for the minimum-reserve level is full, packets are dropped until space is available.

Figure 28-7 is an example of the 10/100 Ethernet port queue assignments, minimum-reserve levels, and buffer sizes. The figure shows four egress queues per port, with each queue assigned to a minimum-reserve level. For example, for Fast Ethernet port 0/1, queue 1 is assigned to minimum-reserve level 1, queue 2 is assigned to minimum-reserve level 3, queue 3 is assigned to minimum-reserve level 5, and queue 4 is assigned to minimum-reserve level 7. You assign the minimum-reserve level to a queue by using the `wrr-queue min-reserve` interface configuration command.
Each minimum-reserve level is configured with a buffer size. As shown in the figure, queue 4 of Fast Ethernet port 0/1 has a buffer size of 70 packets, queue 4 of Fast Ethernet port 0/2 has a buffer size of 80 packets, queue 4 of Fast Ethernet port 0/3 has a buffer size of 40 packets, and Fast Ethernet port 0/4 has a buffer size of 80 packets. You configure the buffer size by using the `mls qos min-reserve` global configuration command.

The available bandwidth of the egress link is divided among the queues. You configure the queues to be serviced according to the ratio of WRR weights by using the `wrr-queue bandwidth` interface configuration command. The ratio represents the importance (weight) of a queue relative to the other queues. WRR scheduling prevents low-priority queues from being completely neglected during periods of high-priority traffic by sending some packets from each queue in turn. The number of packets sent corresponds to the relative importance of the queue. For example, if one queue has a weight of 3 and another has a weight of 4, three packets are sent from the first queue for every four that are sent from the second queue. By using this scheduling, low-priority queues can send packets even though the high-priority queues are not empty. Queues are selected by the CoS value that is mapped to an egress queue (CoS-to-egress-queue map) through the `wrr-queue cos-map` interface configuration command.

All four queues participate in the WRR unless the egress expedite queue is enabled, in which case, the fourth bandwidth weight is ignored and not used in the ratio calculation. The expedite queue is a priority queue, and it is serviced until empty before the other queues are serviced. You enable the expedite queue by using the `priority-queue out` interface configuration command.

You can combine the commands described in this section to prioritize traffic by placing packets with particular DSCPs into certain queues, allocate a larger minimum-reserve buffer size, and service a particular queue more frequently. For configuration information, see the “Configuring Egress Queues on 10/100 Ethernet Ports” section on page 28-64.
Packet Modification

A packet is classified, policed, and queued for QoS. Packet modifications can occur during this process:

- For IP packets, classification involves assigning a DSCP to the packet. However, the packet is not modified at this stage; only an indication of the assigned DSCP is carried along. The reason for this is that QoS classification and ACL lookup occur in parallel, and it is possible that the ACL specifies that the packet should be denied and logged. In this situation, the packet is forwarded with its original DSCP to the CPU, where it is again processed through ACL software. However, route lookup is performed based on classified DSCPs.

- For non-IP packets, classification involves assigning an internal DSCP to the packet, but because there is no DSCP in the non-IP packet, no overwrite occurs. Instead, the internal DSCP is translated to the CoS and is used both for queueing and scheduling decisions and for writing the CoS priority value in the tag if the packet is being sent on either an ISL or 802.1Q trunk port. Because the CoS priority is written in the tag, Catalyst 3500 series XL switches that use the 802.1P priority can interoperate with the QoS implementation on the Catalyst 3550 switches.

- During policing, IP and non-IP packets can have another DSCP assigned to them (if they are out of profile and the policer specifies a markdown DSCP). For IP packets, the packet modification occurs at a later stage; for non-IP packets the DSCP is converted to CoS and used for queueing and scheduling decisions.

Configuring Auto-QoS

You can use the auto-QoS feature to simplify the deployment of existing QoS features. Auto-QoS makes assumptions about the network design, and as a result, the switch can prioritize different traffic flows and appropriately use the egress queues instead of using the default QoS behavior. (The default is that QoS is disabled. The switch then offers best-effort service to each packet, regardless of the packet contents or size, and sends it from a single queue.)

When you enable auto-QoS, it automatically classifies traffic based on the traffic type and ingress packet label. The switch uses the resulting classification to choose the appropriate egress queue.

You use auto-QoS commands to identify ports connected to Cisco IP phones and to identify ports that receive trusted voice over IP (VoIP) traffic through an uplink. Auto-QoS then performs these functions:

- Detects the presence or absence of IP phones
- Configures QoS classification
- Configures egress queues

These sections describe how to configure auto-QoS on your switch:

- Generated Auto-QoS Configuration, page 28-18
- Effects of Auto-QoS on the Configuration, page 28-20
- Configuration Guidelines, page 28-20
- Enabling Auto-QoS for VoIP, page 28-21
Generated Auto-QoS Configuration

By default, auto-QoS is disabled on all interfaces.

When auto-QoS is enabled, it uses the ingress packet label to categorize traffic and to configure the egress queues as shown in Table 28-1.

Table 28-1 Traffic Types, Ingress Packet Labels, Assigned Packet Labels, and Egress Queues

<table>
<thead>
<tr>
<th>Traffic Type</th>
<th>Ingress DSCP</th>
<th>Ingress CoS</th>
<th>DiffServ</th>
<th>Assigned DSCP</th>
<th>Assigned CoS</th>
<th>CoS-to-Queue Map</th>
<th>Egress Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>VoIP Data Traffic</td>
<td>46</td>
<td>5</td>
<td>EF</td>
<td>46</td>
<td>5</td>
<td>5</td>
<td>Expedite</td>
</tr>
<tr>
<td>Only From Cisco IP</td>
<td>26</td>
<td>3</td>
<td>AF31</td>
<td>26</td>
<td>3</td>
<td>3, 6, 7</td>
<td></td>
</tr>
<tr>
<td>Phones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VoIP Control Traffic</td>
<td></td>
<td></td>
<td></td>
<td>48</td>
<td>3</td>
<td>6</td>
<td>80% WRR</td>
</tr>
<tr>
<td>Only From Cisco IP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20% WRR</td>
</tr>
<tr>
<td>Routing Protocol</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Traffic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STP BPDU¹</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Traffic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Other Traffic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. BPDU = bridge protocol data unit.

Table 28-2 shows the generated auto-QoS configuration for the egress queues.

Table 28-2 Auto-QoS Configuration for the Egress Queues

<table>
<thead>
<tr>
<th>Egress Queue</th>
<th>Queue Number</th>
<th>CoS-to-Queue Map</th>
<th>Queue Weight</th>
<th>Queue Size for Gigabit-Capable Ports</th>
<th>Queue Size (in packets) for 10/100 Ethernet Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expedite</td>
<td>4</td>
<td>5</td>
<td>–</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>80% WRR</td>
<td>3</td>
<td>3, 6, 7</td>
<td>80%</td>
<td>20%</td>
<td>65</td>
</tr>
<tr>
<td>20% WRR</td>
<td>1</td>
<td>0, 1, 2, 4</td>
<td>20%</td>
<td>80%</td>
<td>170</td>
</tr>
</tbody>
</table>

When you enable the auto-QoS feature on the first interface, these automatic actions occur:

- QoS is globally enabled (mls qos global configuration command).
- When you enter the auto qos voip trust interface configuration command, the ingress classification on the interface is set to trust the QoS label received in the packet, and the egress queues on the interface are reconfigured (see Table 28-2).
- When you enter the auto qos voip cisco-phone interface configuration command, the trusted boundary feature is enabled. It uses the Cisco Discovery Protocol (CDP) to detect the presence or absence of a Cisco IP phone. When a Cisco IP phone is detected, the ingress classification on the interface is set to trust the QoS label received in the packet. When a Cisco IP phone is absent, the ingress classification is set to not trust the QoS label in the packet. The egress queues on the interface are also reconfigured (see Table 28-2).
For information about the trusted boundary feature, see the “Configuring a Trusted Boundary to Ensure Port Security” section on page 28-32.

When you enable auto-QoS by using the `auto qos voip cisco-phone` or the `auto qos voip trust` interface configuration command, the switch automatically generates a QoS configuration based on the traffic type and ingress packet label and applies the commands listed in Table 28-3 to the interface.

**Table 28-3 Generated Auto-QoS Configuration**

<table>
<thead>
<tr>
<th>Description</th>
<th>Automatically Generated Command</th>
</tr>
</thead>
</table>
| The switch automatically enables standard QoS and configures the CoS-to-DSCP map (maps CoS values in incoming packets to a DSCP value) as shown in Table 28-1 on page 28-18. | Switch(config)# mls qos
Switch(config)# mls qos map cos-dscp 0 8 16 26 32 46 48 56 |
| If 10/100 Ethernet ports are present, the switch automatically configures the buffer size of the minimum-reserve levels 5, 6, 7, and 8:  
- Level 5 can hold 170 packets.  
- Level 6 is not used.  
- Level 7 can hold 65 packets.  
- Level 8 can hold 26 packets. | Switch(config)# mls qos min-reserve 5 170  
Switch(config)# mls qos min-reserve 6 10  
Switch(config)# mls qos min-reserve 7 65  
Switch(config)# mls qos min-reserve 8 26 |
| The switch automatically sets the ingress classification on the interface to trust the CoS value received in the packet. | Switch(config-if)# mls qos trust cos |
| If you entered the `auto qos voip cisco-phone` command, the switch automatically enables the trusted boundary feature, which uses the CDP to detect the presence or absence of a Cisco IP phone. | Switch(config-if)# mls qos trust device cisco-phone |
| The switch automatically assigns egress queue usage (as shown in Table 28-2 on page 28-18) on this interface. The switch enables the egress expedite queue and assigns WRR weights to queues 1 and 3. (The lowest value for a WRR queue is 1. When the WRR weight of a queue is set to 0, this queue becomes an expedite queue.) The switch configures the CoS-to-egress-queue map:  
- CoS values 0, 1, 2, and 4 select queue 1.  
- CoS values 3, 6, and 7 select queue 3.  
- CoS value 5 selects queue 4 (expedite queue). Because the expedite queue (queue 4) contains the VoIP data traffic, the queue is serviced until empty. | Switch(config-if)# wrq-queue bandwidth 20 1 80 0  
Switch(config-if)# no wrq-queue cos-map  
Switch(config-if)# wrq-queue cos-map 1 0 1 2 4  
Switch(config-if)# wrq-queue cos-map 3 3 6 7  
Switch(config-if)# wrq-queue cos-map 4 5  
Switch(config-if)# priority-queue out |
Chapter 28  Configuring QoS

### Configuring Auto-QoS

When auto-QoS is enabled, the `auto qos voip` interface configuration command and the generated configuration are added to the running configuration.

### Configuration Guidelines

Before configuring auto-QoS, you should be aware of this information:

- In this release, auto-QoS configures the switch only for VoIP with Cisco IP phones.
- To take advantage of the auto-QoS defaults, do not configure any standard-QoS commands before entering the auto-QoS commands. If necessary, you can fine-tune the QoS configuration, but we recommend that you do so only after the auto-QoS configuration is completed.
- You can enable auto-QoS on static, dynamic-access, voice VLAN access, and trunk ports.
- By default, the CDP is enabled on all interfaces. For auto-QoS to function properly, do not disable the CDP.
- Policing is not enabled with auto-QoS. You can manually enable policing, as described in the “Configuring a QoS Policy” section on page 28-35

---

### Table 28-3  Generated Auto-QoS Configuration (continued)

<table>
<thead>
<tr>
<th>Description</th>
<th>Automatically Generated Command</th>
</tr>
</thead>
</table>
| On Gigabit-capable Ethernet ports only, the switch automatically configures the ratio of the sizes of the WRR egress queues:  
  - Queue 1 is 80 percent.  
  - Queue 3 is 20 percent.  
  - Queue 4 is the expedite queue and is not assigned a size.  
| Switch(config-if)# `wrr-queue queue-limit 80 1 20 1` |
| On 10/100 Ethernet ports only, the switch automatically configures minimum-reserve levels for the egress queues:  
  - Queue 1 selects the minimum-reserve level 5.  
  - Queue 2 selects the minimum-reserve level 6.  
  - Queue 3 selects the minimum-reserve level 7.  
  - Queue 4 selects the minimum-reserve level 8.  
| Switch(config-if)# `wrr-queue min-reserve 1 5`  
Switch(config-if)# `wrr-queue min-reserve 2 6`  
Switch(config-if)# `wrr-queue min-reserve 3 7`  
Switch(config-if)# `wrr-queue min-reserve 4 8` |
Enabling Auto-QoS for VoIP

Beginning in privileged EXEC mode, follow these steps to enable auto-QoS for VoIP within a QoS domain:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface that is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>connected to a Cisco IP phone or the uplink interface that is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>connected to another switch or router in the interior of the network.</td>
</tr>
<tr>
<td>3</td>
<td>auto qos voip [cisco-phone</td>
<td>Enable auto-QoS.</td>
</tr>
<tr>
<td></td>
<td>trust]</td>
<td>The keywords have these meanings:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• cisco-phone—If the interface is connected to a Cisco IP phone,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the QoS labels of incoming packets are trusted only when the telephone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>is detected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• trust—The uplink interface is connected to a trusted switch or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>router, and the VoIP traffic classification in the ingress packet is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>trusted.</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>show auto qos interface</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td></td>
<td>interface interface-id</td>
<td>This command displays the auto-QoS configuration that was initially</td>
</tr>
<tr>
<td></td>
<td></td>
<td>applied; it does not display any user changes to the configuration that</td>
</tr>
<tr>
<td></td>
<td></td>
<td>might be in effect.</td>
</tr>
</tbody>
</table>

To display the QoS commands that are automatically generated when auto-QoS is enabled or disabled, enter the `debug autoqos` privileged EXEC command before enabling auto-QoS. For more information, see the “Using the debug autoqos Command” section on page 36-18.

To disable auto-QoS on an interface, use the `no auto qos voip` interface configuration command. When you enter this command, the switch changes the auto-QoS settings to the standard-QoS default settings for that interface.

To disable auto-QoS on the switch, use the `no auto qos voip` interface configuration command on all interfaces on which auto-QoS is enabled. When you enter this command on the last interface on which auto-QoS is enabled, the switch disables QoS and enables pass-through mode.

This example shows how to enable auto-QoS and to trust the QoS labels in incoming packets when the device connected to Fast Ethernet interface 0/1 is detected as a Cisco IP phone:

```bash
Switch(config)# interface fastethernet0/1
Switch(config-if)# auto qos voip cisco-phone
```

This example shows how to enable auto-QoS and to trust the QoS labels in incoming packets when the switch or router connected to Gigabit Ethernet interface 0/1 is a trusted device:

```bash
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# auto qos voip trust
```
Displaying Auto-QoS Information

To display the initial auto-QoS configuration, use the `show auto qos [interface [interface-id]]` privileged EXEC command. To display any user changes to that configuration, use the `show running-config` privileged EXEC command. You can compare the `show auto qos` and the `show running-config` command output to identify the user-defined QoS settings.

To display information about the QoS configuration that might be affected by auto-QoS, use one of these commands:

- `show mls qos`
- `show mls qos map cos-dscp`
- `show mls qos interface [interface-id] [buffers | queueing]`

For more information about these commands, refer to the command reference for this release.
Auto-QoS Configuration Example

This section describes how you could implement auto-QoS in a network, as shown in Figure 28-8.

Figure 28-8  Auto-QoS Configuration Example Network

The intelligent wiring closets in Figure 28-8 are composed of Catalyst 2950 switches running the enhanced software image (EI) and Catalyst 3550 switches. The object of this example is to prioritize the VoIP traffic over all other traffic. To do so, enable auto-QoS on the switches at the edge of the QoS domains in the wiring closets.

Note

You should not configure any standard QoS commands before entering the auto-QoS commands. You can fine-tune the QoS configuration, but we recommend that you do so only after the auto-QoS configuration is completed.
Beginning in privileged EXEC mode, follow these steps to configure the switch at the edge of the QoS domain to prioritize the VoIP traffic over all other traffic:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> debug autoqos</td>
<td>Enable debugging for auto-QoS. When debugging is enabled, the switch displays the QoS configuration that is automatically generated when auto-QoS is enabled.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong> cdp enable</td>
<td>Enable CDP globally. By default, it is enabled.</td>
</tr>
<tr>
<td><strong>Step 4</strong> interface fastethernet0/3</td>
<td>Enter interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 5</strong> auto qos voip cisco-phone</td>
<td>Enable auto-QoS on the interface, and specify that the interface is connected to a Cisco IP phone. The QoS labels of incoming packets are trusted only when the IP phone is detected.</td>
</tr>
<tr>
<td><strong>Step 6</strong> interface fastethernet0/5</td>
<td>Enter interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 7</strong> auto qos voip cisco-phone</td>
<td>Enable auto-QoS on the interface, and specify that the interface is connected to a Cisco IP phone.</td>
</tr>
<tr>
<td><strong>Step 8</strong> interface fastethernet0/7</td>
<td>Enter interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 9</strong> auto qos voip cisco-phone</td>
<td>Enable auto-QoS on the interface, and specify that the interface is connected to a Cisco IP phone.</td>
</tr>
<tr>
<td><strong>Step 10</strong> interface gigabitethernet0/1</td>
<td>Enter interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 11</strong> auto qos voip trust</td>
<td>Enable auto-QoS on the interface, and specify that the interface is connected to a trusted router or switch.</td>
</tr>
<tr>
<td><strong>Step 12</strong> end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 13</strong> show auto qos</td>
<td>Verify your entries. This command displays the auto-QoS configuration that is initially applied; it does not display any user changes to the configuration that might be in effect. For information about the QoS configuration that might be affected by auto-QoS, see the “Displaying Auto-QoS Information” section on page 26-12.</td>
</tr>
<tr>
<td><strong>Step 14</strong> copy running-config startup-config</td>
<td>Save the auto qos voip interface configuration commands and the generated auto-QoS configuration in the configuration file.</td>
</tr>
</tbody>
</table>

## Configuring Standard QoS

Before configuring standard QoS, you must have a thorough understanding of these items:

- The types of applications used and the traffic patterns on your network.
- Traffic characteristics and needs of your network. Is the traffic bursty? Do you need to reserve bandwidth for voice and video streams?
- Bandwidth requirements and speed of the network.
- Location of congestion points in the network.
These sections describe how to configure standard QoS on your switch:

- Default Standard QoS Configuration, page 28-25
- Standard QoS Configuration Guidelines, page 28-26
- Enabling QoS Globally, page 28-28
- Configuring Classification By Using Port Trust States, page 28-29
- Configuring a QoS Policy, page 28-35
- Configuring DSCP Maps, page 28-51
- Configuring Egress Queues on Gigabit-Capable Ethernet Ports, page 28-57
- Configuring Egress Queues on 10/100 Ethernet Ports, page 28-64

**Default Standard QoS Configuration**

Table 28-4  shows the default standard QoS configuration when QoS is disabled.

<table>
<thead>
<tr>
<th>Port Type</th>
<th>QoS State</th>
<th>Egress traffic (DSCP and CoS Value)</th>
<th>Queue</th>
<th>Queue Weights</th>
<th>Tail-drop Thresholds</th>
<th>CoS Mapping to Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gigabit-capable Ethernet ports</td>
<td>Disabled</td>
<td>Pass through.</td>
<td>All of the queue RAM is allocated to queue 1 (no expedite queue).</td>
<td>–</td>
<td>100%, 100% WRED is disabled.</td>
<td>All CoS values map to queue 1.</td>
</tr>
<tr>
<td>10/100 Ethernet ports</td>
<td>Disabled</td>
<td>Pass through.</td>
<td>Each of the eight minimum-reserve levels have a buffer size of 100 packets. The queue selects the level.</td>
<td>–</td>
<td>–</td>
<td>All CoS values map to queue 1.</td>
</tr>
</tbody>
</table>

When QoS is disabled, there is no concept of trusted or untrusted ports because the packets are not modified (the CoS, DSCP, and IP precedence values in the packet are not changed).

Table 28-5  shows the default standard QoS configuration without any further configuration when QoS is enabled.
Configuring Standard QoS

The default port CoS value is 0.
The default port trust state on all ports is untrusted.
No policy maps are configured.
No policers are configured.
The default CoS-to-DSCP map is shown in Table 28-6 on page 28-52.
The default IP-precedence-to-DSCP map is shown in Table 28-7 on page 28-52.
The default DSCP-to-CoS map is shown in Table 28-8 on page 28-54.
The default DSCP-to-DSCP-mutation map is a null map, which maps an incoming DSCP value to the same DSCP value.
The default policed-DSCP map is a null map, which maps an incoming DSCP value to the same DSCP value (no markdown).
The default DSCP-to-switch-priority map maps DSCPs 0 to 15 to priority 0, DSCPs 16 to 31 to priority 1, DSCPs 32 to 47 to priority 2, and DSCPs 48 to 63 to priority 3.

**Standard QoS Configuration Guidelines**

Before beginning the QoS configuration, you should be aware of this information:

- You must disable the IEEE 802.3X flowcontrol on all ports before enabling QoS on the switch. To disable it, use the `flowcontrol receive off` and `flowcontrol send off` interface configuration commands.

- If you have EtherChannel ports configured on your switch, you must configure QoS classification, policing, mapping, and queuing on the individual physical ports that comprise the EtherChannel. You must decide whether the QoS configuration should match on all ports in the EtherChannel.

- You can classify traffic on an ingress physical port or on a per-ingress-port per-VLAN basis. You cannot classify traffic at the switch virtual interface level.

### Table 28-5 Default Standard QoS Configuration when QoS is Enabled

<table>
<thead>
<tr>
<th>Port Type</th>
<th>QoS State</th>
<th>Egress traffic (DSCP and CoS Value)</th>
<th>Queue</th>
<th>Queue Weights</th>
<th>Tail-drop Thresholds</th>
<th>CoS Mapping to Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gigabit-capable Ethernet ports</td>
<td>Enabled (no policing)</td>
<td>DSCP=0 CoS=0 (0 means best-effort delivery.)</td>
<td>Four queues are available (no expedite queue).</td>
<td>Each queue has the same weight.</td>
<td>100%, 100% WRED is disabled.</td>
<td>0, 1: queue 1 2, 3: queue 2 4, 5: queue 3 6, 7: queue 4</td>
</tr>
<tr>
<td>10/100 Ethernet ports</td>
<td>Enabled (no policing)</td>
<td>DSCP=0 CoS=0 (0 means best-effort delivery.)</td>
<td>Each of the eight minimum-reserve levels have a buffer size of 100 packets. The queue selects the level.</td>
<td>Each queue has the same weight.</td>
<td>–</td>
<td>0, 1: queue 1 2, 3: queue 2 4, 5: queue 3 6, 7: queue 4</td>
</tr>
</tbody>
</table>
Only one ACL per class map and only one **match** class-map configuration command per class map are supported. The ACL can have multiple access control entries, which are commands that match fields against the contents of the packet.

When classifying traffic on a per-port per-VLAN basis, you must use the **match-all** keyword with the **class-map** global configuration command. For more information, see the “Classifying Traffic on a Per-Port Per-VLAN Basis by Using Class Maps” section on page 28-41.

The switch has only 256 VLAN labels (a few are always used internally for defaults), which are shared between VLAN maps and per-port per-VLAN policing. If a large number of VLANs are used in class maps and either different ACL actions are performed on them or they have different VLAN maps applied, the available VLAN labels might be insufficient. As a consequence, the TCAM entries are not programmed, and the feature does not work. Use the **show tcam qos team-id port-labels vlan-labels** privileged EXEC command to display how many VLAN labels are in use by this QoS feature.

It is not possible to match IP fragments against configured IP extended ACLs to enforce QoS. IP fragments are sent as best-effort. IP fragments are denoted by fields in the IP header.

You can match IP options against configured IP extended ACLs to enforce QoS. These packets are sent to the CPU and processed by software. IP options are denoted by fields in the IP header.

You can configure a policer on an ingress or egress physical port; you can configure a per-port per-VLAN policer only on an ingress port (specifies the bandwidth limits for the traffic on a per-VLAN basis, for a given port). You cannot police at the switch virtual interface level.

You cannot configure per-port per-VLAN policing on routed ports or on virtual (logical) interfaces. It is supported only on an ingress port configured as a trunk or as a static-access port.

The switch does not support per-VLAN QoS or VLAN QoS policing across the entire switch.

Use only the **match ip dscp dscp-list** class-map configuration command in a policy map that is attached to an egress interface.

You cannot classify traffic by using a port trust state (for example, **mls qos trust [cos | dscp | ip-precedence]** and by using a policy map (for example, **service-policy input policy-map-name**) at the same time on an interface. These commands are mutually exclusive. The last one configured overwrites the previous configuration.

You cannot use the **service-policy** interface configuration command to attach policy maps that contain these elements to an egress interface:

- **set** or **trust** policy-map class configuration commands. Instead, you can use the **police** policy-map class configuration command to mark down (reduce) the DSCP value at the egress interface.
- Access control list (ACL) classification.
- Per-port per-VLAN classification.

The only match criterion in a policy map that can be attached to an egress interface is the **match ip dscp dscp-list** class-map configuration command.

You can create an aggregate policer that is shared by multiple traffic classes within the same policy map. However, you cannot use the aggregate policer across different policy maps or interfaces.

All ingress QoS processing actions apply to control traffic (such as spanning-tree bridge protocol data units [BPDUs] and routing update packets) that the switch receives.
Layer 3 QoS ACLs and other QoS features related to Layer 3 information are not supported on tunnel ports. MAC-based QoS is supported on tunnel ports. When applied to trunk ports, Layer 3 QoS ACLs do not work for VLANs that include tunnel ports.

Do not use the `show policy-map interface` privileged EXEC command to display classification information for incoming traffic. The `interface` keyword is not supported, and you should ignore the statistics shown in the display. Instead, you should specify the DSCPs to be monitored by using the `mls qos monitor dscp dscp1 ... dscp8` interface configuration command, and then you should use the `show mls qos interface interface-id statistics` privileged EXEC command. For more information about these commands, refer to the command reference for this release.

**Enabling QoS Globally**

By default, QoS is disabled on the switch, which means that the switch offers best-effort service to each packet regardless of the packet contents or size. All CoS values map to egress queue 1 with both tail-drop thresholds set to 100 percent of the total queue size for Gigabit-capable Ethernet ports. On 10/100 Ethernet ports, all CoS values map to egress queue 1, which uses minimum-reserve level 1 and can hold up to 100 packets. When the buffer is full, packets are dropped.

Beginning in privileged EXEC mode, follow these steps to enable QoS:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td><code>interface range port-range</code></td>
<td>Enter interface configuration mode, and execute a command on multiple interfaces.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>You can define up to five interface ranges with a single command, with each range separated by a comma.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All interfaces in a range must be the same type; that is, all Fast Ethernet ports or all Gigabit Ethernet ports.</td>
</tr>
<tr>
<td>3</td>
<td><code>flowcontrol receive off</code></td>
<td>Disable flowcontrol on all interfaces.</td>
</tr>
<tr>
<td></td>
<td><code>flowcontrol send off</code></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><code>exit</code></td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>5</td>
<td><code>mls qos</code></td>
<td>Enable QoS globally.</td>
</tr>
<tr>
<td>6</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>7</td>
<td><code>show mls qos</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>8</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

After QoS is enabled, the default settings are as shown in Table 28-4 on page 28-25.

To disable QoS, use the `no mls qos` global configuration command.
Configuring Classification By Using Port Trust States

These sections describe how to classify incoming traffic by using port trust states:

- Configuring the Trust State on Ports within the QoS Domain, page 28-29
- Configuring the CoS Value for an Interface, page 28-31
- Configuring a Trusted Boundary to Ensure Port Security, page 28-32
- Enabling Pass-Through Mode, page 28-33
- Configuring the DSCP Trust State on a Port Bordering Another QoS Domain, page 28-34

Configuring the Trust State on Ports within the QoS Domain

Packets entering a QoS domain are classified at the edge of the QoS domain. When the packets are classified at the edge, the switch port within the QoS domain can be configured to one of the trusted states because there is no need to classify the packets at every switch within the QoS domain. Figure 28-9 shows a sample network topology.

Figure 28-9 Port Trusted States within the QoS Domain
Beginning in privileged EXEC mode, follow these steps to configure the port to trust the classification of the traffic that it receives:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>mls qos</td>
<td>Enable QoS globally.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to be trusted. Valid interfaces include physical interfaces.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
</tr>
<tr>
<td>mls qos trust [cos</td>
<td>dscp</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td></td>
</tr>
<tr>
<td>show mls qos interface</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td></td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return a port to its untrusted state, use the no mls qos trust interface configuration command.

For information on how to change the default CoS value, see the “Configuring the CoS Value for an Interface” section on page 28-31. For information on how to configure the CoS-to-DSCP map, see the “Configuring the CoS-to-DSCP Map” section on page 28-52.
Configuring the CoS Value for an Interface

QoS assigns the CoS value specified with the mls qos cos interface configuration command to untagged frames received on trusted and untrusted ports.

Beginning in privileged EXEC mode, follow these steps to define the default CoS value of a port or to assign the default CoS to all incoming packets on the port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 mls qos</td>
<td>Enable QoS globally.</td>
</tr>
<tr>
<td>Step 3 interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to be trusted. Valid interfaces include physical interfaces.</td>
</tr>
<tr>
<td>Step 4 mls qos cos {default-cos</td>
<td>override} Configure the default CoS value for the port.</td>
</tr>
<tr>
<td></td>
<td>• For default-cos, specify a default CoS value to be assigned to a port. If the port is CoS trusted and packets are untagged, the default CoS value becomes the CoS value for the packet. The CoS range is 0 to 7. The default is 0.</td>
</tr>
<tr>
<td></td>
<td>• Use the override keyword to override the previously configured trust state of the incoming packets and to apply the default port CoS value to all incoming packets. By default, CoS override is disabled. Use the override keyword when all incoming packets on certain ports deserve higher or lower priority than packets entering from other ports. Even if a port was previously set to trust DSCP, CoS, or IP precedence, this command overrides the previously configured trust state, and all the incoming CoS values are assigned the default CoS value configured with this command. If an incoming packet is tagged, the CoS value of the packet is modified with the default CoS of the port at the ingress port.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 show mls qos interface</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the no mls qos cos {default-cos | override} interface configuration command.
Configuring a Trusted Boundary to Ensure Port Security

In a typical network, you connect a Cisco IP phone to a switch port as shown in Figure 28-9 on page 28-29. Traffic sent from the telephone to the switch is typically marked with a tag that uses the 802.1Q header. The header contains the VLAN information and the class of service (CoS) 3-bit field, which determines the priority of the packet. For most Cisco IP phone configurations, the traffic sent from the telephone to the switch is trusted to ensure that voice traffic is properly prioritized over other types of traffic in the network. By using the `mls qos trust cos` interface configuration command, you can configure the switch port to which the telephone is connected to trust the CoS labels of all traffic received on that port.

In some situations, you also might connect a PC or workstation to the IP phone. In this case, you can use the `switchport priority extend cos` interface configuration command to configure the telephone through the switch CLI to override the priority of the traffic received from the PC. With this command, you can prevent a PC from taking advantage of a high-priority data queue.

However, if a user bypasses the telephone and connects the PC directly to the switch, the CoS labels generated by the PC are trusted by the switch (because of the trusted CoS setting) and can allow misuse of high-priority queues. The trusted boundary feature solves this problem by using the CDP to detect the presence of a Cisco IP phone (such as the Cisco IP Phone 7910, 7935, 7940, and 7960) on a switch port. If the telephone is not detected, the trusted boundary feature disables the trusted setting on the switch port and prevents misuse of a high-priority queue.

Beginning in privileged EXEC mode, follow these steps to enable trusted boundary on a port:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>mls qos</td>
<td>Enable QoS globally.</td>
</tr>
<tr>
<td>cdp run</td>
<td>Enable CDP globally. By default, CDP is enabled.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface connected to the IP phone. Valid interfaces include physical interfaces.</td>
</tr>
<tr>
<td>cdp enable</td>
<td>Enable CDP on the interface. By default, CDP is enabled.</td>
</tr>
<tr>
<td>mls qos trust cos</td>
<td>Configure the interface to trust the CoS value in received traffic. By default, the port is not trusted.</td>
</tr>
<tr>
<td>mls qos trust device cisco-phone</td>
<td>Specify that the Cisco IP phone is a trusted device. You cannot enable both trusted boundary and auto-QoS (auto qos voip interface configuration command) at the same time; they are mutually exclusive.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show mls qos interface</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable the trusted boundary feature, use the `no mls qos trust device` interface configuration command.
Enabling Pass-Through Mode

You can use the pass-through mode to enable the CoS and DSCP setting to be independent for packets that contain both values. Use the pass-through mode when you do not want the other value (CoS or DSCP) to be modified when using the `mls qos trust [cos | dscp]` interface configuration command.

By default, in software releases earlier than Release 12.1(11)EA1, if you configure the interface to trust the DSCP, the switch does not modify the DSCP field of the IP packet. However, the switch modifies the CoS value of the packet according to the DSCP-to-CoS map. If you configure the interface to trust the CoS, the switch does not modify the CoS field of the packet. However, the switch modifies the DSCP according to the CoS-to-DSCP map if the packet is an IP packet.

In Release 12.1(11)EA1 or later, you configure the interface for pass-through mode. The interface trusts the DSCP, and the switch sends the packet without modifying the CoS value (the DSCP-to-CoS map is ignored). Otherwise, the interface trusts the CoS, and the switch sends the packet without modifying the DSCP value. The CoS-to-DSCP map is ignored.

Beginning in privileged EXEC mode, follow these steps to enable pass-through mode on an interface:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface on which pass-through mode is enabled. Valid interfaces include physical interfaces.</td>
</tr>
<tr>
<td>3</td>
<td>mls qos trust cos pass-through dscp</td>
<td>Enable pass-through mode. The interface is configured to trust the CoS value of the incoming packets. The switch does not modify the DSCP value.</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mls qos trust dscp pass-through cos</td>
<td>Enable pass-through mode. The interface is configured to trust the DSCP value of the incoming packets. The switch does not modify the CoS value.</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>show mls qos interface [interface-id]</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable pass-through mode, use the `no mls qos trust cos pass-through dscp` or the `no mls qos trust dscp pass-through cos` interface configuration command.

If you configure the `mls qos trust [cos pass-through dscp | dscp pass-through cos]` interface configuration command and then configure the `mls qos trust [cos | dscp]` interface configuration command, pass-through mode is disabled.

**Note**

If you configure an interface for DSCP pass-through mode by using the `mls qos trust cos pass-through dscp` interface configuration command and apply the DSCP-to-DSCP mutation map to the same interface, the DSCP value changes according to the mutation map.
Configuring the DSCP Trust State on a Port Bordering Another QoS Domain

If you are administering two separate QoS domains between which you want to implement QoS features for IP traffic, you can configure the switch ports bordering the domains to a DSCP-trusted state as shown in Figure 28-10. Then the receiving port accepts the DSCP-trusted value and avoids the classification stage of QoS. If the two domains use different DSCP values, you can configure the DSCP-to-DSCP-mutation map to translate a set of DSCP values to match the definition in the other domain.

Figure 28-10 DSCP-Trusted State on a Port Bordering Another QoS Domain

Beginning in privileged EXEC mode, follow these steps to configure the DSCP-trusted state on a port and modify the DSCP-to-DSCP-mutation map. To ensure a consistent mapping strategy across both QoS domains, you must perform this procedure on the ports in both domains:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>mls qos</td>
<td>Enable QoS on the switch.</td>
</tr>
<tr>
<td>3</td>
<td>mls qos map dscp-mutation</td>
<td>Modify the DSCP-to-DSCP-mutation map.</td>
</tr>
<tr>
<td></td>
<td>dscp-mutation-name in-dscp to out-dscp</td>
<td>The default DSCP-to-DSCP-mutation map is a null map, which maps an incoming DSCP value to the same DSCP value.</td>
</tr>
<tr>
<td></td>
<td>Specify the mutation map name. You can create more than one map by specifying a new name.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For in-dscp, enter up to eight DSCP values separated by spaces. Then enter the to keyword.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For out-dscp, enter a single DSCP value. The DSCP range is 0 to 63.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to be trusted. Valid interfaces include physical interfaces.</td>
</tr>
<tr>
<td>5</td>
<td>mls qos trust dscp</td>
<td>Configure the ingress port as a DSCP-trusted port.</td>
</tr>
</tbody>
</table>
Chapter 28  Configuring QoS

Configuring Standard QoS

To return a port to its non-trusted state, use the `no mls qos trust` interface configuration command. To return to the default DSCP-to-DSCP-mutation map values, use the `no mls qos map dscp-mutation dscp-mutation-map-name` global configuration command.

This example shows how to configure Gigabit Ethernet port 0/2 to the DSCP-trusted state and to modify the DSCP-to-DSCP-mutation map (named `gi0/2-mutation`) so that incoming DSCP values 10 to 13 are mapped to DSCP values 30:

```
Switch# configure terminal
Switch(config)# mls qos map dscp-mutation gi0/2-mutation 10 11 12 13 to 30
Switch(config)# interface gigabitethernet0/2
Switch(config-if)# mls qos trust dscp
Switch(config-if)# mls qos dscp-mutation gi0/2-mutation
Switch(config-if)# end
```

Configuring a QoS Policy

Configuring a QoS policy typically requires classifying traffic into classes, configuring policies applied to those traffic classes, and attaching policies to interfaces.

For background information, see the “Classification” section on page 28-5 and the “Policing and Marking” section on page 28-8.

These sections how to configure a QoS policy:

- Classifying Traffic by Using ACLs, page 28-36
- Classifying Traffic on a Physical-Port Basis by Using Class Maps, page 28-39
- Classifying Traffic on a Per-Port Per-VLAN Basis by Using Class Maps, page 28-41
- Classifying, Policing, and Marking Traffic by Using Policy Maps, page 28-43
- Classifying, Policing, and Marking Traffic by Using Aggregate Policers, page 28-49

---

**Command Table**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>mls qos dscp-mutation dscp-mutation-name</strong></td>
</tr>
<tr>
<td>Apply the map to the specified ingress DSCP-trusted port. You can apply the map to different Gigabit-capable Ethernet ports. However, on 10/100 Ethernet ports, you can attach only one DSCP-to-DSCP-mutation map to a group of twelve ports. For example, Fast Ethernet ports 0/1 to 0/12 are a group, Fast Ethernet ports 0/13 to 0/24 are a group, Gigabit Ethernet 0/1 is a group, and Gigabit Ethernet 0/2 is a group. When applying a mutation map to any port in a group, all ports in the same group are automatically configured with the same map.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><strong>end</strong></td>
</tr>
<tr>
<td>Return to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td><strong>show mls qos maps dscp-mutation</strong></td>
</tr>
<tr>
<td>Verify your entries.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td><strong>copy running-config startup-config</strong></td>
</tr>
<tr>
<td>(Optional) Save your entries in the configuration file.</td>
<td></td>
</tr>
</tbody>
</table>
Classifying Traffic by Using ACLs

You can classify IP traffic by using IP standard or IP extended ACLs; you can classify non-IP traffic by using Layer 2 MAC ACLs.

Beginning in privileged EXEC mode, follow these steps to create an IP standard ACL for IP traffic:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>mls qos</td>
</tr>
<tr>
<td>Step 3</td>
<td>access-list access-list-number {deny</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show access-lists</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To delete an access list, use the no access-list access-list-number global configuration command.

This example shows how to allow access for only those hosts on the three specified networks. The wildcard bits apply to the host portions of the network addresses. Any host with a source address that does not match the access list statements is rejected.

```
Switch(config)# access-list 1 permit 192.5.255.0 0.0.0.255
Switch(config)# access-list 1 permit 128.88.0.0 0.0.255.255
Switch(config)# access-list 1 permit 36.0.0.0 0.0.0.255
! (Note: all other access implicitly denied)
```
Beginning in privileged EXEC mode, follow these steps to create an IP extended ACL for IP traffic:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>mls qos</td>
<td>Enable QoS on the switch.</td>
</tr>
<tr>
<td>3</td>
<td>access-list access-list-number {deny</td>
<td>permit} protocol source source-wildcard destination destination-wildcard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For access-list-number, enter the access list number. The range is 100 to 199 and 2000 to 2699.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use the permit keyword to permit a certain type of traffic if the conditions are matched. Use the deny keyword to deny a certain type of traffic if conditions are matched.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For protocol, enter the name or number of an IP protocol. Use the question mark (?) to see a list of available protocol keywords.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For source, enter the network or host from which the packet is being sent. You specify this by using dotted decimal notation, by using the any keyword as an abbreviation for source 0.0.0.0 source-wildcard 255.255.255.255, or by using the host keyword for source 0.0.0.0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For source-wildcard, enter the wildcard bits by placing ones in the bit positions that you want to ignore. You specify the wildcard by using dotted decimal notation, by using the any keyword as an abbreviation for source 0.0.0.0 source-wildcard 255.255.255.255, or by using the host keyword for source 0.0.0.0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For destination, enter the network or host to which the packet is being sent. You have the same options for specifying the destination and destination-wildcard as those described by source and source-wildcard.</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Note</strong> When creating an access list, remember that, by default, the end of the access list contains an implicit deny statement for everything if it did not find a match before reaching the end.</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>show access-lists</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To delete an access list, use the `no access-list access-list-number` global configuration command.

This example shows how to create an ACL that permits IP traffic with a DSCP value set to 32 from any source to any destination:

```
Switch(config)# access-list 100 permit ip any any dscp 32
```

This example shows how to create an ACL that permits IP traffic with a precedence value of 5 from a source host at 10.1.1.1 to a destination host at 10.1.1.2:

```
Switch(config)# access-list 100 permit ip host 10.1.1.1 host 10.1.1.2 precedence 5
```
This example shows how to create an ACL that permits PIM traffic with a DSCP set to 32 from any source to a destination group address of 224.0.0.2:

```
Switch(config)# access-list 102 permit pim any 224.0.0.2 dscp 32
```

Beginning in privileged EXEC mode, follow these steps to create a Layer 2 MAC ACL for non-IP traffic:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 mls qos</td>
<td>Enable QoS on the switch.</td>
</tr>
<tr>
<td>Step 3 mac access-list extended name</td>
<td>Create a Layer 2 MAC ACL by specifying the name of the list.</td>
</tr>
<tr>
<td></td>
<td>After entering this command, the mode changes to extended MAC ACL configuration.</td>
</tr>
<tr>
<td>Step 4 {permit</td>
<td>deny} {host src-MAC-addr mask</td>
</tr>
<tr>
<td></td>
<td>• For src-MAC-addr, enter the MAC address of the host from which the packet is being sent. You specify this by using the hexadecimal format (H.H.H), by using the any keyword as an abbreviation for source 0.0.0, source-wildcard 255.255.255, or by using the host keyword for source 0.0.0.</td>
</tr>
<tr>
<td></td>
<td>• For mask, enter the wildcard bits by placing ones in the bit positions that you want to ignore.</td>
</tr>
<tr>
<td></td>
<td>• For dst-MAC-addr, enter the MAC address of the host to which the packet is being sent. You specify this by using the hexadecimal format (H.H.H), by using the any keyword as an abbreviation for source 0.0.0, source-wildcard 255.255.255, or by using the host keyword for source 0.0.0.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For type mask, specify the Ethertype number of a packet with Ethernet II or SNAP encapsulation to identify the protocol of the packet. For type, the range is from 0 to 65535, typically specified in hexadecimal. For mask, enter the don’t care bits applied to the Ethertype before testing for a match.</td>
</tr>
<tr>
<td>Note</td>
<td>When creating an access list, remember that, by default, the end of the access list contains an implicit deny statement for everything if it did not find a match before reaching the end.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 show access-lists [access-list-number</td>
<td>access-list-name]</td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To delete an access list, use the **no mac access-list extended access-list-name** global configuration command.
This example shows how to create a Layer 2 MAC ACL with two permit statements. The first statement allows traffic from the host with MAC address 0001.0000.0001 to the host with MAC address 0002.0000.0001. The second statement allows only Ethertype XNS-IDP traffic from the host with MAC address 0001.0000.0002 to the host with MAC address 0002.0000.0002.

Switch(config)# mac access-list extended maclist1
Switch(config-ext-macl)# permit 0001.0000.0001 0.0.0 0002.0000.0001 0.0.0
Switch(config-ext-macl)# permit 0001.0000.0002 0.0.0 0002.0000.0002 0.0.0 xns-idp
! (Note: all other access implicitly denied)

Classifying Traffic on a Physical-Port Basis by Using Class Maps

You use the class-map global configuration command to name and to isolate a specific traffic flow (or class) from all other traffic. The class map defines the criteria to use to match against a specific traffic flow to further classify it. Match statements can include criterion such as an ACL, IP precedence values, or DSCP values. The match criterion is defined with one match statement entered within the class-map configuration mode.

You cannot configure both port-based classification and VLAN-based classification at the same time.

Note

You can also create class-maps during policy map creation by using the class policy-map configuration command. For more information, see the “Classifying, Policing, and Marking Traffic by Using Policy Maps” section on page 28-43.

Beginning in privileged EXEC mode, follow these steps to create a class map and to define the match criterion to classify traffic on a physical-port basis:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>mls qos</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>access-list access-list-number {deny</td>
</tr>
<tr>
<td>or</td>
<td>access-list access-list-number {deny</td>
</tr>
<tr>
<td>or</td>
<td>mac access-list extended name</td>
</tr>
<tr>
<td>{permit</td>
<td>deny}</td>
</tr>
</tbody>
</table>

Note

When creating an access list, remember that, by default, the end of the access list contains an implicit deny statement for everything if it did not find a match before reaching the end.
### Chapter 28  Configuring QoS

## Configuring Standard QoS

**Step 4**  
**class-map [match-all | match-any]**  
`class-map-name`  

Create a class map, and enter class-map configuration mode.  
By default, no class maps are defined.  
- (Optional) Use the `match-all` keyword to perform a logical-AND of all matching statements under this class map. All match criteria in the class map must be matched.  
- (Optional) Use the `match-any` keyword to perform a logical-OR of all matching statements under this class map. One or more match criteria must be matched.  
- For `class-map-name`, specify the name of the class map.  
If neither the `match-all` or `match-any` keyword is specified, the default is `match-all`.  
**Note** Because only one `match` command per class map is supported, the `match-all` and `match-any` keywords function the same.

**Step 5**  
**match {access-group acl-index-or-name | ip dscp dscp-list | ip precedence ip-precedence-list}**  

Define the match criterion to classify traffic.  
By default, no match criterion is defined.  
Only one match criterion per class map is supported, and only one ACL per class map is supported.  
- For `access-group acl-index-or-name`, specify the number or name of the ACL created in Step 3.  
- For `ip dscp dscp-list`, enter a list of up to eight IP DSCP values to match against incoming packets. Separate each value with a space. The range is 0 to 63.  
- For `ip precedence ip-precedence-list`, enter a list of up to eight IP-precedence values to match against incoming packets. Separate each value with a space. The range is 0 to 7.  
**Note** The only match criterion in a policy map that can be attached to an egress interface is the `match ip dscp dscp-list` class-map configuration command.

**Step 6**  
**end**  
Return to privileged EXEC mode.

**Step 7**  
**show class-map**  
Verify your entries.

**Step 8**  
**copy running-config startup-config**  
(Optional) Save your entries in the configuration file.

To delete an existing class map, use the `no class-map [match-all | match-any] class-map-name` global configuration command. To remove a match criterion, use the `no match {access-group acl-index-or-name | ip dscp | ip precedence}` class-map configuration command.

This example shows how to configure the class map called `class1`. The `class1` has one match criterion, which is access list 103. It permits traffic that matches a DSCP value of 10 from any host to any destination.

```
Switch(config)# access-list 103 permit any any dscp 10
Switch(config)# class-map class1
Switch(config-cmap)# match access-group 103
Switch(config-cmap)# end
```
This example shows how to create a class map called \textit{class2}, which matches incoming traffic with DSCP values of 10, 11, and 12.

\begin{verbatim}
Switch(config)# class-map class2
Switch(config-cmap)# match ip dscp 10 11 12
Switch(config-cmap)# end
\end{verbatim}

This example shows how to create a class map called \textit{class3}, which matches incoming traffic with IP-precedence values of 5, 6, and 7:

\begin{verbatim}
Switch(config)# class-map class3
Switch(config-cmap)# match ip precedence 5 6 7
Switch(config-cmap)# end
\end{verbatim}

\section*{Classifying Traffic on a Per-Port Per-VLAN Basis by Using Class Maps}

You use the \texttt{class-map} global configuration command to name and to isolate a specific traffic flow (or class) from all other traffic. To further classify the traffic flow, the class map defines the matching criteria to use.

To define packet classification on a per-port per-VLAN basis, follow these guidelines:

\begin{itemize}
  \item You must use the \texttt{match-all} keyword with the \texttt{class-map} global configuration command.
  \item Per-port per-VLAN classification is a per-port feature and does not work on redundant links. It is supported only on an ingress port configured as a trunk or as a static-access port.
  \item The class map must have two \texttt{match} commands in this order: one \texttt{match vlan vlan-list} class-map configuration command and one \texttt{match class-map class-map-name} class-map configuration command. The class map specified in the \texttt{match class-map class-map-name} command must be predefined and cannot contain the \texttt{match vlan vlan-list} and the \texttt{match class-map class-map-name} commands.
  \item You cannot configure both port-based classification and VLAN-based classification at the same time. When you configure the \texttt{match vlan vlan-list} command, the class map becomes per-port per-VLAN based. If you configure a policy map that contains both port-based and VLAN-based class maps, the switch rejects the policy map when you attach it to an interface.
  \item With per-port per-VLAN classification, unmatched VLANs are treated similarly to the default class, which means that the unmatched VLANs share the remaining bandwidth from those used by the matched VLAN classes. You cannot modify this default-class behavior. If necessary, you can use VLAN map filters to block these VLANs.
  \item Within a policy map, when you use the \texttt{match vlan vlan-list} command, all other class maps must use the \texttt{match vlan vlan-list} command.
  \item If you want to modify the VLAN list, first remove the previous configuration in the class map by using the \texttt{no match vlan vlan-list} command and the \texttt{no match class-map class-map-name} command. Then reconfigure the class map, and specify the new VLAN list. If the policy map is attached to an interface and you modify the class map by using any other method, the policy map detaches from the interface.
\end{itemize}

\begin{note}
When you use the \texttt{match vlan vlan-list} class-map configuration command, you can enter up to 30 VLAN IDs. When you enter a range of VLANs, such as 10-15, the VLAN range is counted as two VLAN IDs.
\end{note}
You can also create class-maps during policy map creation by using the `class` policy-map configuration command. For more information, see the “Classifying, Policing, and Marking Traffic by Using Policy Maps” section on page 28-43.

Beginning in privileged EXEC mode, follow these steps to create a class map and to define the match criterion to classify traffic on a per-port per-VLAN basis:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>mls qos</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>class-map match-any class-map-name</code></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>`match { access-group acl-index-or-name</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>exit</code></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>class-map match-all class-map-name</code></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td><code>match vlan vlan-list</code></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Configuring Standard QoS

To delete an existing class map, use the `no class-map [match-all | match-any] class-map-name` global configuration command. To remove a match criterion, use the `no match {access-group acl-index-or-name | ip dscp | ip precedence}` class-map configuration command.

This example shows how to configure a class map called `dscp_class` whose match criterion is to match IP DSCP 9. A second class map, called `vlan_class`, matches traffic on VLANs 10, 20 to 30, and 40 to class map `dscp_class`:

```
Switch(config)# class-map match-any dscp_class
Switch(config-cmap)# match ip dscp 9
Switch(config-cmap)# exit
Switch(config)# class-map match-all vlan_class
Switch(config-cmap)# match vlan 10 20-30 40
Switch(config-cmap)# match class-map dscp_class
Switch(config-cmap)# exit
```

### Classifying, Policing, and Marking Traffic by Using Policy Maps

A policy map specifies which traffic class to act on. Actions can include trusting the CoS, DSCP, or IP precedence values in the traffic class; setting a specific CoS, DSCP, or IP precedence value in the traffic class; and specifying the traffic bandwidth limitations for each matched traffic class (policer) and the action to take (marking) when the traffic is out of profile.

A policy map also has these characteristics:

- A policy map can contain multiple class statements, each with different match criteria and policers.
- A separate policy-map class can exist for each type of traffic received through an interface.
- A policy-map trust state supersedes an interface trust state.

Only one policy map per interface per direction is supported. You can apply the same policy map to multiple interfaces and directions.

Beginning in privileged EXEC mode, follow these steps to create a policy map:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>mls qos</code> Enable QoS on the switch.</td>
</tr>
</tbody>
</table>
### Chapter 28      Configuring QoS

#### Configuring Standard QoS

**Step 3**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `access-list access-list-number {deny | permit} source [source-wildcard]` or `access-list access-list-number {deny | permit} protocol source [source-wildcard] destination [destination-wildcard]` or `mac access-list extended access-list name {permit | deny} {source-MAC-addr mask | any | host} {destination-MAC-addr mask | any | host} [ethertype]` | Create an IP standard or extended ACL for IP traffic or a Layer 2 MAC ACL for non-IP traffic, repeating the command as many times as necessary. For more information, see the “Classifying Traffic by Using ACLs” section on page 28-36.

**Note** When creating an access list, remember that, by default, the end of the access list contains an implicit deny statement for everything if it did not find a match before reaching the end.

**Step 4**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `class-map [match-all | match-any] class-map-name` | Create a class map to classify traffic as necessary. For more information, see the “Classifying Traffic on a Physical-Port Basis by Using Class Maps” section on page 28-39 and the “Classifying Traffic on a Per-Port Per-VLAN Basis by Using Class Maps” section on page 28-41.

**Step 5**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `mls qos cos policy-map` | (Optional) Define the CoS value of a port in a policy map. When you enter this command, you must also enter the `trust dscp` policy-map configuration command in Step 8 and the `set cos new-cos` policy-map configuration command in Step 9.

**Step 6**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `policy-map policy-map-name` | Create a policy map by entering the policy map name, and enter policy-map configuration mode.

By default, no policy maps are defined.

The default behavior of a policy map is to set the DSCP to 0 if the packet is an IP packet and to set the CoS to 0 if the packet is tagged. No policing is performed.

**Step 7**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `class class-map-name` | Define a traffic classification, and enter policy-map class configuration mode.

By default, no policy map class-maps are defined.

If a traffic class has already been defined by using the `class-map` global configuration command, specify its name for `class-map-name` in this command.
### Chapter 28 Configuring QoS

#### Configuring Standard QoS

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
|         | trust [cos | dscp | ip-precedence] | Configure the trust state, which selects the value that QoS uses as the source of the internal DSCP value. **Note** This command is mutually exclusive with the set command within the same policy map. If you enter the trust command, then skip Step 7. By default, the port is not trusted. If no keyword is specified when the command is entered, the default is dscp. The keywords have these meanings:  
- **cos**—QoS derives the internal DSCP value by using the received or default port CoS value and the CoS-to-DSCP map.  
- **dscp**—QoS derives the internal DSCP value by using the DSCP value from the ingress packet. For non-IP packets that are tagged, QoS derives the internal DSCP value by using the received CoS value; for non-IP packets that are untagged, QoS derives the internal DSCP value by using the default port CoS value. In either case, the internal DSCP value is derived from the CoS-to-DSCP map. **Note** If you use the mls qos cos policy-map global configuration command, you must use the dscp keyword.  
- **ip-precedence**—QoS derives the internal DSCP value by using the IP precedence value from the ingress packet and the IP-precedence-to-DSCP map. For non-IP packets that are tagged, QoS derives the internal DSCP value by using the received CoS value; for non-IP packets that are untagged, QoS derives the internal DSCP value by using the default port CoS value. In either case, the internal DSCP value is derived from the CoS-to-DSCP map. For more information, see the “Configuring the CoS-to-DSCP Map” section on page 28-52. |

| Step 9 | set {cos new-cos | ip dscp new-dscp | ip precedence new-precedence} | Classify IP traffic by setting a new value in the packet.  
- For **cos new-cos**, enter a new CoS value to be assigned to the classified traffic. The range is 0 to 7. **Note** If you use the mls qos cos policy-map global configuration command, you must use the cos new-cos keyword.  
- For **ip dscp new-dscp**, enter a new DSCP value to be assigned to the classified traffic. The range is 0 to 63.  
- For **ip precedence new-precedence**, enter a new IP-precedence value to be assigned to the classified traffic. The range is 0 to 7. |
### Chapter 28 Configuring QoS

#### Configuring Standard QoS

**Step 10**

```plaintext
police rate-bps burst-byte [exceed-action drop | policed-dscp-transmit]]
```

Define a policer for the classified traffic.

You can configure up to 128 policers on ingress Gigabit-capable Ethernet ports, up to 8 policers on ingress 10/100 Ethernet ports, and up to 8 policers on egress ports.

- For `rate-bps`, specify average traffic rate in bits per second (bps). The range is 8000 to 2000000000.
- For `burst-byte`, specify the normal burst size in bytes. The range is 8000 to 512000000.

**Note** Although the command-line help strings show a large range of values, the `rate-bps` option cannot exceed the configured port speed, and the `burst-byte` option cannot exceed 2000000 bytes. If you enter a larger value, the switch rejects the policy map when you attach it to an interface.

- (Optional) Specify the action to take when the rates are exceeded. Use the `exceed-action drop` keywords to drop the packet. Use the `exceed-action policed-dscp-transmit` keywords to mark down the DSCP value (by using the policed-DSCP map) and send the packet. For more information, see the “Configuring the Policed-DSCP Map” section on page 28-53.

**Step 11**

```plaintext
exit
```

Return to policy map configuration mode.

**Step 12**

```plaintext
exit
```

Return to global configuration mode.

**Step 13**

```plaintext
interface interface-id
```

Enter interface configuration mode, and specify the interface to attach to the policy map.

Valid interfaces include physical interfaces.

**Step 14**

```plaintext
service-policy {input policy-map-name | output policy-map-name}
```

Apply a policy map to the input or output of a particular interface.

Only one policy map per interface per direction is supported.

- Use `input policy-map-name` to apply the specified policy-map to the input of an interface.
- Use `output policy-map-name` to apply the specified policy-map to the output of an interface.

You cannot use the `service-policy` interface configuration command to attach policy maps that contain these elements to an egress interface:

- `set` or `trust` policy-map class configuration commands. Instead, you can use the `police` policy-map class configuration command to mark down (reduce) the DSCP value at the egress interface.
- Access control list (ACL) classification.
- Per-port per-VLAN classification.

The only match criterion in a policy map that can be attached to an egress interface is the `match ip dscp dscp-list` class-map configuration command.

Per-port per-VLAN policing is not supported on routed ports or on virtual (logical) interfaces.
To delete an existing policy map, use the `no policy-map policy-map-name` global configuration command. To delete an existing class map, use the `no class class-map-name policy-map configuration` command. To use the DSCP-to-CoS map to define the CoS value, use the `no mls qos cos policy-map` global configuration command. To return to the default trust state, use the `no trust [cos | dscp | ip-precedence] policy-map configuration` command. To remove an assigned CoS, DSCP, or IP precedence value, use the `no set [cos new-cos | dscp new-dscp | ip precedence new-precedence] policy-map configuration command. To remove an existing policer, use the `no police rate-bps burst-byte [exceed-action {drop | policed-dscp-transmit}] policy-map configuration command. To remove the policy map and interface association, use the `no service-policy {input policy-map-name | output policy-map-name} interface configuration command.

This example shows how to create a policy map and attach it to an ingress interface. In the configuration, the IP standard ACL permits traffic from network 10.1.0.0. For traffic matching this classification, the DSCP value in the incoming packet is trusted. If the matched traffic exceeds an average traffic rate of 48000 bps and a normal burst size of 8000 bytes, its DSCP is marked down (based on the policed-DSCP map) and sent:

```
Switch(config)# access-list 1 permit 10.1.0.0 0.0.255.255
Switch(config)# class-map ipclass1
Switch(config-cmap)# match access-group 1
Switch(config-cmap)# exit
Switch(config)# policy-map flow1t
Switch(config-pmap)# class ipclass1
Switch(config-pmap-c)# trust dscp
Switch(config-pmap-c)# police 48000 8000 exceed-action policed-dscp-transmit
Switch(config-pmap-c)# exit
Switch(config-pmap)# exit
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# service-policy input flow1t
```

This example shows how to create a policy map and attach it to an ingress interface. In the configuration, the IP extended ACL permits TCP traffic with an IP precedence of 4 from any host destined for the host at 224.0.0.5. For traffic matching this classification, the DSCP value in the incoming packet is set to 63.

```
Switch(config)# access-list 104 permit tcp any host 224.0.0.5 precedence 4
Switch(config)# class-map ipclass1
Switch(config-cmap)# match access-group 104
Switch(config-cmap)# exit
Switch(config)# policy-map ip104
Switch(config-pmap)# class ipclass1
Switch(config-pmap-c)# set ip dscp 63
Switch(config-pmap-c)# exit
Switch(config-pmap)# exit
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# service-policy input ip104
```
This example shows how to create a Layer 2 MAC ACL with two permit statements and attach it to an ingress interface. The first permit statement allows traffic from the host with MAC address 0001.0000.0001 destined for the host with MAC address 0002.0000.0001. The second permit statement allows only Ethertype XNS-IDP traffic from the host with MAC address 0001.0000.0002 destined for the host with MAC address 0002.0000.0002.

```
Switch(config)# mac access-list extended maclist1
Switch(config-ext-mac)# permit 0001.0000.0001 0.0.0 0002.0000.0001 0.0.0
Switch(config-ext-mac)# permit 0001.0000.0002 0.0.0 0002.0000.0002 0.0.0 xns-idp
Switch(config-ext-mac)# exit
Switch(config)# mac access-list extended maclist2
Switch(config-ext-mac)# permit 0001.0000.0003 0.0.0 0002.0000.0003 0.0.0
Switch(config-ext-mac)# permit 0001.0000.0004 0.0.0 0002.0000.0004 0.0.0 aarp
Switch(config-ext-mac)# exit
Switch(config)# class-map macclass1
Switch(config-cmap)# match access-group maclist1
Switch(config-cmap)# exit
Switch(config)# class-map macclass2
Switch(config-cmap)# match access-group maclist2
Switch(config-cmap)# exit
Switch(config)# policy-map macpolicy1
Switch(config-pmap)# class macclass1
Switch(config-pmap-c)# set ip dscp 63
Switch(config-pmap-c)# exit
Switch(config-pmap)# class macclass2
Switch(config-pmap-c)# set ip dscp 45
Switch(config-pmap-c)# exit
Switch(config-pmap)# exit
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# mls qos trust cos
Switch(config-if)# service-policy input macpolicy1
```

This example shows how to create a policy map that contains per-port per-VLAN classification and attach it to an ingress interface. A class map, called `vlan_class`, matches traffic received on VLANs 10, 20 to 30, and 40 that contains IP DSCP 9 (defined in class map `dscp_class`). If the specified average traffic rates and the burst sizes are exceeded, the switch drops the packet.

```
Switch(config)# class-map match-any dscp_class
Switch(config-cmap)# match ip dscp 9
Switch(config-cmap)# exit
Switch(config)# class-map match-all vlan_class
Switch(config-cmap)# match vlan 10 20-30 40
Switch(config-cmap)# match class-map dscp_class
Switch(config-cmap)# exit
Switch(config)# policy-map policymap2
Switch(config-pmap)# class vlan_class
Switch(config-pmap-c)# police 80000 8000 exceed-action drop
Switch(config-pmap-c)# exit
Switch(config-pmap)# exit
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# service-policy input policymap2
```

This example shows how to create a policy map that defines the CoS value for a port and how to attach it to an ingress interface. A class map, called `class1`, matches traffic received on VLANs 10, 20 to 30, and 40.

```
Switch (config)# mls qos cos policy-map
Switch (config)# class-map match-all class1
Switch (config-cmap)# match vlan 10 20-30 40
Switch (config-cmap)# match class-map some_class
Switch (config-cmap)# exit
Switch (config)# policy-map policymap1
Switch (config-pmap)# class class1
```
Switch (config-pmap-c)# trust dscp
Switch (config-pmap-c)# set cos 3
Switch (config-pmap-c)# exit
Switch (config-pmap)# exit
Switch (config)# interface gigabitethernet0/1
Switch(config-if)# service-policy input policymap

Classifying, Policing, and Marking Traffic by Using Aggregate Policers

By using an aggregate policer, you can create a policer that is shared by multiple traffic classes within the same policy map. However, you cannot use the aggregate policer across different policy maps or interfaces.

Beginning in privileged EXEC mode, follow these steps to create an aggregate policer:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>mls qos</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>mls qos aggregate-police aggregate-policer-name rate-bps burst-byte exceed-action {drop</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>class-map [match-all</td>
</tr>
</tbody>
</table>
### Configuring Standard QoS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 5</strong>&lt;br&gt;<code>policy-map policy-map-name</code></td>
<td>Create a policy map by entering the policy map name, and enter policy-map configuration mode. For more information, see the “Classifying, Policing, and Marking Traffic by Using Policy Maps” section on page 28-43.</td>
</tr>
<tr>
<td><strong>Step 6</strong>&lt;br&gt;<code>class class-map-name</code></td>
<td>Define a traffic classification, and enter policy-map class configuration mode. By default, no policy map class-maps are defined. If a traffic class has already been defined by using the <code>class-map</code> global configuration command, specify its name for <code>class-map-name</code> in this command.</td>
</tr>
<tr>
<td><strong>Step 7</strong>&lt;br&gt;<code>police aggregate aggregate-policer-name</code></td>
<td>Apply an aggregate policer to multiple classes in the same policy map. For <code>aggregate-policer-name</code>, enter the name specified in Step 3.</td>
</tr>
<tr>
<td><strong>Step 8</strong>&lt;br&gt;<code>exit</code></td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 9</strong>&lt;br&gt;<code>interface interface-id</code></td>
<td>Enter interface configuration mode, and specify the interface to attach to the policy map. Valid interfaces include physical interfaces.</td>
</tr>
<tr>
<td><strong>Step 10</strong>&lt;br&gt;`service-policy { input policy-map-name</td>
<td>output policy-map-name }`</td>
</tr>
<tr>
<td><strong>Step 11</strong>&lt;br&gt;<code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 12</strong>&lt;br&gt;<code>show mls qos aggregate-policer [aggregate-policer-name]</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 13</strong>&lt;br&gt;<code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
To remove the specified aggregate policer from a policy map, use the `no police aggregate aggregate-policer-name` policy map configuration mode. To delete an aggregate policer and its parameters, use the `no mls qos aggregate-policer aggregate-policer-name` global configuration command.

This example shows how to create an aggregate policer and attach it to multiple classes within a policy map. In the configuration, the IP ACLs permit traffic from network 10.1.0.0 and from host 11.3.1.1. For traffic coming from network 10.1.0.0, the DSCP in the incoming packets is trusted. For traffic coming from host 11.3.1.1, the DSCP in the packet is changed to 56. The traffic rate from the 10.1.0.0 network and from host 11.3.1.1 is policed. If the traffic exceeds an average rate of 48000 bps and a normal burst size of 8000 bytes, its DSCP is marked down (based on the policed-DSCP map) and sent. The policy map is attached to an ingress interface.

```plaintext
Switch(config)# access-list 1 permit 10.1.0.0 0.0.255.255
Switch(config)# access-list 2 permit 11.3.1.1
Switch(config)# mls qos aggregate-police transmit1 48000 8000 exceed-action policed-dscp-transmit
Switch(config)# class-map ipclass1
Switch(config-cmap)# match access-group 1
Switch(config-cmap)# exit
Switch(config)# class-map ipclass2
Switch(config-cmap)# match access-group 2
Switch(config-cmap)# exit
Switch(config)# policy-map aggflow1
Switch(config-pmap)# class ipclass1
Switch(config-pmap-c)# trust dscp
Switch(config-pmap-c)# police aggregate transmit1
Switch(config-pmap-c)# exit
Switch(config-pmap-c)# class ipclass2
Switch(config-pmap-c)# set ip dscp 56
Switch(config-pmap-c)# police aggregate transmit1
Switch(config-pmap-c)# exit
Switch(config-pmap)# exit
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# service-policy input aggflow1
Switch(config-if)# exit
```

### Configuring DSCP Maps

These sections describe how to configure the DSCP maps:

- Configuring the CoS-to-DSCP Map, page 28-52
- Configuring the IP-Precedence-to-DSCP Map, page 28-52
- Configuring the Policed-DSCP Map, page 28-53
- Configuring the DSCP-to-CoS Map, page 28-54
- Configuring the DSCP-to-DSCP-Mutation Map, page 28-55

All the maps, except the DSCP-to-DSCP-mutation map, are globally defined and are applied to all ports. You can have multiple DSCP-to-DSCP-mutation maps and apply them to different Gigabit-capable Ethernet ports. However, on 10/100 Ethernet ports, you can attach only one DSCP-to-DSCP-mutation map to a group of twelve ports.
Configuring the CoS-to-DSCP Map

You use the CoS-to-DSCP map to map CoS values in incoming packets to a DSCP value that QoS uses internally to represent the priority of the traffic.

Table 28-6 shows the default CoS-to-DSCP map.

### Table 28-6 Default CoS-to-DSCP Map

<table>
<thead>
<tr>
<th>CoS value</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSCP value</td>
<td>0</td>
<td>8</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>40</td>
<td>48</td>
<td>56</td>
</tr>
</tbody>
</table>

If these values are not appropriate for your network, you need to modify them.

Beginning in privileged EXEC mode, follow these steps to modify the CoS-to-DSCP map:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>mls qos map cos-dscp dscp1...dscp8</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show mls qos maps cos-dscp</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default map, use the `no mls qos map cos-dscp` global configuration command.

This example shows how to modify and display the CoS-to-DSCP map:

```
Switch# configure terminal
Switch(config)# mls qos map cos-dscp 10 15 20 25 30 35 40 45
Switch(config)# end
Switch# show mls qos maps cos-dscp
Cos-dscp map:
cos: 0 1 2 3 4 5 6 7

dscp: 10 15 20 25 30 35 40 45
```

Configuring the IP-Precedence-to-DSCP Map

You use the IP-precedence-to-DSCP map to map IP precedence values in incoming packets to a DSCP value that QoS uses internally to represent the priority of the traffic.

Table 28-7 shows the default IP-precedence-to-DSCP map.

### Table 28-7 Default IP-Precedence-to-DSCP Map

<table>
<thead>
<tr>
<th>IP precedence value</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSCP value</td>
<td>0</td>
<td>8</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>40</td>
<td>48</td>
<td>56</td>
</tr>
</tbody>
</table>

If these values are not appropriate for your network, you need to modify them.
Beginning in privileged EXEC mode, follow these steps to modify the IP-precedence-to-DSCP map:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>mls qos map ip-prec-dscp (dscp1\ldots dscp8)</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show mls qos maps ip-prec-dscp</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default map, use the \texttt{no mls qos map ip-prec-dscp} global configuration command.

This example shows how to modify and display the IP-precedence-to-DSCP map:

```bash
Switch# configure terminal
Switch(config)# mls qos map ip-prec-dscp 10 15 20 25 30 35 40 45
Switch(config)# end
Switch# show mls qos maps ip-prec-dscp
IpPrecedence-dscp map:
 ipprec: 0 1 2 3 4 5 6 7

 dscp: 10 15 20 25 30 35 40 45
```

### Configuring the Policed-DSCP Map

You use the policed-DSCP map to mark down a DSCP value to a new value as the result of a policing and marking action.

The default policed-DSCP map is a null map, which maps an incoming DSCP value to the same DSCP value.

Beginning in privileged EXEC mode, follow these steps to modify the policed-DSCP map:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>mls qos map policed-dscp (dscp-list) to (mark-down-dscp)</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show mls qos maps policed-dscp</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default map, use the \texttt{no mls qos map policed-dscp} global configuration command.
This example shows how to map DSCP values 50 to 57 to a marked-down DSCP value of 0:

```
Switch# configure terminal
Switch(config)# mls qos map policed-dscp 50 51 52 53 54 55 56 57 to 0
Switch(config)# end
Switch# show mls qos maps policed-dscp
Policed-dscp map:
 d1 : d2 0 1 2 3 4 5 6 7 8 9

 0 : 00 01 02 03 04 05 06 07 08 09
 1 : 10 11 12 13 14 15 16 17 18 19
 2 : 20 21 22 23 24 25 26 27 28 29
 3 : 30 31 32 33 34 35 36 37 38 39
 4 : 40 41 42 43 44 45 46 47 48 49
 5 : 00 00 00 00 00 00 00 58 59
 6 : 60 61 62 63
```

In this policed-DSCP map, the marked-down DSCP values are shown in the body of the matrix. The $d_1$ column specifies the most-significant digit of the original DSCP; the $d_2$ row specifies the least-significant digit of the original DSCP. The intersection of the $d_1$ and $d_2$ values gives the marked-down value. For example, an original DSCP value of 53 corresponds to a marked-down DSCP value of 0.

### Configuring the DSCP-to-CoS Map

You use the DSCP-to-CoS map to generate a CoS value, which is used to select one of the four egress queues.

Table 28-8 shows the default DSCP-to-CoS map.

**Table 28-8 Default DSCP-to-CoS Map**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CoS value</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

If these values are not appropriate for your network, you need to modify them.

Beginning in privileged EXEC mode, follow these steps to modify the DSCP-to-CoS map:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>mls qos map dscp-cos dscp-list to cos</td>
</tr>
<tr>
<td></td>
<td>• For dscp-list, enter up to eight DSCP values, with each value separated by a space. Then enter the to keyword. The range is 0 to 63.</td>
</tr>
<tr>
<td></td>
<td>• For cos, enter the CoS value to which the DSCP values correspond. The range is 0 to 7.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show mls qos maps dscp-to-cos</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default map, use the **no mls qos map dscp-cos** global configuration command.
This example shows how to map DSCP values 0, 8, 16, 24, 32, 40, 48, and 50 to CoS value 0:

```
Switch# configure terminal
Switch(config)# mls qos map dscp-cos 0 8 16 24 32 40 48 50 to 0
Switch(config)# end
Switch# show mls qos maps dscp-cos
Dscp-cos map:
 d1 : d2 0 1 2 3 4 5 6 7 8 9

 0 : 00 00 00 00 00 00 00 00 01
 1 : 01 01 01 01 01 01 00 02 02
 2 : 02 02 02 02 00 03 03 03 03
 3 : 03 03 00 04 04 04 04 04 04
 4 : 00 05 05 05 05 05 05 05 06
 5 : 00 06 06 06 06 06 06 06 07
 6 : 07 07 07 07
```

**Note**

In this DSCP-to-CoS map, the CoS values are shown in the body of the matrix. The d1 column specifies the most-significant digit of the DSCP; the d2 row specifies the least-significant digit of the DSCP. The intersection of the d1 and d2 values gives the CoS value. For example, in the DSCP-to-CoS map, a DSCP value of 08 corresponds to a CoS value of 0.

### Configuring the DSCP-to-DSCP-Mutation Map

You apply the DSCP-to-DSCP-mutation map to a port at the boundary of a QoS administrative domain. If the two domains have different DSCP definitions between them, use the DSCP-to-DSCP-mutation map to translate a set of DSCP values to match the definition of the other domain.

The default DSCP-to-DSCP-mutation map is a null map, which maps an incoming DSCP value to the same DSCP value.

Beginning in privileged EXEC mode, follow these steps to modify the DSCP-to-DSCP-mutation map:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>configure terminal</strong></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>mls qos map dscp-mutation</strong></td>
</tr>
<tr>
<td></td>
<td><strong>dscp-mutation-name in-dscp to out-dscp</strong></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>interface interface-id</strong></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>mls qos trust dscp</strong></td>
</tr>
</tbody>
</table>
To return to the default map, use the **no mls qos map dscp-mutation dscp-mutation-name** global configuration command.

This example shows how to define the DSCP-to-DSCP-mutation map. All the entries that are not explicitly configured are not modified (remain as specified in the null map):

```plaintext
Switch# configure terminal
Switch(config)# mls qos map dscp-mutation mutation1 1 2 3 4 5 6 7 to 0
Switch(config)# mls qos map dscp-mutation mutation1 8 9 10 11 12 13 to 10
Switch(config)# mls qos map dscp-mutation mutation1 20 21 22 to 20
Switch(config)# mls qos map dscp-mutation mutation1 30 31 32 33 34 to 30
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# mls qos trust dscp
Switch(config-if)# mls qos dscp-mutation mutation1
Switch(config-if)# end
Switch# show mls qos maps dscp-mutation mutation1
Dscp-dscp mutation map:
 mutation1:
 d1 : d2 0 1 2 3 4 5 6 7 8 9

 0 : 00 00 00 00 00 00 00 10 10
 1 : 10 10 10 10 14 15 16 17 18 19
 2 : 20 20 20 23 24 25 26 27 28 29
 3 : 30 30 30 30 35 36 37 38 39
 4 : 40 41 42 43 44 45 46 47 48 49
 5 : 50 51 52 53 54 55 56 57 58 59
 6 : 60 61 62 63
```

**Note**
In this DSCP-to-DSCP-mutation map, the mutated values are shown in the body of the matrix. The d1 column specifies the most-significant digit of the original DSCP; the d2 row specifies the least-significant digit of the original DSCP. The intersection of the d1 and d2 values gives the mutated value. For example, a DSCP value of 12 corresponds to a mutated value of 10.
Configuring Egress Queues on Gigabit-Capable Ethernet Ports

This section describes how to configure the egress queues on Gigabit-capable Ethernet ports. For information on configuring 10/100 Ethernet ports, see “Configuring Egress Queues on 10/100 Ethernet Ports” section on page 28-64.

Depending on the complexity of your network and your QoS solution, you might need to perform all of the tasks in the next sections. You will need to make decisions about these characteristics:

- Which packets are assigned (by CoS value) to each queue?
- How much of the available buffer space (limit) is allotted to each queue?
- What drop percentage thresholds apply to each queue and which DSCP values map to each threshold?
- Is one of the queues the expedite (high-priority) egress queue?
- How much of the available bandwidth is allotted to each queue?

These sections contain this configuration information:

- Mapping CoS Values to Select Egress Queues, page 28-57
- Configuring the Egress Queue Size Ratios, page 28-58
- Configuring Tail-Drop Threshold Percentages, page 28-59
- Configuring WRED Drop Thresholds Percentages, page 28-61
- Configuring the Egress Expedite Queue, page 28-62
- Allocating Bandwidth among Egress Queues, page 28-63

Mapping CoS Values to Select Egress Queues

Beginning in privileged EXEC mode, follow these steps to map CoS ingress values to select one of the egress queues:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>mls qos</td>
<td>Enable QoS on the switch.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the egress Gigabit-capable Ethernet interface.</td>
</tr>
</tbody>
</table>
Chapter 28  Configuring QoS

Configuring Standard QoS

To return the default CoS-to-egress-queue map, use the `no wrr-queue cos-map` interface configuration command.

This example shows how to map CoS values 6 and 7 to queue 1, 4 and 5 to queue 2, 2 and 3 to queue 3, 0 and 1 to queue 4.

Switch(config)# interface gigabitethernet0/1
Switch(config-if)# wrr-queue cos-map 1 6 7
Switch(config-if)# wrr-queue cos-map 2 4 5
Switch(config-if)# wrr-queue cos-map 3 2 3
Switch(config-if)# wrr-queue cos-map 4 0 1

Configuring the Egress Queue Size Ratios

Beginning in privileged EXEC mode, follow these steps to configure the egress queue size ratios:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4 wrr-queue cos-map queue-id cos1 ... cos8</td>
<td>Map assigned CoS values to select one of the egress queues. The default map has these values: CoS value 0, 1 selects queue 1. CoS value 2, 3 selects queue 2. CoS value 4, 5 selects queue 3. CoS value 6, 7 selects queue 4. * For queue-id, specify the ID of the egress queue. The range is 1 to 4, where 4 can be configured as the expedite queue. For more information, see the “Configuring the Egress Expedite Queue” section on page 28-62. * For cos1 ... cos8, specify the CoS values that select a queue. Enter up to eight CoS values. Separate each value with a space. The range is 0 to 7.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 show mls qos interface queueing</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 7 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the default CoS-to-egress-queue map, use the `no wrr-queue cos-map` interface configuration command.

This example shows how to map CoS values 6 and 7 to queue 1, 4 and 5 to queue 2, 2 and 3 to queue 3, 0 and 1 to queue 4.
Chapter 28  Configuring QoS

### Configuring Standard QoS

To return to the default weights, use the `no wrr-queue queue-limit` interface configuration command.

This example shows how to configure the size ratio of the four queues. The ratio of the size allocated for each queue is 1/10, 2/10, 3/10, and 4/10 for queues 1, 2, 3, and 4. (Queue 4 is four times larger than queue 1, twice as large as queue 2, and 1.33 times as large as queue 3.)

```
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# wrr-queue queue-limit 1 2 3 4
```

#### Configuring Tail-Drop Threshold Percentages

Tail drop is the default congestion-avoidance technique on Gigabit-capable Ethernet ports. With tail drop, packets are queued until the thresholds are exceeded. For example, all packets with DSCPs assigned to the first threshold are dropped until the threshold is no longer exceeded. However, packets assigned to a second threshold continue to be queued and sent as long as the second threshold is not exceeded.

You modify the DSCP-to-threshold map to determine which DSCPs are mapped to which threshold ID by using the `wrr-queue dscp-map` interface configuration command. By default, all DSCPs are mapped to threshold 1, and when this threshold is exceeded, all the packets are dropped.

If you use tail-drop thresholds, you cannot use WRED, and vice versa.

Beginning in privileged EXEC mode, follow these steps to configure the tail-drop threshold percentage values on Gigabit-capable Ethernet ports:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 mls qos</td>
<td>Enable QoS on the switch.</td>
</tr>
<tr>
<td>Step 3 interface interface-id</td>
<td>Enter interface configuration mode, and specify the egress Gigabit-capable Ethernet interface.</td>
</tr>
</tbody>
</table>

To return to the default weights, use the `no wrr-queue queue-limit` interface configuration command.
### Step 4

```
 wrr-queue threshold queue-id
 threshold-percentage1
 threshold-percentage2
```

**Purpose**: Configure tail-drop threshold percentages on each egress queue. The default threshold is 100 percent for thresholds 1 and 2.

- **queue-id**: Specify the ID of the egress queue. The range is 1 to 4.
- **threshold-percentage1** and **threshold-percentage2**: Specify the tail-drop threshold percentage values. Separate each value with a space. The range is 1 to 100.

### Step 5

```
 exit
```

**Purpose**: Return to global configuration mode.

### Step 6

```
 interface interface-id
```

**Purpose**: Enter interface configuration mode, and specify the ingress Gigabit-capable Ethernet interface.

### Step 7

```
 wrr-queue dscp-map threshold-id dscp1 ...
dscp8
```

**Purpose**: Map DSCP values to the tail-drop thresholds of the egress queues. By default, all DSCP values are mapped to threshold 1.

- **threshold-id**: Specify the threshold ID of the queue. The range is 1 to 2.
- **dscp1** to **dscp8**: Specify the DSCP values that are mapped to the threshold ID. Enter up to eight DSCP values per command. Separate each value with a space. The range is 0 to 63.

### Step 8

```
 end
```

**Purpose**: Return to privileged EXEC mode.

### Step 9

```
 show running-config
 or
 show mls qos interface interface-id
 queueing
```

**Purpose**: Verify the DSCP-to-threshold map.

### Step 10

```
 show mls qos interface buffers
```

**Purpose**: Verify the thresholds.

### Step 11

```
 copy running-config startup-config
```

**Purpose**: (Optional) Save your entries in the configuration file.

To return to the default thresholds, use the no **wrr-queue threshold queue-id** interface configuration command. To return to the default DSCP-to-threshold map, use the no **wrr-queue dscp-map [threshold-id]** interface configuration command.

This example shows how to configure the tail-drop queue threshold values for queue 1 to 10 percent and 100 percent, for queue 2 to 40 percent and 100 percent, for queue 3 to 60 percent and 100 percent, and for queue 4 to 80 percent and 100 percent on the egress interface (Gigabit Ethernet 0/1). The ingress interface (Gigabit Ethernet 0/2) is configured to trust the DSCP in the incoming packets, to map DSCPs 0, 8, 16, 24, 32, 40, 48, and 56 to threshold 1, and to map DSCPs 10, 20, 30, 40, 50, and 60 to threshold 2:

```
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# switchport mode access
Switch(config-if)# wrr-queue threshold 1 10 100
Switch(config-if)# wrr-queue threshold 2 40 100
Switch(config-if)# wrr-queue threshold 3 60 100
Switch(config-if)# wrr-queue threshold 4 80 100
Switch(config-if)# exit
Switch(config)# interface gigabitethernet0/2
Switch(config-if)# mls qos trust dscp
Switch(config-if)# wrr-queue dscp-map 1 0 8 16 24 32 40 48 56
Switch(config-if)# wrr-queue dscp-map 2 10 20 30 40 50 60
```
As a result of this configuration, when queue 1 is filled above 10 percent, packets with DSCPs 0, 8, 16, 24, 32, 40, 48, and 56 are dropped. The same packets are dropped when queue 2 is filled above 40 percent, queue 3 above 60 percent, and queue 4 above 80 percent. When the second threshold (100 percent) is exceeded, all queues drop packets with DSCPs 10, 20, 30, 40, 50, and 60.

### Configuring WRED Drop Thresholds Percentages

WRED reduces the chances of tail drop by selectively dropping packets when the output interface begins to show signs of congestion. By dropping some packets early rather than waiting until the queue is full, WRED avoids dropping large numbers of packets at once.

All packets with DSCPs assigned to the first threshold are randomly dropped when the first threshold is exceeded. However, packets with DSCPs assigned to the second threshold continue to be queued and sent as long as the second threshold is not exceeded. Each threshold percentage represents where WRED starts to randomly drop packets. By default, WRED is disabled.

If you use WRED, you cannot use tail-drop thresholds, and vice versa.

Beginning in privileged EXEC mode, follow these steps to configure the WRED drop threshold percentage values on Gigabit-capable Ethernet ports:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>mls qos</td>
<td>Enable QoS on the switch.</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the egress Gigabit-capable Ethernet interface.</td>
</tr>
<tr>
<td>Step 4</td>
<td>wrr-queue random-detect max-threshold queue-id threshold-percentage1 threshold-percentage2</td>
<td>Configure WRED drop threshold percentages on each egress queue. The default, WRED is disabled, and no thresholds are configured.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For queue-id, specify the ID of the egress queue. The range is 1 to 4, where queue 4 can be configured as the expedite queue. For more information, see the “Configuring the Egress Expedite Queue” section on page 28-62.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For threshold-percentage1 threshold-percentage2, specify the threshold percentage values. Separate each value with a space. The range is 1 to 100.</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the ingress Gigabit-capable Ethernet interface.</td>
</tr>
<tr>
<td>Step 7</td>
<td>wrr-queue dscp-map threshold-id dscp1 ... dscp8</td>
<td>Map DSCP values to the WRED drop thresholds of the egress queues. By default, all DSCP values are mapped to threshold 1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For threshold-id, specify the threshold ID of the queue. The range is 1 to 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For dscp1 ... dscp8, specify the DSCP values that are mapped to the threshold ID. Enter up to eight DSCP values per command. Separate each value with a space. The range is 0 to 63.</td>
</tr>
</tbody>
</table>
Chapter 28  Configuring QoS

Configuring Standard QoS

To disable WRED, use the **no wrr-queue random-detect max-threshold queue-id** interface configuration command. To return to the default DSCP-to-threshold map, use the **no wrr-queue dscp-map [threshold-id]** interface configuration command.

This example shows how to configure the WRED queue threshold values for queue 1 to 50 percent and 100 percent, for queue 2 to 70 percent and 100 percent, for queue 3 to 50 percent and 100 percent, and for queue 4 to 70 percent and 100 percent on the egress interface (Gigabit Ethernet 0/1). The ingress interface (Gigabit Ethernet 0/2) is configured to trust the DSCP in the incoming packets, to map DSCPs 0, 8, 16, 24, 32, 40, 48, and 56 to threshold 1, and to map DSCPs 10, 20, 30, 40, 50, and 60 to threshold 2.

```
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# wrr-queue random-detect max-threshold 1 50 100
Switch(config-if)# wrr-queue random-detect max-threshold 2 70 100
Switch(config-if)# wrr-queue random-detect max-threshold 3 50 100
Switch(config-if)# wrr-queue random-detect max-threshold 4 70 100
Switch(config-if)# exit
Switch(config)# interface gigabitethernet0/2
Switch(config-if)# mls qos trust dscp
Switch(config-if)# wrr-queue dscp-map 1 0 8 16 24 32 40 48 56
Switch(config-if)# wrr-queue dscp-map 2 10 20 30 40 50 60
```

As a result of this configuration, when the queues 1 and 3 are filled above 50 percent, packets with DSCPs 0, 8, 16, 24, 32, 40, 48, and 56 are randomly dropped. The same packets are randomly dropped when queues 2 and 4 are filled above 70 percent. When the second threshold (100 percent) is exceeded, all queues randomly drop packets with DSCPs 10, 20, 30, 40, 50, and 60.

**Configuring the Egress Expedite Queue**

You can ensure that certain packets have priority over all others by queuing them in the egress expedite queue. WRR services this queue until it is empty before servicing the other queues.

Beginning in privileged EXEC mode, follow these steps to enable the egress expedite queue:

```
Command | Purpose
--------|--------
Step 1 | configure terminal
 | Enter global configuration mode.
Step 2 | mls qos
 | Enable QoS on the switch.
Step 3 | interface interface-id
 | Enter interface configuration mode, and specify the egress Gigabit-capable Ethernet interface.
```
### Configuring Standard QoS

#### Allocating Bandwidth among Egress Queues

You need to specify how much of the available bandwidth is allocated to each queue. The ratio of the weights is the ratio of frequency in which the WRR scheduler dequeues packets from each queue.

Beginning in privileged EXEC mode, follow these steps to allocate bandwidth to each queue:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>mls qos</td>
</tr>
<tr>
<td></td>
<td>Enable QoS on the switch.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Enter interface configuration mode, and specify the egress Gigabit-capable Ethernet interface.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>wrr-queue bandwidth weight1 weight2 weight3 weight4</td>
</tr>
<tr>
<td></td>
<td>Assign WRR weights to the egress queues.</td>
</tr>
<tr>
<td></td>
<td>By default, all the weights are set to 25 (1/4 of the bandwidth is allocated to each queue).</td>
</tr>
<tr>
<td></td>
<td>For weight1 weight2 weight3 weight4, enter the ratio, which determines the ratio of the frequency in which the WRR scheduler dequeues packets. Separate each value with a space. The range is 1 to 65536.</td>
</tr>
<tr>
<td></td>
<td>All four queues participate in the WRR unless the expedite queue (queue 4) is enabled, in which case weight4 is ignored (not used in the ratio calculation). The expedite queue is a priority queue, and it is serviced until empty before the other queues are serviced.</td>
</tr>
<tr>
<td></td>
<td>A weight of 1 means that the minimum bandwidth is allocated for that queue.</td>
</tr>
<tr>
<td></td>
<td>To allocate no bandwidth for a queue, use the wrr-queue cos-map interface configuration command so that the available bandwidth is shared among the remaining queues.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>show mls qos interface queueing</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default bandwidth setting, use the **no wrr-queue bandwidth** interface configuration command.

---

### Allocating Bandwidth among Egress Queues

#### Allocating Bandwidth among Egress Queues

You need to specify how much of the available bandwidth is allocated to each queue. The ratio of the weights is the ratio of frequency in which the WRR scheduler dequeues packets from each queue.

Beginning in privileged EXEC mode, follow these steps to allocate bandwidth to each queue:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>mls qos</td>
</tr>
<tr>
<td></td>
<td>Enable QoS on the switch.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Enter interface configuration mode, and specify the egress Gigabit-capable Ethernet interface.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>wrr-queue bandwidth weight1 weight2 weight3 weight4</td>
</tr>
<tr>
<td></td>
<td>Assign WRR weights to the egress queues.</td>
</tr>
<tr>
<td></td>
<td>By default, all the weights are set to 25 (1/4 of the bandwidth is allocated to each queue).</td>
</tr>
<tr>
<td></td>
<td>For weight1 weight2 weight3 weight4, enter the ratio, which determines the ratio of the frequency in which the WRR scheduler dequeues packets. Separate each value with a space. The range is 1 to 65536.</td>
</tr>
<tr>
<td></td>
<td>All four queues participate in the WRR unless the expedite queue (queue 4) is enabled, in which case weight4 is ignored (not used in the ratio calculation). The expedite queue is a priority queue, and it is serviced until empty before the other queues are serviced.</td>
</tr>
<tr>
<td></td>
<td>A weight of 1 means that the minimum bandwidth is allocated for that queue.</td>
</tr>
<tr>
<td></td>
<td>To allocate no bandwidth for a queue, use the wrr-queue cos-map interface configuration command so that the available bandwidth is shared among the remaining queues.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>show mls qos interface queueing</td>
</tr>
<tr>
<td></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default bandwidth setting, use the **no wrr-queue bandwidth** interface configuration command.
This example shows how to configure the weight ratio of the WRR scheduler running on the egress queues. In this example, four queues are used (no expedite queue), and the ratio of the bandwidth allocated for each queue is $1/(1+2+3+4)$, $2/(1+2+3+4)$, $3/(1+2+3+4)$, and $4/(1+2+3+4)$, which is $1/10$, $1/5$, $3/10$, and $2/5$ for queues 1, 2, 3, and 4.

Switch(config)# interface gigabitethernet0/1
Switch(config-if)# wrr-queue bandwidth 1 2 3 4

**Configuring Egress Queues on 10/100 Ethernet Ports**

This section describes how to configure the egress queues on 10/100 Ethernet ports. For information on configuring Gigabit-capable Ethernet ports, see the "Configuring Egress Queues on Gigabit-Capable Ethernet Ports" section on page 28-57.

Depending on the complexity of your network and your QoS solution, you might need to perform all of the tasks in the next sections. You will need to make decisions about these characteristics:

- Which packets are assigned (by CoS value) to each queue?
- How much of the available buffer space is allotted to each queue?
- Is one of the queues the expedite (high-priority) egress queue?
- How much of the available bandwidth is allotted to each queue?

These sections contain this configuration information:

- Mapping CoS Values to Select Egress Queues, page 28-64
- Configuring the Minimum-Reserve Levels, page 28-65
- Configuring the Egress Expedite Queue, page 28-66
- Allocating Bandwidth among Egress Queues, page 28-67

**Mapping CoS Values to Select Egress Queues**

Beginning in privileged EXEC mode, follow these steps to map CoS ingress values to select one of the egress queues:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>mls qos</td>
<td>Enable QoS on the switch.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the egress 10/100 Ethernet interface.</td>
</tr>
</tbody>
</table>
### Configuring Standard QoS

To return to the default CoS-to-egress-queue map, use the `no wrr-queue cos-map` interface configuration command.

This example shows how to map CoS values 6 and 7 to queue 1, 4 and 5 to queue 2, 2 and 3 to queue 3, and 0 and 1 to queue 4.

```
Switch(config)# interface fastethernet0/1
Switch(config-if)# wrr-queue cos-map 1 6 7
Switch(config-if)# wrr-queue cos-map 2 4 5
Switch(config-if)# wrr-queue cos-map 3 2 3
Switch(config-if)# wrr-queue cos-map 4 0 1
```

### Configuring the Minimum-Reserve Levels

You can configure the buffer size of the minimum-reserve levels on all 10/100 ports and assign the minimum-reserve level to an egress queue on a 10/100 Ethernet port.

Beginning in privileged EXEC mode, follow these steps to configure the egress queue sizes:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>mls qos</code></td>
<td>Enable QoS on the switch.</td>
</tr>
</tbody>
</table>

To return to the default CoS-to-egress-queue map, use the `no wrr-queue cos-map` interface configuration command.

These are the default map values:
- CoS value 0, 1 selects queue 1.
- CoS value 2, 3 selects queue 2.
- CoS value 4, 5 selects queue 3.
- CoS value 6, 7 selects queue 4.

- For `queue-id`, specify the ID of the egress queue. The range is 1 to 4, where 4 can be configured as the expedite queue. For more information, see the “Configuring the Egress Expedite Queue” section on page 28-66.
- For `cos1 ... cos8`, specify the CoS values that select a queue. Enter up to eight CoS values. Separate each value with a space. The range is 0 to 7.

```
Switch(config)# interface fastethernet0/1
Switch(config-if)# wrr-queue cos-map queue-id cos1 ... cos8
```
### Configuring Standard QoS

**To return to the default minimum-reserve buffer size**, use the **no mls qos min-reserve** **min-reserve-level** global configuration command. To return to the default queue selection of the minimum-reserve level, use the **no wrr-queue min-reserve** **queue-id** interface configuration command.

This example shows how to configure minimum-reserve level 5 to 20 packets and to assign minimum-reserve level 5 to egress queue 1 on the Fast Ethernet interface 0/1:

```
Switch(config)# mls qos min-reserve 5 20
Switch(config)# interface fastethernet0/1
Switch(config-if)# wrr-queue min-reserve 1 5
```

### Configuring the Egress Expedite Queue

You can ensure that certain packets have priority over all others by queuing them in the egress expedite queue. WRR services this queue until it is empty before servicing the other queues.
Beginning in privileged EXEC mode, follow these steps to enable the egress expedite queue:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>mls qos</td>
<td>Enable QoS on the switch.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the egress 10/100 Ethernet interface.</td>
</tr>
<tr>
<td>priority-queue out</td>
<td>Enable the egress expedite queue, which is disabled by default.</td>
</tr>
<tr>
<td></td>
<td>When you configure this command, the WRR weight is affected</td>
</tr>
<tr>
<td></td>
<td>because there is one fewer queue participating in WRR. This means that weight4 in the wrr-queue bandwidth command is ignored (not used in the ratio calculation).</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable the egress expedite queue, use the **no priority-queue out** interface configuration command.

**Allocating Bandwidth among Egress Queues**

You need to specify how much of the available bandwidth is allocated to each queue. The ratio of the weights is the ratio of frequency in which the WRR scheduler dequeues packets from each queue.
Beginning in privileged EXEC mode, follow these steps to allocate bandwidth to each queue:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong>&lt;br&gt;configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong>&lt;br&gt;mls qos</td>
<td>Enable QoS on the switch.</td>
</tr>
<tr>
<td><strong>Step 3</strong>&lt;br&gt;interface interface-id</td>
<td>Enter interface configuration mode, and specify the egress 10/100 Ethernet interface.</td>
</tr>
<tr>
<td><strong>Step 4</strong>&lt;br&gt;wrr-queue bandwidth weight1 weight2 weight3 weight4</td>
<td>Assign WRR weights to the egress queues. By default, all the weights are set to 25 (1/4 of the bandwidth is allocated to each queue). For weight1 weight2 weight3 weight4, enter the ratio, which determines the ratio of the frequency in which the WRR scheduler dequeues packets. Separate each value with a space. The range is 1 to 65536. All four queues participate in the WRR unless the expedite queue (queue 4) is enabled, in which case weight4 is ignored (not used in the ratio calculation). The expedite queue is a priority queue, and it is serviced until empty before the other queues are serviced. A weight of 1 means that the minimum bandwidth is allocated for that queue. To allocate no bandwidth for a queue, use the wrr-queue cos-map interface configuration command so that the available bandwidth is shared among the remaining queues.</td>
</tr>
<tr>
<td><strong>Step 5</strong>&lt;br&gt;end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong>&lt;br&gt;show mls qos interface queueing</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 7</strong>&lt;br&gt;copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default bandwidth setting, use the no wrr-queue bandwidth interface configuration command.

This example shows how to configure the weight ratio of the WRR scheduler running on the egress queues. In this example, four queues are used (no expedite queue), and the ratio of the bandwidth allocated for each queue is 1/(1+2+3+4), 2/(1+2+3+4), 3/(1+2+3+4), and 4/(1+2+3+4), which is 1/10, 2/10, 3/10, and 4/10 for queues 1, 2, 3, and 4.

Switch(config)# interface fastethernet0/1
Switch(config-if)# wrr-queue bandwidth 1 2 3 4
Displaying Standard QoS Information

To display standard QoS information, use one or more of the privileged EXEC commands in Table 28-9:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show class-map [class-map-name]</td>
<td>Display QoS class maps, which define the match criteria to classify traffic.</td>
</tr>
<tr>
<td>show mls qos aggregate-policer [aggregate-policer-name]</td>
<td>Display the aggregate policer configuration.</td>
</tr>
<tr>
<td>show mls qos interface [interface-id] [buffers</td>
<td>policers</td>
</tr>
<tr>
<td>show mls qos maps [cos-dscp</td>
<td>dscp-cos</td>
</tr>
<tr>
<td>show policy-map [policy-map-name [class class-map-name]]</td>
<td>Display QoS policy maps, which define classification criteria for incoming traffic.</td>
</tr>
</tbody>
</table>

1. You can define up to 16 DSCP values for which byte or packet statistics are gathered by hardware by using the mls qos monitor {bytes | dscp dscp1 ... dscp8 | packets] interface configuration command and the show mls qos interface statistics privileged EXEC command.

Standard QoS Configuration Examples

This section shows a QoS migration path to help you quickly implement QoS features based on your existing network and planned changes to your network, as shown in Figure 28-11. It contains this information:

- QoS Configuration for the Existing Wiring Closet, page 28-70
- QoS Configuration for the Intelligent Wiring Closet, page 28-71
- QoS Configuration for the Distribution Layer, page 28-72
QoS Configuration for the Existing Wiring Closet

The existing wiring closet in Figure 28-11 consists of Catalyst 3500 XL and 2900 XL switches. These switches are running IOS release 12.0(5)XP or later, which supports the QoS-based IEEE 802.1P CoS values. QoS classifies frames by assigning priority-indexed CoS values to them and gives preference to higher-priority traffic.

Recall that on the Catalyst 3500 XL and 2900 XL switches, you can classify untagged (native) Ethernet frames at the ingress ports by setting a default CoS priority (**switchport priority default** default-priority-id interface configuration command) for each port. For ISL or IEEE 802.1Q frames with tag information, the priority value from the header frame is used. On the Catalyst 3524-PWR XL and 3548 XL switches, you can override this priority with the default value by using the **switchport priority default override** interface configuration command. For Catalyst 3500 XL, 2950, other 2900 XL models that do not have the override feature, the Catalyst 3550-12T switch at the distribution layer can override the 802.1P CoS value by using the **mls qos cos override** interface configuration command.
For the Catalyst 3500 XL and 2900 XL switches, CoS configures each egress port with a normal-priority transmit queue and a high-priority transmit queue, depending on the frame tag or the port information. Frames in the normal-priority queue are forwarded only after frames in the high-priority queue are forwarded. Frames that have 802.1P CoS values of 0 to 3 are placed in the normal-priority transmit queue whereas frames with CoS values of 4 to 7 are placed in the expedite (high-priority) queue.

QoS Configuration for the Intelligent Wiring Closet

The intelligent wiring closet in Figure 28-11 is composed of Catalyst 3550 multilayer switches. One of the switches is connected to a video server, which has an IP address of 172.20.10.16.

The object of this example is to prioritize the video traffic over all other traffic. To do so, a DSCP of 56 is assigned to the video traffic. This traffic is stored in the expedite queue (queue 4), which is serviced until empty before the other queues are serviced. The appropriate CoS value selects queue 4 in the CoS-to-egress-queue map.

Beginning in privileged EXEC mode, follow these steps to configure the switch to prioritize video packets over all other traffic:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>access-list 1 permit 172.20.10.16</td>
<td>Define an IP standard ACL, and permit traffic from the video server at 172.20.10.16.</td>
</tr>
<tr>
<td>Step 3</td>
<td>class-map videoclass</td>
<td>Create a class map called videoclass, and enter class-map configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>match access-group 1</td>
<td>Define the match criterion by matching the traffic specified by access list 1.</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>policy-map videopolicy</td>
<td>Create a policy map called videopolicy, and enter policy-map configuration mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>class videoclass</td>
<td>Specify the class on which to act, and enter policy-map class configuration mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td>set ip dscp 56</td>
<td>For traffic matching ACL 1, set the DSCP of incoming packets to 56.</td>
</tr>
<tr>
<td>Step 9</td>
<td>police 5000000 2000000 exceed-action drop</td>
<td>Define a policer for the classified video traffic to drop traffic that exceeds 5-Mbps average traffic rate with a 2-MB burst size.</td>
</tr>
<tr>
<td>Step 10</td>
<td>exit</td>
<td>Return to policy-map configuration mode.</td>
</tr>
<tr>
<td>Step 11</td>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 12</td>
<td>interface gigabitethernet0/1</td>
<td>Enter interface configuration mode, and specify the ingress interface.</td>
</tr>
<tr>
<td>Step 13</td>
<td>service-policy input videopolicy</td>
<td>Apply the policy to the ingress interface.</td>
</tr>
<tr>
<td>Step 14</td>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 15</td>
<td>interface gigabitethernet0/2</td>
<td>Enter interface configuration mode, and specify the egress interface (to configure the queues).</td>
</tr>
<tr>
<td>Step 16</td>
<td>priority-queue out</td>
<td>Enable the expedite queue.</td>
</tr>
</tbody>
</table>
Standard QoS Configuration Examples

Chapter 28 Configuring QoS

Chapter 28      Configuring QoS

QoS Configuration for the Distribution Layer

This example focuses on the configuration steps for the Catalyst 3550-12G multilayer switch at the
distribution layer (see Figure 28-11). Because the classification was performed by the switches at the
degree of the network, fewer classification steps are needed at the distribution layer switch.

For the connection to the existing wiring closet, Gigabit Ethernet interface 0/1 on the multilayer
switch is configured to trust the received CoS value. In this situation, the default CoS-to-DSCP map on the
multilayer switch is sufficient. For information on the default map settings, see the “Configuring the
CoS-to-DSCP Map” section on page 28-52.

For the connection to the intelligent wiring closet, Gigabit Ethernet interface 0/2 on the multilayer
switch is configured to trust the received DSCP value. The DSCP-to-threshold map also needs to be
configured on this ingress interface so that on the egress interface, WRED can provide congestion
avoidance control. By default, all DSCP values are mapped to threshold 1.

You need to configure several of the switch maps from their default settings. The object of the
configuration is to have only DSCP value 56 sent to the expedite queue (queue 4). The default
CoS-to-egress-queue map is sufficient; however, you need to configure the DSCP-to-CoS map so that
DSCP values 57 to 63 map to CoS 5.

For the egress interface, Gigabit Ethernet interface 0/5, WRR weights need to be configured by using the
wrr-queue bandwidth interface configuration command. WRED needs to be enabled and the threshold
percentages configured for each queue. The bandwidth allocated to each queue must be configured to
determine the ratio of the frequency at which packets are dequeued.

Beginning in privileged EXEC mode, follow these steps to configure the multilayer switch at the
distribution layer:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 17</td>
<td>wr-queue cos-map 4 6 7</td>
</tr>
<tr>
<td>Step 18</td>
<td>end</td>
</tr>
<tr>
<td>Step 19</td>
<td>show class-map videoclass show policy-map videopolicy show mls qos maps [cos-dscp</td>
</tr>
<tr>
<td>Step 20</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

\[ \text{QoS Configuration for the Distribution Layer} \]
### Standard QoS Configuration Examples

#### Step 5
**Command**: `switchport mode trunk`  
**Purpose**: Configure this port as a trunk port.

#### Step 6
**Command**: `exit`  
**Purpose**: Return to global configuration mode.

#### Step 7
**Command**: `interface gigabitethernet0/2`  
**Purpose**: Enter interface configuration mode, and specify the ingress interface connected to the intelligent wiring closet.

#### Step 8
**Command**: `mls qos trust dscp`  
**Purpose**: Classify incoming packets on this port by trusting the packet DSCP value.

#### Step 9
**Command**: `wrr-queue dscp-map threshold-id dscp1 ... dscp8`  
**Purpose**: Map the ingress DSCP values to the WRED thresholds of the egress queues.

- In the default DSCP-to-threshold map, all DSCP values are mapped to threshold 1.
  - For **threshold-id**, specify the threshold ID of the queue. The range is 1 to 2.
  - For **dscp1 ... dscp8**, specify the DSCP values that are mapped to a threshold ID. Enter up to eight DSCP values per command. Separate each value with a space. The DSCP range is 0 to 63.

#### Step 10
**Command**: `switchport mode trunk`  
**Purpose**: Configure this port as a trunk port.

#### Step 11
**Command**: `exit`  
**Purpose**: Return to global configuration mode.

#### Step 12
**Command**: `mls qos map dscp-cos dscp-list to cos`  
**Purpose**: Modify the DSCP-to-CoS map. You can enter up to eight DSCP values separated by spaces in the DSCP-to-CoS map.

- For example, to map DSCP values 57 to 63 to CoS 5, enter:  
  ```
 mls qos map dscp-cos 57 59 60 61 62 63 to 5
  ```

#### Step 13
**Command**: `interface gigabitethernet0/5`  
**Purpose**: Enter interface configuration mode, and specify the egress interface to configure.

#### Step 14
**Command**: `priority-queue out`  
**Purpose**: Enable the expedite queue.

#### Step 15
**Command**: `wrr-queue bandwidth weight1 weight2 weight3 weight4`  
**Purpose**: Configure WRR weights to the egress queues to determine the ratio of the frequency at which packets are dequeued. Separate each value with a space. The weight range is 0 to 65536.

- In this example, to configure the weights so that queue 4 is serviced more frequently than the other queues, enter:  
  ```
 wrr-queue bandwidth 1 2 3 4
  ```
  Because the expedite queue is enabled, only the first three weights are used in the ratio calculation.

#### Step 16
**Command**: `wrr-queue random-detect max-threshold queue-id threshold-percentage1 threshold-percentage2`  
**Purpose**: Enable WRED and assign two WRED threshold values to an egress queue of a Gigabit-capable Ethernet port.

- For **queue-id**, the range is 1 to 4.
- For **threshold-percentage1** **threshold-percentage2**, the range is 1 to 100 percent.

- In this example, to configure the thresholds, enter:  
  ```
 wrr-queue random-detect max-threshold 1 20 100
 wrr-queue random-detect max-threshold 2 40 100
 wrr-queue random-detect max-threshold 3 60 100
 wrr-queue random-detect max-threshold 4 80 100
  ```
## Standard QoS Configuration Examples

### Chapter 28 Configuring QoS

#### Step 17
- **Command:** `end`
  - **Purpose:** Return to privileged EXEC mode.

#### Step 18
- **Command:** `show mls qos interface` and `show interfaces`
  - **Purpose:** Verify your entries.

#### Step 19
- **Command:** `copy running-config startup-config` (Optional)
  - **Purpose:** Save your entries in the configuration file.
Configuring EtherChannels

This chapter describes how to configure EtherChannel on the Layer 2 and Layer 3 interfaces of a Catalyst 3550 switch. EtherChannel provides fault-tolerant high-speed links between switches, routers, and servers. You can use it to increase the bandwidth between the wiring closets and the data center, and you can deploy it anywhere in the network where bottlenecks are likely to occur. EtherChannel provides automatic recovery for the loss of a link by redistributing the load across the remaining links. If a link fails, EtherChannel redirects traffic from the failed link to the remaining links in the channel without intervention.

This chapter provides these topics about the Catalyst 3550 multilayer switch software:

Note

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release.

This chapter consists of these sections:
- Understanding EtherChannels, page 29-1
- Configuring EtherChannels, page 29-7
- Displaying EtherChannel, PAgP, and LACP Status, page 29-18

Understanding EtherChannels

An EtherChannel consists of individual Fast Ethernet or Gigabit Ethernet links bundled into a single logical link as shown in Figure 29-1. The EtherChannel provides full-duplex bandwidth up to 800 Mbps (Fast EtherChannel) or 8 Gbps (Gigabit EtherChannel) between your switch and another switch or host.
Each EtherChannel can consist of up to eight compatibly configured Ethernet interfaces. All interfaces in each EtherChannel must be the same speed, and all must be configured as either Layer 2 or Layer 3 interfaces.

**Note**

The network device to which your switch is connected can impose its own limits on the number of interfaces in the EtherChannel. For Catalyst 3550 switches, the number of EtherChannels is limited to the number of ports of the same type.

If a link within an EtherChannel fails, traffic previously carried over that failed link changes to the remaining links within the EtherChannel. A trap is sent for a failure, identifying the switch, the EtherChannel, and the failed link. Inbound broadcast and multicast packets on one link in an EtherChannel are blocked from returning on any other link of the EtherChannel.

### Understanding Port-Channel Interfaces

You create an EtherChannel for Layer 2 interfaces differently from Layer 3 interfaces. Both configurations involve logical interfaces.

- With Layer 3 interfaces, you manually create the logical interface by using the `interface port-channel` global configuration command.
- With Layer 2 interfaces, the logical interface is dynamically created.
- With both Layer 3 and 2 interfaces, you manually assign an interface to the EtherChannel by using the `channel-group` interface configuration command. This command binds the physical and logical ports together as shown in Figure 29-2.
Each EtherChannel has a logical port-channel interface numbered from 1 to 64. The channel groups are also numbered from 1 to 64.

**Figure 29-2 Relationship of Physical Ports, Logical Port Channels, and Channel Groups**

When a port joins an EtherChannel, the physical interface for that port is shut down. When the port leaves the port-channel, its physical interface is brought up, and it has the same configuration as it had before joining the EtherChannel.

**Note**

Configuration changes made to the logical interface of an EtherChannel do not propagate to all the member ports of the channel.

### Understanding the Port Aggregation Protocol and Link Aggregation Protocol

The Port Aggregation Protocol (PAgP) and Link Aggregation Control Protocol (LACP) facilitate the automatic creation of EtherChannels by exchanging packets between Ethernet interfaces. PAgP is a Cisco-proprietary protocol that can be run only on Cisco switches and on those switches licensed by licensed vendors to support PAgP. LACP is defined in IEEE 802.3AD and allows Cisco switches to manage Ethernet channels between switches that conform to the 802.3AD protocol.

By using one of these protocols, a switch learns the identity of partners capable of supporting either PAgP or LACP and learns the capabilities of each interface. It then dynamically groups similarly configured interfaces into a single logical link (channel or aggregate port); these interfaces are grouped based on hardware, administrative, and port parameter constraints. For example, PAgP groups the interfaces with the same speed, duplex mode, native VLAN, VLAN range, and trunking status and type. After grouping the links into an EtherChannel, PAgP adds the group to the spanning tree as a single switch port.
**PAgP and LACP Modes**

Table 29-1 shows the user-configurable EtherChannel modes for the `channel-group` interface configuration command. Switch interfaces exchange PAgP packets only with partner interfaces configured in the `auto` or `desirable` modes. Switch interfaces exchange LACP packets only with partner interfaces configured in the `active` or `passive` modes. Interfaces configured in the `on` mode do not exchange PAgP or LACP packets.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>active</td>
<td>Places an interface into an active negotiating state, in which the interface starts negotiations with other interfaces by sending LACP packets.</td>
</tr>
<tr>
<td>auto</td>
<td>Places an interface into a passive negotiating state, in which the interface responds to PAgP packets it receives but does not start PAgP packet negotiation. This setting minimizes the transmission of PAgP packets.</td>
</tr>
<tr>
<td>desirable</td>
<td>Places an interface into an active negotiating state, in which the interface starts negotiations with other interfaces by sending PAgP packets.</td>
</tr>
<tr>
<td>on</td>
<td>Forces the interface into an EtherChannel without PAgP or LACP. With the <code>on</code> mode, a usable EtherChannel exists only when an interface group in the <code>on</code> mode is connected to another interface group in the <code>on</code> mode.</td>
</tr>
<tr>
<td>passive</td>
<td>Places an interface into a passive negotiating state, in which the interface responds to LACP packets that it receives, but does not start LACP packet negotiation. This setting minimizes the transmission of LACP packets.</td>
</tr>
</tbody>
</table>

**Exchanging PAgP Packets**

Both the `auto` and `desirable` PAgP modes allow interfaces to negotiate with partner interfaces to determine if they can form an EtherChannel based on criteria such as interface speed and, for Layer 2 EtherChannels, trunking state and VLAN numbers.

Interfaces can form an EtherChannel when they are in different PAgP modes as long as the modes are compatible. For example:

- An interface in the `desirable` mode can form an EtherChannel with another interface that is in the `desirable` or `auto` mode.
- An interface in the `auto` mode can form an EtherChannel with another interface in the `desirable` mode.

An interface in the `auto` mode cannot form an EtherChannel with another interface that is also in the `auto` mode because neither interface starts PAgP negotiation.

An interface in the `on` mode that is added to a port channel is forced to have the same characteristics as the already existing `on` mode interfaces in the channel.

If your switch is connected to a partner that is PAgP-capable, you can configure the switch interface for nonsilent operation by using the `non-silent` keyword. If you do not specify `non-silent` with the `auto` or `desirable` mode, silent mode is assumed.

The silent mode is used when the switch is connected to a device that is not PAgP-capable and seldom, if ever, sends packets. An example of a silent partner is a file server or a packet analyzer that is not generating traffic. In this case, running PAgP on a physical port connected to a silent partner prevents that switch port from ever becoming operational; however, the silent setting allows PAgP to operate, to attach the interface to a channel group, and to use the interface for transmission.
Chapter 29  Configuring EtherChannels

Understanding EtherChannels

Note
An Etherchannel cannot be configured in both the PAgP and LACP modes.

Exchanging LACP Packets

Both the active and passive LACP modes allow interfaces to negotiate with partner interfaces to determine if they can form an EtherChannel based on criteria such as interface speed and, for Layer 2 EtherChannels, trunking state and VLAN numbers.

Interfaces can form an EtherChannel when they are in different LACP modes as long as the modes are compatible. For example:

- An interface in the active mode can form an EtherChannel with another interface that is in the active or passive mode.

- An interface in the active mode can form an EtherChannel with another interface in the passive mode.

An interface in the passive mode cannot form an EtherChannel with another interface that is also in the passive mode because neither interface starts LACP negotiation.

An interface in the on mode that is added to a port channel is forced to have the same characteristics as the already existing on mode interfaces in the channel.

Note
An Etherchannel cannot be configured in both the PAgP and LACP modes.

Caution
You should exercise care when setting the mode to on (manual configuration). All ports configured in the on mode are bundled in the same group and are forced to have similar characteristics. If the group is misconfigured, packet loss or spanning-tree loops might occur.

Physical Learners and Aggregate-Port Learners

Network devices are classified as PAgP physical learners or aggregate-port learners. A device is a physical learner if it learns addresses by physical ports and directs transmissions based on that knowledge. A device is an aggregate-port learner if it learns addresses by aggregate (logical) ports.

When a device and its partner are both aggregate-port learners, they learn the address on the logical port-channel. The device sends packets to the source by using any of the interfaces in the EtherChannel. With aggregate-port learning, it is not important on which physical port the packet arrives.

PAgP cannot automatically detect when the partner device is a physical learner and the local device is an aggregate-port learner. Therefore, you must manually set the learning method on the local device or source-based distribution by using the pagp learn-method interface configuration command. With source-based distribution, any given source MAC address is always sent on the same physical port.

You can also configure a single interface within the group for all transmissions and use other interfaces for hot standby. The unused interfaces in the group can be swapped into operation in just a few seconds if the selected single interface loses hardware-signal detection. You can configure which interface is always selected for packet transmission by changing its priority by using the pagp port-priority interface configuration command. The higher the priority, the more likely that the port will be selected.
Chapter 29  Configuring EtherChannels

Understanding EtherChannels

PAgP and LACP Interaction with Other Features

The Dynamic Trunking Protocol (DTP) and Cisco Discovery Protocol (CDP) send and receive packets over the physical interfaces in the EtherChannel. Trunk ports send and receive PAgP and LACP protocol data units (PDUs) on the lowest numbered VLAN.

Spanning tree sends packets over the first interface in the EtherChannel.

The MAC address of a Layer 3 EtherChannel is the MAC address of the first interface in the port-channel.

PAgP sends and receives PAgP PDUs only from interfaces that have PAgP enabled for the auto or desirable mode. LACP sends and receives LACP PDUs only from interfaces that have LACP enabled for the active or passive mode.

Understanding Load Balancing and Forwarding Methods

EtherChannel balances the traffic load across the links in a channel by randomly associating a newly-learned MAC address with one of the links in the channel.

With source-MAC address forwarding, when packets are forwarded to an EtherChannel, they are distributed across the ports in the channel based on the source-MAC address of the incoming packet. Therefore, to provide load balancing, packets from different hosts use different ports in the channel, but packets from the same host use the same port in the channel (and the MAC address learned by the switch does not change).

When source-MAC address forwarding is used, load distribution based on the source and destination IP address is also enabled for routed IP traffic. All routed IP traffic chooses a port based on the source and destination IP address. Packets between two IP hosts always use the same port in the channel, and traffic between any other pair of hosts can use a different port in the channel.

With destination-MAC address forwarding, when packets are forwarded to an EtherChannel, they are distributed across the ports in the channel based on the destination host’s MAC address of the incoming packet. Therefore, packets to the same destination are forwarded over the same port, and packets to a different destination are sent on a different port in the channel. You configure the load balancing and forwarding method by using the port-channel load-balance global configuration command.

In Figure 29-3, multiple workstations are connected to a switch, and an EtherChannel connects the switch to the router. Source-based load balancing is used on the switch end of the EtherChannel to ensure that the switch efficiently uses the bandwidth of the router by distributing traffic from the workstation across the physical links. Since the router is a single MAC address device, it uses destination-based load balancing to efficiently spread the traffic to the workstations across the physical links in the EtherChannel.

Use the option that provides the greatest variety in your configuration. For example, if the traffic on a channel is going only to a single MAC address, using the destination-MAC address always chooses the same link in the channel; using source addresses or IP addresses might result in better load balancing.
Configuring EtherChannels

These sections describe how to configure EtherChannel on Layer 2 and Layer 3 interfaces:

- Default EtherChannel Configuration, page 29-8
- EtherChannel Configuration Guidelines, page 29-8
- Configuring Layer 2 EtherChannels, page 29-9
- Configuring Layer 3 EtherChannels, page 29-11
- Configuring EtherChannel Load Balancing, page 29-14
- Configuring the PAgP Learn Method and Priority, page 29-15

Note

Make sure that the interfaces are correctly configured (see the “EtherChannel Configuration Guidelines” section on page 29-8).

Note

After you configure an EtherChannel, configuration changes applied to the port-channel interface apply to all the physical interfaces assigned to the port-channel interface, and configuration changes applied to the physical interface affect only the interface where you apply the configuration.
Default EtherChannel Configuration

Table 29-2 shows the default EtherChannel configuration.

Table 29-2  Default EtherChannel Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel groups</td>
<td>None assigned.</td>
</tr>
<tr>
<td>Layer 3 port-channel logical interface</td>
<td>None defined.</td>
</tr>
<tr>
<td>PAgP mode</td>
<td>No default.</td>
</tr>
<tr>
<td>PAgP learn method</td>
<td>Aggregate-port learning on all interfaces.</td>
</tr>
<tr>
<td>PAgP priority</td>
<td>128 on all interfaces.</td>
</tr>
<tr>
<td>LACP learn method</td>
<td>Aggregate-port learning on all interfaces.</td>
</tr>
<tr>
<td>LACP priority</td>
<td>32768 on all interfaces.</td>
</tr>
<tr>
<td>Load balancing</td>
<td>Load distribution on the switch is based on the source-MAC address of the incoming packet. Load distribution based on the source and destination IP address is also enabled for routed IP traffic.</td>
</tr>
</tbody>
</table>

EtherChannel Configuration Guidelines

If improperly configured, some EtherChannel interfaces are automatically disabled to avoid network loops and other problems. Follow these guidelines to avoid configuration problems:

- Configure an EtherChannel with up to eight Ethernet interfaces of the same type.

  **Note** Do not configure a GigaStack GBIC port as part of an EtherChannel.

- Configure all interfaces in an EtherChannel to operate at the same speeds and duplex modes.
- Enable all interfaces in an EtherChannel. An interface in an EtherChannel that is disabled by using the `shutdown` interface configuration command is treated as a link failure, and its traffic is transferred to one of the remaining interfaces in the EtherChannel.
- When a group is first created, all ports follow the parameters set for the first port to be added to the group. If you change the configuration of one of these parameters, you must also make the changes to all ports in the group:
  - Allowed-VLAN list
  - Spanning-tree path cost for each VLAN
  - Spanning-tree port priority for each VLAN
  - Spanning-tree Port Fast setting
- An EtherChannel interface that is configured as a Switched Port Analyzer (SPAN) destination port does not join the group until it is deconfigured as a SPAN destination port. Do not configure a port that belongs to an EtherChannel port group as a secure port.
Before enabling 802.1X on the port, you must first remove it from the EtherChannel. If you try to enable 802.1X on an EtherChannel or on an active port in an EtherChannel, an error message appears, and 802.1X is not enabled. If you enable 802.1X on a not-yet active port of an EtherChannel, the port does not join the EtherChannel.

For Layer 2 EtherChannels:
- Assign all interfaces in the EtherChannel to the same VLAN, or configure them as trunks. Interfaces with different native VLANs cannot form an EtherChannel.
- If you configure an EtherChannel from trunk interfaces, verify that the trunking mode (ISL or 802.1Q) is the same on all the trunks. Inconsistent trunk modes on EtherChannel interfaces can have unexpected results.
- An EtherChannel supports the same allowed range of VLANs on all the interfaces in a trunking Layer 2 EtherChannel. If the allowed range of VLANs is not the same, the interfaces do not form an EtherChannel even when PAgP is set to the auto or desirable mode.
- Interfaces with different spanning-tree path costs can form an EtherChannel if they are otherwise compatibly configured. Setting different spanning-tree path costs does not, by itself, make interfaces incompatible for the formation of an EtherChannel.

For Layer 3 EtherChannels, assign the Layer 3 address to the port-channel logical interface, not to the physical interfaces in the channel.

### Configuring Layer 2 EtherChannels

You configure Layer 2 EtherChannels by configuring the Ethernet interfaces with the `channel-group` interface configuration command, which creates the port-channel logical interface. You cannot put a Layer 2 interface into a manually created port-channel interface.

**Note**

Layer 2 interfaces must be connected and functioning for IOS to create port-channel interfaces.

Beginning in privileged EXEC mode, follow these steps to assign a Layer 2 Ethernet interface to a Layer 2 EtherChannel:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**

configure terminal             | Enter global configuration mode.                                         |

| **Step 2**

interface interface-id          | Enter interface configuration mode, and specify a physical interface to configure. Valid interfaces include physical interfaces. Up to eight interfaces of the same type and speed can be configured for the same group. |

| **Step 3**

switchport mode {access | trunk} | Assign all interfaces as static-access ports in the same VLAN, or configure them as trunks. |

switchport access vlan vlan-id   | If you configure the interface as a static-access port, assign it to only one VLAN. The range is 1 to 4094. |
To remove an interface from the EtherChannel group, use the **no channel-group** interface configuration command.

### Step 4

*channel-group channel-group-number mode { { auto [non-silent] | desirable [non-silent] | on | [active | passive] } |*  
Assign the interface to a channel group, and specify the PAgP or LACP mode.

For **channel-group-number**, the range is 1 to 64. Each EtherChannel can have up to eight compatibly configured Ethernet interfaces.

For **mode**, select one of these keywords:

- **active**—Enables LACP only if an LACP device is detected. It places an interface into an active negotiating state, in which the interface starts negotiations with other interfaces by sending LACP packets.
- **auto**—Enables PAgP only if a PAgP device is detected. It places an interface into a passive negotiating state, in which the interface responds to PAgP packets it receives but does not start PAgP packet negotiation.
- **desirable**—Unconditionally enables PAgP. It places an interface into an active negotiating state, in which the interface starts negotiations with other interfaces by sending PAgP packets.
- **on**—Forces the interface to channel without PAgP. With the **on** mode, a usable EtherChannel exists only when an interface group in the **on** mode is connected to another interface group in the **on** mode.
- **non-silent**—If your switch is connected to a partner that is PAgP-capable, you can configure the switch interface for nonsilent operation. You can configure an interface with the **non-silent** keyword for use with the **auto** or **desirable** mode. If you do not specify **non-silent** with the **auto** or **desirable** mode, silent is assumed. The silent setting is for connections to file servers or packet analyzers. This setting allows PAgP to operate, to attach the interface to a channel group, and to use the interface for transmission.
- **passive**—Enables LACP on an interface and places it into a passive negotiating state, in which the interface responds to LACP packets that it receives, but does not start LACP packet negotiation.

For information on compatible PAgP and LACP modes for the switch and its partner, see the “**PAgP and LACP Modes**” section on page 29-4.

### Step 5

**end**  
Return to privileged EXEC mode.

### Step 6

**show running-config**  
Verify your entries.

### Step 7

**copy running-config startup-config**  
(Optional) Save your entries in the configuration file.
This example shows how to assign Gigabit Ethernet interfaces 0/4 and 0/5 as static-access ports in VLAN 10 to channel 5 with the PAgP mode desirable:

```plaintext
Switch# configure terminal
Switch(config)# interface range gigabitethernet0/4 -5
Switch(config-if-range)# switchport mode access
Switch(config-if-range)# switchport access vlan 10
Switch(config-if-range)# channel-group 5 mode desirable
Switch(config-if-range)# end
```

**Configuring Layer 3 EtherChannels**

To configure Layer 3 EtherChannels, you create the port-channel logical interface and then put the Ethernet interfaces into the port-channel as described in the next two sections.

**Creating Port-Channel Logical Interfaces**

When configuring Layer 3 EtherChannels, you must manually create the port-channel logical interface first by using the `interface port-channel` global configuration command. Then, you put the logical interface into the channel group by using the `channel-group` interface configuration command.

*Note*

To move an IP address from a physical interface to an EtherChannel, you must delete the IP address from the physical interface before configuring it on the port-channel interface.

Beginning in privileged EXEC mode, follow these steps to create a port-channel interface for a Layer 3 EtherChannel:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: interface port-channel <code>port-channel-number</code></td>
<td>Enter interface configuration mode, and create the port-channel logical interface. For <code>port-channel-number</code>, the range is 1 to 64.</td>
</tr>
<tr>
<td>Step 3: no switchport</td>
<td>Put the interface into Layer 3 mode.</td>
</tr>
<tr>
<td>Step 4: ip address <code>ip-address mask</code></td>
<td>Assign an IP address and subnet mask to the EtherChannel.</td>
</tr>
<tr>
<td>Step 5: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6: show etherchannel <code>channel-group-number</code> detail</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 7: copy running-config startup-config</td>
<td>Assign an Ethernet interface to the Layer 3 EtherChannel. For more information, see the “Configuring the Physical Interfaces” section on page 29-12.</td>
</tr>
</tbody>
</table>

To remove the port-channel, use the `no interface port-channel ` `port-channel-number` global configuration command.

This example shows how to create the logical port channel (5) and assign 172.10.20.10 as its IP address:

```plaintext
Switch# configure terminal
Switch(config)# interface port-channel 5
Switch(config-if)# no switchport
```
Configuring the Physical Interfaces

Beginning in privileged EXEC mode, follow these steps to assign an Ethernet interface to a Layer 3 EtherChannel:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| Step 2 interface interface-id | Enter interface configuration mode, and specify a physical interface to configure.  
                                Valid interfaces include physical interfaces.  
                                Up to eight interfaces of the same type and speed can be configured for the same group. |
| Step 3 no ip address     | Ensure that there is no IP address assigned to the physical interface.   |
To remove an interface from the EtherChannel group, use the **no channel-group** interface configuration command.

### Command

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>channel-group channel-group-number mode</strong> {auto [non-silent]</td>
<td>desirable [non-silent]</td>
<td>on</td>
</tr>
<tr>
<td>• <strong>active</strong>—Enables LACP only if an LACP device is detected. It places an interface into an active negotiating state, in which the interface starts negotiations with other interfaces by sending LACP packets.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>auto</strong>—Enables PAgP only if a PAgP device is detected. It places an interface into a passive negotiating state, in which the interface responds to PAgP packets it receives but does not start PAgP packet negotiation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>desirable</strong>—Unconditionally enables PAgP. It places an interface into an active negotiating state, in which the interface starts negotiations with other interfaces by sending PAgP packets.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>non-silent</strong>—If your switch is connected to a partner that is PAgP capable, you can configure the switch interface for nonsilent operation. You can configure an interface with the <strong>non-silent</strong> keyword for use with the <strong>auto</strong> or <strong>desirable</strong> mode. If you do not specify <strong>non-silent</strong> with the <strong>auto</strong> or <strong>desirable</strong> mode, silent is assumed. The silent setting is for connections to file servers or packet analyzers; this setting allows PAgP to operate, to attach the interface to a channel group, and to use the interface for transmission.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>on</strong>—Forces the interface to channel without PAgP or LACP. With the <strong>on</strong> mode, a usable EtherChannel exists only when an interface group in the <strong>on</strong> mode is connected to another interface group in the <strong>on</strong> mode.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• <strong>passive</strong>—Enables LACP on an interface and places it into a passive negotiating state, in which the interface responds to LACP packets that it receives, but does not start LACP packet negotiation.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For information on compatible PAgP modes for the switch and its partner, see the “PAgP and LACP Modes” section on page 29-4.

### Step 5

**end**

Return to privileged EXEC mode.

### Step 6

**show running-config**

Verify your entries.

### Step 7

**copy running-config startup-config**

(Optional) Save your entries in the configuration file.
This example shows how to assign Gigabit Ethernet interfaces 0/4 and 0/5 to channel 5 with the PAgP mode desirable:

```
Switch# configure terminal
Switch(config)# interface range gigabitethernet0/4-5
Switch(config-if-range)# no ip address
Switch(config-if-range)# channel-group 5 mode desirable
Switch(config-if-range)# end
```

## Configuring EtherChannel LoadBalancing

This section describes how to configure EtherChannel load balancing by using source-based or destination-based forwarding methods. For more information, see the “Understanding Load Balancing and Forwarding Methods” section on page 29-6.

Beginning in privileged EXEC mode, follow these steps to configure EtherChannel load balancing:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>port-channel load-balance {dst-mac</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show etherchannel load-balance</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return EtherChannel load balancing to the default configuration, use the **no** port-channel load-balance global configuration command.
Configuring the PAgP Learn Method and Priority

Network devices are classified as PAgP physical learners or aggregate-port learners. A device is a physical learner if it learns addresses by physical ports and directs transmissions based on that knowledge. A device is an aggregate-port learner if it learns addresses by aggregate ports.

For compatibility with Catalyst 1900 series switches, configure the PAgP learning method on the Catalyst 3550 switches to learn source-MAC addresses on the physical port. The switch then sends packets to the Catalyst 1900 switch using the same interface in the EtherChannel from which it learned the source address.

**Note**
The Catalyst 3550 supports address learning only on aggregate ports even though the physical-port keyword is provided in the CLI. The `pagp learn-method` command and the `pagp port-priority` command have no effect on the switch hardware, but they are required for PAgP interoperability with devices that only support address learning by physical ports, such as the Catalyst 1900 switch.

When the link partner to the Catalyst 3550 switch is a physical learner, we recommend that you configure the switch as a physical-port learner by using the `pagp learn-method physical-port` interface configuration command and to set the load-distribution method based on the source MAC address by using the `port-channel load-balance src-mac` global configuration command. Use the `pagp learn-method` command only in this situation.

Beginning in privileged EXEC mode, follow these steps to configure your switch as a PAgP physical-port learner and to adjust the priority so that the same port in the bundle is selected for sending packets:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td><code>interface interface-id</code></td>
<td>Enter interface configuration mode, and specify the interface for transmission.</td>
</tr>
<tr>
<td>3</td>
<td><code>pagp learn-method physical-port</code></td>
<td>Select the PAgP learning method. By default, aggregation-port learning is selected, which means the switch sends packets to the source by using any of the interfaces in the EtherChannel. With aggregate-port learning, it is not important on which physical port the packet arrives. Select physical-port to connect with another switch that is a physical learner. Make sure to configure the <code>port-channel load-balance src-mac</code> global configuration command to <code>src-mac</code> as described in the “Configuring EtherChannel Load Balancing” section on page 29-14. The learning method must be configured the same at both ends of the link.</td>
</tr>
<tr>
<td>4</td>
<td><code>pagp port-priority priority</code></td>
<td>Assign a priority so that the selected interface is chosen for packet transmission. For <code>priority</code>, the range is 0 to 255. The default is 128. The higher the priority, the more likely that the interface will be used for PAgP transmission.</td>
</tr>
<tr>
<td>5</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
## Configuring EtherChannels

### Configuring the LACP Port Priority

You can set the priority for each port in an EtherChannel that is configured for LACP by using the `lacp port-priority` privileged EXEC command. The range is from 1 to 65535. Beginning in privileged EXEC mode, follow these steps to configure the LACP port priority:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>Purpose</strong></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>Purpose</strong></td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td>Enter interface configuration mode, and specify the interface for transmission.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>Purpose</strong></td>
</tr>
<tr>
<td><code>lacp port-priority priority-value</code></td>
<td>Select the LACP port priority value.</td>
</tr>
<tr>
<td>For priority-value, the range is from 1 to 65535. By default, the priority value is 32768. The lower the range, the more likely that the interface will be used for LACP transmission.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>Purpose</strong></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>Purpose</strong></td>
</tr>
<tr>
<td><code>show running-config</code> or \</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><code>show lacp channel-group-number internal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>Purpose</strong></td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

### Configuring Hot Standby Ports

When enabled, LACP tries to configure the maximum number of LACP-compatible ports in a channel, up to a maximum of 16 ports. Only eight LACP links can be active at one time. Any additional links are put in a hot standby state. If one of the active links becomes inactive, a link that is in hot standby mode becomes active in its place.

If more than eight links are configured for an EtherChannel group, the software determines which of the hot standby ports to make active based on:

- LACP port-priority
- Port ID

---

**To return the priority to its default setting, use the `no pagp port-priority` interface configuration command. To return the learning method to its default setting, use the `no pagp learn-method` interface configuration command.**

---

**Command Purpose**

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>show running-config</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>show pagp channel-group-number internal</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
All ports default to the same port priority. You can change the port priority of LACP EtherChannel ports to specify which hot standby links become active first by using the `lacp port-priority` interface configuration command to set the port priority to a value lower than the default of 32768.

The hot standby ports that have lower port numbers become active in the channel first unless the port priority is configured to be a lower number than the default value of 32768.

**Note**

If LACP is not able to aggregate all the ports that are compatible (for example, the remote system might have more restrictive hardware limitations), all the ports that cannot be actively included in the EtherChannel are put in hot standby state and are used only if one of the channeled ports fails.

### Configuring the LACP System Priority

You can set the system priority for all of the EtherChannels that are configured for LACP by using the `lacp system-priority` privileged EXEC command. The range is from 1 to 65535.

**Note**

The `lacp system-priority` command is global. You cannot set a system priority for each LACP-configured channel separately.

We recommend using this command only when there are a combination of LACP-configured EtherChannels that are in both active and standby modes.

Beginning in privileged EXEC mode, follow these steps to configure the LACP system priority:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>lacp system-priority priority-value</code></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>end</code></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><code>show running-config</code> or <code>show lacp channel-group-number internal</code></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><code>copy running-config startup-config</code></td>
</tr>
</tbody>
</table>

Enter global configuration mode.

Select the LACP system priority value. For priority-value, the range is 1 to 65535. By default, the priority value is 32768. The lower the range, the higher the system priority. The switch with the lower system priority value determines which links between LACP partner switches are active and which are in standby for each LACP EtherChannel.

Return to privileged EXEC mode.

Verify your entries.

(Optional) Save your entries in the configuration file.
Displaying EtherChannel, PAgP, and LACP Status

You can use the privileged EXEC commands described in Table 29-3 to display EtherChannel, PAgP, and LACP status information:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show etherchannel [channel-group-number] { brief</td>
<td>detail</td>
</tr>
<tr>
<td>show pagp [channel-group-number] { counters</td>
<td>internal</td>
</tr>
<tr>
<td>show lacp [channel-group-number] { counters</td>
<td>internal</td>
</tr>
</tbody>
</table>

1. You can clear PAgP channel-group information and traffic filters by using the clear pagp [channel-group-number [counters] | counters] privileged EXEC command.

2. You can clear LACP channel-group information and traffic filters by using the clear lacp [channel-group-number [counters] | counters] privileged EXEC command.

For detailed information about the fields in the command outputs, refer to the command reference for this release.
Configuring IP Unicast Routing

This chapter describes how to configure IP unicast routing on your Catalyst 3550 multilayer switch. Beginning with Cisco IOS Release 12.1(11)EA1, basic routing functions, including static unicast routing and the Routing Information Protocol (RIP), are available with both the standard multilayer software image (SMI) and the enhanced multilayer software image (EMI). To use advanced routing features and other routing protocols, or for all routing support prior to Release 12.1(11)EA1, you must have the enhanced multilayer software image installed on your switch.

Note

For more detailed IP unicast configuration information, refer to the Cisco IOS IP and IP Routing Configuration Guide for Release 12.1. For complete syntax and usage information for the commands used in this chapter, refer to the Cisco IOS IP and IP Routing Command Reference for Release 12.1.

This chapter consists of these sections:

- Understanding Routing, page 30-2
- Steps for Configuring Routing, page 30-3
- Configuring IP Addressing on Layer 3 Interfaces, page 30-4
- Enabling IP Unicast Routing, page 30-18
- Configuring RIP, page 30-19
- Configuring IGRP, page 30-24
- Configuring OSPF, page 30-29
- Configuring EIGRP, page 30-38
- Configuring BGP, page 30-44
- Configuring Multi-VRF CE, page 30-65
- Configuring Protocol-Independent Features, page 30-75
- Monitoring and Maintaining the IP Network, page 30-89

Note

When configuring routing parameters on the switch, to allocate system resources to maximize the number of unicast routes allowed, you can use the `sdm prefer routing` global configuration command to set the Switch Database Management (sdm) feature to the routing template. For more information on the SDM templates, see the “Optimizing System Resources for User-Selected Features” section on page 7-27.
Understanding Routing

In some network environments, VLANs are associated with individual networks or subnetworks. In an IP network, each subnetwork is mapped to an individual VLAN. Configuring VLANs helps control the size of the broadcast domain and keeps local traffic local. However, network devices in different VLANs cannot communicate with one another without a Layer 3 device (router) to route traffic between the VLAN, referred to as inter-VLAN routing. You configure one or more routers to route traffic to the appropriate destination VLAN.

Figure 30-1 shows a basic routing topology. Switch A is in VLAN 10, and Switch B is in VLAN 20. The router has an interface in each VLAN.

When Host A in VLAN 10 needs to communicate with Host B in VLAN 10, it sends a packet addressed to that host. Switch A forwards the packet directly to Host B, without sending it to the router.

When Host A sends a packet to Host C in VLAN 20, Switch A forwards the packet to the router, which receives the traffic on the VLAN 10 interface. The router checks the routing table, determines the correct outgoing interface, and forwards the packet on the VLAN 20 interface to Switch B. Switch B receives the packet and forwards it to Host C.

Routers can perform unicast routing in three different ways:

- By using default routing
- By using preprogrammed static routes for the traffic
- By dynamically calculating routes by using a routing protocol

Default routing refers to sending traffic with a destination unknown to the router to a default outlet or destination.

Static unicast routing forwards packets from predetermined ports through a single path into and out of a network. Static routing is secure and uses little bandwidth, but does not automatically respond to changes in the network, such as link failures, and therefore, might result in unreachable destinations. As networks grow, static routing becomes a labor-intensive liability.

Dynamic routing protocols are used by routers to dynamically calculate the best route for forwarding traffic. There are two types of dynamic routing protocols:

- Routers using distance-vector protocols maintain routing tables with distance values of networked resources, and periodically pass these tables to their neighbors. Distance-vector protocols use one or a series of metrics for calculating the best routes. These protocols are easy to configure and use.
- Routers using link-state protocols maintain a complex database of network topology, based on the exchange of link-state advertisements (LSAs) between routers. LSAs are triggered by an event in the network, which speeds up the convergence time or time required to respond to these changes. Link-state protocols respond quickly to topology changes, but require greater bandwidth and more resources than distance-vector protocols.
Distance-vector protocols supported by the Catalyst 3550 switch are Routing Information Protocol (RIP), which uses a single distance metric (cost) to determine the best path; Interior Gateway Routing Protocol (IGRP), which uses a series of metrics; and Border Gateway Protocol (BGP), which adds a path vector mechanism. The switch also supports the Open Shortest Path First (OSPF) link-state protocol and Enhanced IGRP (EIGRP), which adds some link-state routing features to traditional IGRP to improve efficiency.

The SMI supports only default routing, static routing, and RIP. All other routing protocols require the EMI on your switch.

Steps for Configuring Routing

By default, IP routing is disabled on the Catalyst 3550 switch, and you must enable it before routing can take place. For detailed IP routing configuration information, refer to the Cisco IOS IP and IP Routing Configuration Guide for Release 12.1.

In the following procedures, the specified interface must be one of these Layer 3 interfaces:

- A routed port: a physical port configured as a Layer 3 port by using the no switchport interface configuration command.
- A switch virtual interface (SVI): a VLAN interface created by using the interface vlan vlan_id global configuration command and by default a Layer 3 interface.
- An EtherChannel port channel in Layer 3 mode: a port-channel logical interface created by using the interface port-channel port-channel-number global configuration command and binding the Ethernet interface into the channel group. For more information, see the “Configuring Layer 3 EtherChannels” section on page 29-11.

A Layer 3 switch can have an IP address assigned to each routed port and SVI. The number of routed ports and SVIs that you can configure is not limited by software. However, the interrelationship between this number and the number and volume of features being implemented might have an impact on CPU utilization because of hardware limitations. For more information about feature combinations, see the “Optimizing System Resources for User-Selected Features” section on page 7-27.

All Layer 3 interfaces must have IP addresses assigned to them. See the “Assigning IP Addresses to Network Interfaces” section on page 30-5.

Configuring routing consists of several main procedures:

- To support VLAN interfaces, create and configure VLANs on the switch, and assign VLAN membership to Layer 2 interfaces. For more information, see Chapter 11, “Configuring VLANs.”
- Configure Layer 3 interfaces.
- Enable IP routing on the switch.
- Assign IP addresses to the Layer 3 interfaces.
- Enable selected routing protocols on the switch.
- Configure routing protocol parameters (optional).
Configuring IP Addressing on Layer 3 Interfaces

A required task for configuring IP routing is to assign IP addresses to Layer 3 network interfaces to enable the interfaces and allow communication with the hosts on those interfaces that use IP. These sections describe how to configure various IP addressing features. Assigning IP addresses to the interface is required; the other procedures are optional.

- Default Addressing Configuration, page 30-4
- Assigning IP Addresses to Network Interfaces, page 30-5
- Configuring Address Resolution Methods, page 30-8
- Routing Assistance When IP Routing is Disabled, page 30-11
- Configuring Broadcast Packet Handling, page 30-13
- Monitoring and Maintaining IP Addressing, page 30-17

Default Addressing Configuration

Table 30-1 shows the default addressing configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address</td>
<td>None defined.</td>
</tr>
<tr>
<td>IP broadcast address</td>
<td>255.255.255.255 (all ones).</td>
</tr>
<tr>
<td>IP classless routing</td>
<td>Enabled.</td>
</tr>
<tr>
<td>IP default gateway</td>
<td>Disabled.</td>
</tr>
<tr>
<td>IP directed broadcast</td>
<td>Disabled (all IP directed broadcasts are dropped).</td>
</tr>
<tr>
<td>IP forward-protocol</td>
<td>If a helper address is defined or User Datagram Protocol (UDP) flooding is configured, UDP forwarding is enabled on default ports. Any-local-broadcast: Disabled. Spanning Tree Protocol (STP): Disabled. Turbo-flood: Disabled.</td>
</tr>
<tr>
<td>IP helper address</td>
<td>Disabled.</td>
</tr>
<tr>
<td>IP host</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>
Assigning IP Addresses to Network Interfaces

An IP address identifies a location to which IP packets can be sent. Some IP addresses are reserved for special uses and cannot be used for host, subnet, or network addresses. Table 30-2 lists ranges of IP addresses and shows which are reserved and which are available for use. RFC 1166, “Internet Numbers,” contains the official description of IP addresses.

<table>
<thead>
<tr>
<th>Class</th>
<th>Address or Range</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.0.0.0</td>
<td>Reserved</td>
</tr>
<tr>
<td>A</td>
<td>1.0.0.0 to 126.0.0.0</td>
<td>Available</td>
</tr>
<tr>
<td>A</td>
<td>127.0.0.0</td>
<td>Reserved</td>
</tr>
<tr>
<td>B</td>
<td>128.0.0.0 to 191.254.0.0</td>
<td>Available</td>
</tr>
<tr>
<td>B</td>
<td>191.255.0.0</td>
<td>Reserved</td>
</tr>
<tr>
<td>C</td>
<td>192.0.0.0</td>
<td>Reserved</td>
</tr>
<tr>
<td>C</td>
<td>192.0.1.0 to 223.255.254</td>
<td>Available</td>
</tr>
<tr>
<td>C</td>
<td>223.255.255.0</td>
<td>Reserved</td>
</tr>
<tr>
<td>D</td>
<td>224.0.0.0 to 239.255.255</td>
<td>Multicast group addresses</td>
</tr>
<tr>
<td>E</td>
<td>240.0.0.0 to 255.255.255</td>
<td>Reserved</td>
</tr>
<tr>
<td>E</td>
<td>255.255.255.255</td>
<td>Broadcast</td>
</tr>
</tbody>
</table>

An interface can have one primary IP address. A mask identifies the bits that denote the network number in an IP address. When you use the mask to subnet a network, the mask is referred to as a subnet mask. To receive an assigned network number, contact your Internet service provider.
Beginning in privileged EXEC mode, follow these steps to assign an IP address and a network mask to a Layer 3 interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>no switchport</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip address ip-address subnet-mask</td>
</tr>
<tr>
<td>Step 5</td>
<td>no shutdown</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
</tr>
<tr>
<td>Step 7</td>
<td>show interfaces [interface-id]</td>
</tr>
<tr>
<td></td>
<td>show ip interface [interface-id]</td>
</tr>
<tr>
<td></td>
<td>show running-config interface [interface-id]</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the `no ip address` interface configuration command to remove an IP address or to disable IP processing.

This example shows how to configure an IP address on and enable Gigabit Ethernet interface 0/10:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# interface gigabitethernet0/10
Switch(config-if)# no switchport
Switch(config-if)# ip address 10.1.2.3 255.255.0.0
Switch(config-if)# no shutdown
```

### Use of Subnet Zero

Subnetting with a subnet address of zero is strongly discouraged because of the problems that can arise if a network and a subnet have the same addresses. For example, if network 131.108.0.0 is subnetted as 255.255.255.0, subnet zero would be written as 131.108.0.0, which is the same as the network address.

You can use the all ones subnet (131.108.255.0) and even though it is discouraged, you can enable the use of subnet zero if you need the entire subnet space for your IP address.

Beginning in privileged EXEC mode, follow these steps to enable subnet zero:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip subnet-zero</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the `no ip subnet-zero` global configuration command to restore the default and disable the use of subnet zero.
Classless Routing

By default, classless routing behavior is enabled on the switch when it is configured to route. With classless routing, if a router receives packets for a subnet of a network with no default route, the router forwards the packet to the best supernet route. A supernet consists of contiguous blocks of Class C address spaces used to simulate a single, larger address space and is designed to relieve the pressure on the rapidly depleting Class B address space.

In Figure 30-2, classless routing is enabled. When the host sends a packet to 120.20.4.1, instead of discarding the packet, the router forwards it to the best supernet route. If you disable classless routing and a router receives packets destined for a subnet of a network with no network default route, the router discards the packet.

Figure 30-2 IP Classless Routing

In Figure 30-3, the router in network 128.20.0.0 is connected to subnets 128.20.1.0, 128.20.2.0, and 128.20.3.0. If the host sends a packet to 120.20.4.1, because there is no network default route, the router discards the packet.

Figure 30-3 No IP Classless Routing
To prevent the switch from forwarding packets destined for unrecognized subnets to the best supernet route possible, you can disable classless routing behavior.

Beginning in privileged EXEC mode, follow these steps to disable classless routing:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>no ip classless</td>
<td>Disable classless routing behavior.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entry in the configuration file.</td>
</tr>
</tbody>
</table>

To restore the default and have the switch forward packets destined for a subnet of a network with no network default route to the best supernet route possible, use the `ip classless` global configuration command.

### Configuring Address Resolution Methods

You can control interface-specific handling of IP by using address resolution. A device using IP can have both a local address or MAC address, which uniquely defines the device on its local segment or LAN, and a network address, which identifies the network to which the device belongs. The local address or MAC address is known as a data link address because it is contained in the data link layer (Layer 2) section of the packet header and is read by data link (Layer 2) devices. To communicate with a device on Ethernet, the software must determine the MAC address of the device. The process of determining the MAC address from an IP address is called address resolution. The process of determining the IP address from the MAC address is called reverse address resolution.

The switch can use these forms of address resolution:

- Address Resolution Protocol (ARP) is used to associate IP address with MAC addresses. Taking an IP address as input, ARP determines the associated MAC address and then stores the IP address/MAC address association in an ARP cache for rapid retrieval. Then the IP datagram is encapsulated in a link-layer frame and sent over the network. Encapsulation of IP datagrams and ARP requests or replies on IEEE 802 networks other than Ethernet is specified by the Subnetwork Access Protocol (SNAP).

- Proxy ARP helps hosts with no routing tables determine the MAC addresses of hosts on other networks or subnets. If the switch (router) receives an ARP request for a host that is not on the same interface as the ARP request sender, and if the router has all of its routes to the host through other interfaces, it generates a proxy ARP packet giving its own local data link address. The host that sent the ARP request then sends its packets to the router, which forwards them to the intended host.

Catalyst 3550 switches also use the Reverse Address Resolution Protocol (RARP), which functions the same as ARP does, except that the RARP packets request an IP address instead of a local MAC address. Using RARP requires a RARP server on the same network segment as the router interface. Use the `ip rarp-server address` interface configuration command to identify the server.

For more information on RARP, refer to the *Cisco IOS Configuration Fundamentals Configuration Guide for Release 12.1*. 
You can perform these tasks to configure address resolution:

- Define a Static ARP Cache, page 30-9
- Set ARP Encapsulation, page 30-10
- Enable Proxy ARP, page 30-10

### Define a Static ARP Cache

ARP and other address resolution protocols provide dynamic mapping between IP addresses and MAC addresses. Because most hosts support dynamic address resolution, you usually do not need to specify static ARP cache entries. If you must define a static ARP cache entry, you can do so globally, which installs a permanent entry in the ARP cache that the switch uses to translate IP addresses into MAC addresses. Optionally, you can also specify that the switch respond to ARP requests as if it were the owner of the specified IP address. If you do not want the ARP entry to be permanent, you can specify a timeout period for the ARP entry.

Beginning in privileged EXEC mode, follow these steps to provide static mapping between IP addresses and MAC addresses:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| Step 2  | `arp ip-address hardware-address type` Globally associate an IP address with a MAC (hardware) address in the ARP cache, and specify encapsulation type as one of these:  
  - `arpa`—ARP encapsulation for Ethernet interfaces  
  - `snap`—Subnetwork Address Protocol encapsulation for Token Ring and FDDI interfaces  
  - `sap`—HP’s ARP type |
| Step 3  | `arp ip-address hardware-address type [alias]` (Optional) Specify that the switch respond to ARP requests as if it were the owner of the specified IP address. |
| Step 4  | `interface interface-id` Enter interface configuration mode, and specify the interface to configure. |
| Step 5  | `arp timeout seconds` (Optional) Set the length of time an ARP cache entry will stay in the cache. The default is 14400 seconds (4 hours). The range is 0 to 2147483 seconds. |
| Step 6  | `end` Return to privileged EXEC mode. |
| Step 7  | `show interfaces [interface-id]` Verify the type of ARP and the timeout value used on all interfaces or a specific interface. |
| Step 8  | `show arp` `show ip arp` View the contents of the ARP cache. |
| Step 9  | `copy running-config startup-config` (Optional) Save your entries in the configuration file. |

To remove an entry from the ARP cache, use the `no arp ip-address hardware-address type` global configuration command. To remove all nonstatic entries from the ARP cache, use the `clear arp-cache` privileged EXEC command.
Set ARP Encapsulation

By default, Ethernet ARP encapsulation (represented by the arpa keyword) is enabled on an IP interface. You can change the encapsulation methods to SNAP if required by your network.

Beginning in privileged EXEC mode, follow these steps to specify the ARP encapsulation type:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Enter interface configuration mode, and specify</td>
</tr>
<tr>
<td></td>
<td>the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>Step 3</td>
<td>arp {arpa</td>
</tr>
<tr>
<td></td>
<td>Specify the ARP encapsulation method:</td>
</tr>
<tr>
<td></td>
<td>· arpa—Address Resolution Protocol</td>
</tr>
<tr>
<td></td>
<td>· snap—Subnetwork Address Protocol</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show interfaces [interface-id]</td>
</tr>
<tr>
<td></td>
<td>Verify ARP encapsulation configuration on all</td>
</tr>
<tr>
<td></td>
<td>interfaces or the specified interface.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration</td>
</tr>
<tr>
<td></td>
<td>file.</td>
</tr>
</tbody>
</table>

To disable an encapsulation type, use the no arp arpa or no arp snap interface configuration command.

Enable Proxy ARP

By default, the switch uses proxy ARP to help hosts determine MAC addresses of hosts on other networks or subnets.

Beginning in privileged EXEC mode, follow these steps to enable proxy ARP if it has been disabled:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Enter interface configuration mode, and specify</td>
</tr>
<tr>
<td></td>
<td>the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip proxy-arp</td>
</tr>
<tr>
<td></td>
<td>Enable proxy ARP on the interface.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show ip interface [interface-id]</td>
</tr>
<tr>
<td></td>
<td>Verify the configuration on the interface or all</td>
</tr>
<tr>
<td></td>
<td>interfaces.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration</td>
</tr>
<tr>
<td></td>
<td>file.</td>
</tr>
</tbody>
</table>

To disable proxy ARP on the interface, use the no ip proxy-arp interface configuration command.
Routing Assistance When IP Routing is Disabled

These mechanisms allow the switch to learn about routes to other networks when it does not have IP routing enabled:

- Proxy ARP, page 30-11
- Default Gateway, page 30-11
- ICMP Router Discovery Protocol (IRDP), page 30-12

Proxy ARP

Proxy ARP, the most common method for learning about other routes, enables an Ethernet host with no routing information to communicate with hosts on other networks or subnets. The host assumes that all hosts are on the same local Ethernet and that they can use ARP to determine their MAC addresses. If a switch receives an ARP request for a host that is not on the same network as the sender, the switch evaluates whether it has the best route to that host. If it does, it sends an ARP reply packet with its own Ethernet MAC address, and the host that sent the request sends the packet to the switch, which forwards it to the intended host. Proxy ARP treats all networks as if they are local and performs ARP requests for every IP address.

Proxy ARP is enabled by default. To enable it after it has been disabled, see the “Enable Proxy ARP” section on page 30-10. Proxy ARP works as long as other routers support it.

Default Gateway

Another method for locating routes is to define a default router or default gateway. All nonlocal packets are sent to this router, which either routes them appropriately or sends an IP Control Message Protocol (ICMP) redirect message back, defining which local router the host should use. The switch caches the redirect messages and forwards each packet as efficiently as possible. A limitation of this method is that there is no means of detecting when the default router has gone down or is unavailable.

Beginning in privileged EXEC mode, follow these steps to define a default gateway (router) when IP routing is disabled:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip default-gateway ip-address</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show ip redirects</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the **no ip default-gateway** global configuration command to disable this function.

This example shows how to set and verify a default gateway:

```
Switch(config)# ip default-gateway 10.1.5.59
Switch(config)# end
Switch# show ip redirects
Default gateway is 10.1.5.59
Host Gateway Last Use Total Uses Interface
10.1.5.59
ICMP redirect cache is empty
```
ICMP Router Discovery Protocol (IRDP)

Router discovery allows the switch to dynamically learn about routes to other networks using IRDP. IRDP allows hosts to locate routers. When operating as a client, the switch generates router discovery packets. When operating as a host, the switch receives router discovery packets. The switch can also listen to Routing Information Protocol (RIP) and Interior Gateway Routing Protocol (IGRP) routing updates and use this information to infer locations of routers. The switch does not actually store the routing tables sent by routing devices; it merely keeps track of which systems are sending the data. The advantage of using IRDP is that it allows each router to specify both a priority and the time after which a device is assumed to be down if no further packets are received.

Each device discovered becomes a candidate for the default router, and a new highest-priority router is selected when a higher priority router is discovered, when the current default router is declared down, or when a TCP connection is about to time out because of excessive retransmissions.

The only required task for IRDP routing on an interface is to enable IRDP processing on that interface. When enabled, the default parameters apply. You can optionally change any of these parameters.

Beginning in privileged EXEC mode, follow these steps to enable and configure IRDP on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip irdp</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip irdp multicast</td>
</tr>
<tr>
<td>Step 5</td>
<td>ip irdp holdtime seconds</td>
</tr>
<tr>
<td>Step 6</td>
<td>ip irdp maxadvertinterval seconds</td>
</tr>
<tr>
<td>Step 7</td>
<td>ip irdp minadvertinterval seconds</td>
</tr>
<tr>
<td>Step 8</td>
<td>ip irdp preference number</td>
</tr>
<tr>
<td>Step 9</td>
<td>ip irdp address address [number]</td>
</tr>
<tr>
<td>Step 10</td>
<td>end</td>
</tr>
<tr>
<td>Step 11</td>
<td>show ip irdp</td>
</tr>
<tr>
<td>Step 12</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>
Configuring Broadcast Packet Handling

After configuring an IP interface address, you can enable routing and configure one or more routing protocols, or you can configure the way the switch responds to network broadcasts. A broadcast is a data packet destined for all hosts on a physical network. The switch supports two kinds of broadcasting:

- A directed broadcast packet is sent to a specific network or series of networks. A directed broadcast address includes the network or subnet fields.
- A flooded broadcast packet is sent to every network.

You can also limit broadcast, unicast, and multicast traffic on Layer 2 interfaces by using the `storm-control` interface configuration commands. For more information, see Chapter 20, “Configuring Port-Based Traffic Control.”

Routers provide some protection from broadcast storms by limiting their extent to the local cable. Bridges (including intelligent bridges), because they are Layer 2 devices, forward broadcasts to all network segments, thus propagating broadcast storms. The best solution to the broadcast storm problem is to use a single broadcast address scheme on a network. In most modern IP implementations, you can set the address to be used as the broadcast address. Many implementations, including the one in the Catalyst 3550 switch, support several addressing schemes for forwarding broadcast messages.

Perform the tasks in these sections to enable these schemes:

- Enabling Directed Broadcast-to-Physical Broadcast Translation, page 30-13
- Forwarding UDP Broadcast Packets and Protocols, page 30-14
- Establishing an IP Broadcast Address, page 30-15
- Flooding IP Broadcasts, page 30-16

Enabling Directed Broadcast-to-Physical Broadcast Translation

By default, IP directed broadcasts are dropped; they are not forwarded. Dropping IP-directed broadcasts makes routers less susceptible to denial-of-service attacks.

You can enable forwarding of IP-directed broadcasts on an interface where the broadcast becomes a physical (MAC-layer) broadcast. Only those protocols configured by using the `ip forward-protocol` global configuration command are forwarded.

You can specify an access list to control which broadcasts are forwarded. When an access list is specified, only those IP packets permitted by the access list are eligible to be translated from directed broadcasts to physical broadcasts. For more information on access lists, see Chapter 27, “Configuring Network Security with ACLs.”
Beginning in privileged EXEC mode, follow these steps to enable forwarding of IP-directed broadcasts on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip directed-broadcast [access-list-number]</td>
</tr>
<tr>
<td>Step 4</td>
<td>exit</td>
</tr>
<tr>
<td>Step 5</td>
<td>ip forward-protocol {udp [port]</td>
</tr>
<tr>
<td></td>
<td>• udp—Forward UDP datagrams.</td>
</tr>
<tr>
<td></td>
<td>• port: (Optional) Destination port that controls which UDP services are forwarded.</td>
</tr>
<tr>
<td></td>
<td>• nd—Forward ND datagrams.</td>
</tr>
<tr>
<td></td>
<td>• sdns—Forward SDNS datagrams</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
</tr>
<tr>
<td>Step 7</td>
<td>show ip interface [interface-id]</td>
</tr>
<tr>
<td>Step 8</td>
<td>show running-config</td>
</tr>
<tr>
<td></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the no ip directed-broadcast interface configuration command to disable translation of directed broadcast to physical broadcasts. Use the no ip forward-protocol global configuration command to remove a protocol or port.

**Forwarding UDP Broadcast Packets and Protocols**

User Datagram Protocol (UDP) is an IP host-to-host layer protocol, as is TCP. UDP provides a low-overhead, connectionless session between two end systems and does not provide for acknowledgment of received datagrams. Network hosts occasionally use UDP broadcasts to determine address, configuration, and name information. If such a host is on a network segment that does not include a server, UDP broadcasts are normally not forwarded. You can remedy this situation by configuring an interface on a router to forward certain classes of broadcasts to a helper address. You can use more than one helper address per interface.

You can specify a UDP destination port to control which UDP services are forwarded. You can specify multiple UDP protocols. You can also specify the Network Disk (ND) protocol, which is used by older diskless Sun workstations and the network security protocol SDNS.

By default, both UDP and ND forwarding are enabled if a helper address has been defined for an interface. The description for the ip forward-protocol interface configuration command in the Cisco IOS IP and IP Routing Command Reference for Release 12.1 lists the ports that are forwarded by default if you do not specify any UDP ports.
If you do not specify any UDP ports when you configure the forwarding of UDP broadcasts, you are configuring the router to act as a BOOTP forwarding agent. BOOTP packets carry Dynamic Host Configuration Protocol (DHCP) information.

Beginning in privileged EXEC mode, follow these steps to enable forwarding UDP broadcast packets on an interface and specify the destination address:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip helper-address address</td>
</tr>
<tr>
<td>Step 4</td>
<td>exit</td>
</tr>
<tr>
<td>Step 5</td>
<td>ip forward-protocol {udp [port]</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
</tr>
<tr>
<td>Step 7</td>
<td>show ip interface [interface-id] show running-config</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the no ip helper-address interface configuration command to disable the forwarding of broadcast packets to specific addresses. Use the no ip forward-protocol global configuration command to remove a protocol or port.

### Establishing an IP Broadcast Address

The most popular IP broadcast address (and the default) is an address consisting of all ones (255.255.255.255). However, the switch can be configured to generate any form of IP broadcast address.

Beginning in privileged EXEC mode, follow these steps to set the IP broadcast address on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip broadcast-address ip-address</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show ip interface [interface-id]</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To restore the default IP broadcast address, use the no ip broadcast-address interface configuration command.
Flooding IP Broadcasts

You can allow IP broadcasts to be flooded throughout your internetwork in a controlled fashion by using the database created by the bridging STP. Using this feature also prevents loops. To support this capability, bridging must be configured on each interface that is to participate in the flooding. If bridging is not configured on an interface, it still can receive broadcasts. However, the interface never forwards broadcasts it receives, and the router never uses that interface to send broadcasts received on a different interface.

Packets that are forwarded to a single network address using the IP helper-address mechanism can be flooded. Only one copy of the packet is sent on each network segment.

To be considered for flooding, packets must meet these criteria. (Note that these are the same conditions used to consider packet forwarding using IP helper addresses.)

- The packet must be a MAC-level broadcast.
- The packet must be an IP-level broadcast.
- The packet must be a TFTP, DNS, Time, NetBIOS, ND, or BOOTP packet, or a UDP specified by the `ip forward-protocol udp` global configuration command.
- The time-to-live (TTL) value of the packet must be at least two.

A flooded UDP datagram is given the destination address specified with the `ip broadcast-address` interface configuration command on the output interface. The destination address can be set to any address. Thus, the destination address might change as the datagram propagates through the network. The source address is never changed. The TTL value is decremented.

When a flooded UDP datagram is sent out an interface (and the destination address possibly changed), the datagram is handed to the normal IP output routines and is, therefore, subject to access lists, if they are present on the output interface.

Beginning in privileged EXEC mode, follow these steps to use the bridging spanning-tree database to flood UDP datagrams:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip forward-protocol spanning-tree</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the `no ip forward-protocol spanning-tree` global configuration command to disable the flooding of IP broadcasts.

In the Catalyst 3550 switch, the majority of packets are forwarded in hardware; most packets do not go through the switch CPU. For those packets that do go to the CPU, you can speed up spanning tree-based UDP flooding by a factor of about four to five times by using turbo-flooding. This feature is supported over Ethernet interfaces configured for ARP encapsulation.
Beginning in privileged EXEC mode, follow these steps to increase spanning-tree-based flooding:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip forward-protocol</td>
<td>Use the spanning-tree database to speed up flooding of UDP datagrams.</td>
</tr>
<tr>
<td></td>
<td>turbo-flood</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
<td>Return to privileged EXEC mode</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
<td>Verify your entry</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config</td>
<td>(Optional) Save your entry in the configuration file.</td>
</tr>
<tr>
<td></td>
<td>startup-config</td>
<td></td>
</tr>
</tbody>
</table>

To disable this feature, use the `no ip forward-protocol turbo-flood` global configuration command.

**Monitoring and Maintaining IP Addressing**

When the contents of a particular cache, table, or database have become or are suspected to be invalid, you can remove all its contents by using the `clear` privileged EXEC commands. Table 30-3 lists the commands for clearing contents.

**Table 30-3 Commands to Clear Caches, Tables, and Databases**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear arp-cache</td>
<td>Clear the IP ARP cache and the fast-switching cache.</td>
</tr>
<tr>
<td>clear host {name</td>
<td>Remove one or all entries from the host name and the address cache.</td>
</tr>
<tr>
<td>*}</td>
<td></td>
</tr>
<tr>
<td>clear ip route</td>
<td>Remove one or more routes from the IP routing table.</td>
</tr>
<tr>
<td>{network [mask]</td>
<td></td>
</tr>
<tr>
<td>*}</td>
<td></td>
</tr>
</tbody>
</table>

You can display specific statistics, such as the contents of IP routing tables, caches, and databases; the reachability of nodes; and the routing path that packets are taking through the network. Table 30-4 lists the privileged EXEC commands for displaying IP statistics.

**Table 30-4 Commands to Display Caches, Tables, and Databases**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show arp</td>
<td>Display the entries in the ARP table.</td>
</tr>
<tr>
<td>show hosts</td>
<td>Display the default domain name, style of lookup service, name server hosts, and the cached list of host names and addresses.</td>
</tr>
<tr>
<td>show ip aliases</td>
<td>Display IP addresses mapped to TCP ports (aliases).</td>
</tr>
<tr>
<td>show ip arp</td>
<td>Display the IP ARP cache.</td>
</tr>
<tr>
<td>show ip interface [interface-id]</td>
<td>Display the IP status of interfaces.</td>
</tr>
<tr>
<td>show ip irdp</td>
<td>Display IRDP values.</td>
</tr>
<tr>
<td>show ip masks address</td>
<td>Display the masks used for network addresses and the number of subnets using each mask.</td>
</tr>
<tr>
<td>show ip redirects</td>
<td>Display the address of a default gateway.</td>
</tr>
<tr>
<td>show ip route [address [mask]]</td>
<td>Display the current state of the routing table.</td>
</tr>
<tr>
<td>show ip route summary</td>
<td>Display the current state of the routing table in summary form.</td>
</tr>
</tbody>
</table>
Enabling IP Unicast Routing

By default, the switch is in Layer 2 switching mode and IP routing is disabled. To use the Layer 3 capabilities of the switch, you must enable IP routing.

Beginning in privileged EXEC mode, follow these steps to enable IP routing:

Use the `no ip routing` global configuration command to disable routing.

This example shows how to enable IP routing using RIP as the routing protocol:

```
Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# ip routing
Switch(config)# router rip
Switch(config-router)# network 10.0.0.0
Switch(config-router)# end
```

You can now set up parameters for the selected routing protocols as described in these sections:

- Configuring RIP, page 30-19
- Configuring IGRP, page 30-24
- Configuring OSPF, page 30-29
- Configuring EIGRP, page 30-38
- Configuring BGP, page 30-44
Configuring RIP

The Routing Information Protocol (RIP) is an interior gateway protocol (IGP) created for use in small, homogeneous networks. It is a distance-vector routing protocol that uses broadcast User Datagram Protocol (UDP) data packets to exchange routing information. The protocol is documented in RFC 1058. You can find detailed information about RIP in IP Routing Fundamentals, published by Cisco Press.

Note

RIP is the only routing protocol supported by the SMI; other routing protocols require the EMI on the switch.

Using RIP, the switch sends routing information updates (advertisements) every 30 seconds. If a router does not receive an update from another router for 180 seconds or more, it marks the routes served by that router as unusable. If there is still no update after 240 seconds, the router removes all routing table entries for the non-updating router.

RIP uses hop counts to rate the value of different routes. The hop count is the number of routers that can be traversed in a route. A directly connected network has a hop count of zero; a network with a hop count of 16 is unreachable. This small range (0 to 15) makes RIP unsuitable for large networks.

If the router has a default network path, RIP advertises a route that links the router to the pseudonetwork 0.0.0.0. The 0.0.0.0 network does not exist; it is treated by RIP as a network to implement the default routing feature. The switch advertises the default network if a default was learned by RIP or if the router has a gateway of last resort and RIP is configured with a default metric. RIP sends updates to the interfaces in specified networks. If an interface’s network is not specified, it is not advertised in any RIP update.

This section briefly describes how to configure RIP. It includes this information:

- Default RIP Configuration, page 30-19
- Configuring Basic RIP Parameters, page 30-20
- Configuring RIP Authentication, page 30-22
- Configuring Summary Addresses and Split Horizon, page 30-22

Default RIP Configuration

Table 30-5 shows the default RIP configuration.

**Table 30-5  Default RIP Configuration**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto summary</td>
<td>Enabled.</td>
</tr>
<tr>
<td>Default-information originate</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Default metric</td>
<td>Built-in; automatic metric translations.</td>
</tr>
<tr>
<td>IP RIP authentication key-chain</td>
<td>No authentication. Authentication mode: clear text.</td>
</tr>
<tr>
<td>IP RIP receive version</td>
<td>According to the <code>version</code> router configuration command.</td>
</tr>
<tr>
<td>IP RIP send version</td>
<td>According to the <code>version</code> router configuration command.</td>
</tr>
<tr>
<td>IP RIP triggered</td>
<td>According to the <code>version</code> router configuration command.</td>
</tr>
</tbody>
</table>
Configuring Basic RIP Parameters

To configure RIP, you enable RIP routing for a network and optionally configure other parameters.

Beginning in privileged EXEC mode, follow these steps to enable and configure RIP:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip routing</td>
<td>Enable IP routing (required only if IP routing is disabled).</td>
</tr>
<tr>
<td>Step 3 router rip</td>
<td>Enable a RIP routing process, and enter router configuration mode.</td>
</tr>
<tr>
<td>Step 4 network network number</td>
<td>Associate a network with a RIP routing process. You can specify multiple network commands. RIP routing updates are sent and received through interfaces only on these networks.</td>
</tr>
<tr>
<td>Step 5 neighbor ip-address</td>
<td>(Optional) Define a neighboring router with which to exchange routing information. This step allows routing updates from RIP (normally a broadcast protocol) to reach nonbroadcast networks.</td>
</tr>
<tr>
<td>Step 6 offset list [access-list number</td>
<td>name] [in</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP split horizon</td>
<td>Varies with media.</td>
</tr>
<tr>
<td>Neighbor</td>
<td>None defined.</td>
</tr>
<tr>
<td>Network</td>
<td>None specified.</td>
</tr>
<tr>
<td>Offset list</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Output delay</td>
<td>0 milliseconds.</td>
</tr>
<tr>
<td>Timers basic</td>
<td>• Update: 30 seconds.</td>
</tr>
<tr>
<td></td>
<td>• Invalid: 180 seconds.</td>
</tr>
<tr>
<td></td>
<td>• Hold-down: 180 seconds.</td>
</tr>
<tr>
<td></td>
<td>• Flush: 240 seconds.</td>
</tr>
<tr>
<td>Validate-update-source</td>
<td>Enabled.</td>
</tr>
<tr>
<td>Version</td>
<td>Receives RIP version 1 and 2 packets; sends version 1 packets.</td>
</tr>
</tbody>
</table>
Configuring RIP

To turn off the RIP routing process, use the `no router rip` global configuration command.

To display the parameters and current state of the active routing protocol process, use the `show ip protocols` privileged EXEC command. Use the `show ip rip database` privileged EXEC command to display summary address entries in the RIP database.
Configuring RIP Authentication

RIP version 1 does not support authentication. If you are sending and receiving RIP Version 2 packets, you can enable RIP authentication on an interface. The key chain determines the set of keys that can be used on the interface. If a key chain is not configured, no authentication is performed, not even the default. Therefore, you must also perform the tasks in the “Managing Authentication Keys” section on page 30-88.

The switch supports two modes of authentication on interfaces for which RIP authentication is enabled: plain text and MD5. The default is plain text.

Beginning in privileged EXEC mode, follow these steps to configure RIP authentication on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip rip authentication key-chain name-of-chain</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip rip authentication mode {text</td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Step 6</td>
<td>show running-config interface [interface-id]</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To restore clear text authentication, use the no ip rip authentication mode interface configuration command. To prevent authentication, use the no ip rip authentication key-chain interface configuration command.

Configuring Summary Addresses and Split Horizon

Routers connected to broadcast-type IP networks and using distance-vector routing protocols normally use the split-horizon mechanism to reduce the possibility of routing loops. Split horizon blocks information about routes from being advertised by a router on any interface from which that information originated. This feature usually optimizes communication among multiple routers, especially when links are broken.

Note

In general, disabling split horizon is not recommended unless you are certain that your application requires it to properly advertise routes.

If you want to configure an interface running RIP to advertise a summarized local IP address pool on a network access server for dial-up clients, use the ip summary-address rip interface configuration command.

Note

If split horizon is enabled, neither autosummary nor interface IP summary addresses are advertised.
Beginning in privileged EXEC mode, follow these steps to set an interface to advertise a summarized local IP address and to disable split horizon on the interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> interface interface-id</td>
<td>Enter interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td><strong>Step 3</strong> ip address ip-address subnet-mask</td>
<td>Configure the IP address and IP subnet.</td>
</tr>
<tr>
<td><strong>Step 4</strong> ip summary-address rip ip address ip-network mask</td>
<td>Configure the IP address to be summarized and the IP network mask.</td>
</tr>
<tr>
<td><strong>Step 5</strong> no ip split horizon</td>
<td>Disable split horizon on the interface.</td>
</tr>
<tr>
<td><strong>Step 6</strong> end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 7</strong> show ip interface interface-id</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 8</strong> copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable IP summarization, use the **no ip summary-address rip** router configuration command.

In this example, the major net is 10.0.0.0. The summary address 10.2.0.0 overrides the autosummary address of 10.0.0.0 so that 10.2.0.0 is advertised out interface Gigabit Ethernet 0.2, and 10.0.0.0 is not advertised. In the example, if the interface is still in Layer 2 mode (the default), you must enter a **no switchport** interface configuration command before entering the **ip address** interface configuration command.

![Note](image.png)

If split horizon is enabled, neither autosummary nor interface summary addresses (those configured with the **ip summary-address rip** router configuration command) are advertised.

```plaintext
Switch(config)# router rip
Switch(config-router)# interface gi0/2
Switch(config-if)# ip address 10.1.5.1 255.255.255.0
Switch(config-if)# ip summary-address rip 10.2.0.0 255.255.0.0
Switch(config-if)# no ip split-horizon
Switch(config-if)# exit
Switch(config)# router rip
Switch(config-router)# network 10.0.0.0
Switch(config-router)# neighbor 2.2.2.2 peer-group mygroup
Switch(config-router)# end
```
Configuring IGRP

Interior Gateway Routing Protocol (IGRP) is a dynamic, distance-vector routing, proprietary Cisco protocol for routing in an autonomous system (AS) that contains large, arbitrarily complex networks with diverse bandwidth and delay characteristics. IGRP uses a combination of user-configurable metrics, including internetwork delay, bandwidth, reliability, and load. IGRP also advertises types of routes: interior, system, and exterior, as shown in Figure 30-4.

- **Interior routes** are routes between subnets in the network attached to a router interface. If the network attached to a router is not subnetted, IGRP does not advertise interior routes.
- **System routes** are routes to networks within an autonomous system. The router derives system routes from directly connected network interfaces and system route information provided by other IGRP-speaking routers or access servers. System routes do not include subnet information.
- **Exterior routes** are routes to networks outside the AS that are considered when identifying a gateway of last resort. The router chooses a gateway of last resort from the list of exterior routes that IGRP provides if it does not have a better route for a packet and the destination is not a connected network. If the AS has more than one connection to an external network, different routers can choose different exterior routers as the gateway of last resort.

**Figure 30-4 Interior, System, and Exterior Routes**

By default, a router running IGRP sends an update broadcast every 90 seconds and declares a route inaccessible if it does not receive an update from the first router in the route within three update periods (270 seconds). After seven update periods (630 seconds), the route is removed from the routing table.

This section briefly describes how to configure IGRP. It includes this information:

- Default IGRP Configuration, page 30-25
- Understanding Load Balancing and Traffic Distribution Control, page 30-25
- Configuring Basic IGRP Parameters, page 30-26
- Configuring Split Horizon, page 30-28
Default IGRP Configuration

Table 30-6 shows the default IGRP configuration.

Table 30-6  Default IGRP Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP split horizon</td>
<td>Varies with media.</td>
</tr>
<tr>
<td>Metric holddown</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Metric maximum-hops</td>
<td>100 hops.</td>
</tr>
<tr>
<td>Neighbor</td>
<td>None defined.</td>
</tr>
<tr>
<td>Network</td>
<td>None specified.</td>
</tr>
<tr>
<td>Offset-list</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Set metric</td>
<td>None set in route map.</td>
</tr>
<tr>
<td>Timers basic</td>
<td>Update: 90 seconds.</td>
</tr>
<tr>
<td></td>
<td>Invalid: 270 seconds.</td>
</tr>
<tr>
<td></td>
<td>Hold-down: 280 seconds.</td>
</tr>
<tr>
<td></td>
<td>Flush: 630 seconds.</td>
</tr>
<tr>
<td></td>
<td>Sleeptime: 0 milliseconds.</td>
</tr>
<tr>
<td>Traffic-share</td>
<td>Distributed proportionately to the ratios of the metrics.</td>
</tr>
</tbody>
</table>

Routers running IGRP use flash and poison-reverse updates to speed up the convergence of the routing algorithm. Flash updates are updates sent before the standard interval, notifying other routers of a metric change. Poison-reverse updates are intended to defeat larger routing loops caused by increases in routing metrics. The poison-reverse updates are sent to remove a route and place it in hold-down, which keeps new routing information from being used for a certain period of time.

Understanding Load Balancing and Traffic Distribution Control

IGRP can simultaneously use an asymmetric set of paths for a given destination. This unequal-cost load balancing allows traffic to be distributed among up to four unequal-cost paths to provide greater overall throughput and reliability.

Alternate path variance (that is, the difference in desirability between the primary and alternate paths) determines the feasibility of a potential route. An alternate route is feasible if the next router in the path is closer to the destination (has a lower metric value) than the router being used, and if the metric for the entire alternate path is within the variance. Only feasible paths are used for load balancing and are included in the routing table. These conditions limit the number of load balancing occurrences, but ensure that the dynamics of the network remain stable.

These general rules apply to IGRP unequal-cost load balancing:

- IGRP accepts up to four paths for a given destination network.
- The local best metric must be greater than the metric learned from the next router; that is, the next hop router must be closer (have a smaller metric value) to the destination than the local best metric.
The alternative path metric must be within the specified variance of the local best metric. The multiplier times the local best metric for the destination must be greater than or equal to the metric through the next router.

If these conditions are met, the route is determined to be feasible and can be added to the routing table. By default, the amount of variance is set to one (equal-cost load balancing). Use the **variance** router configuration command to define how much worse an alternate path can be before that path is disallowed.

If variance is configured as described in the preceding section, IGRP or Enhanced IGRP distributes traffic among multiple routes of unequal cost to the same destination. If you want faster convergence to alternate routes, but you do not want to send traffic across inferior routes in the normal case, you might prefer to have no traffic flow along routes with higher metrics. Use the **traffic-share** router configuration command to control distribution of traffic among multiple routes of unequal cost.

**Note**
For more information and examples, refer to the **Cisco IOS IP and IP Routing Configuration Guide for Release 12.1**.

## Configuring Basic IGRP Parameters

Beginning in privileged EXEC mode, follow these steps to configure IGRP. Configuring the routing process is required; other steps are optional:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>configure terminal</strong></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>ip routing</strong></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>router igrp autonomous-system</strong></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>network network-number</strong></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>**offset list [access-list number</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>neighbor ip-address</strong></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><strong>metric weights tos k1 k2 k3 k4 k5</strong></td>
</tr>
</tbody>
</table>

- **tos**—Type of services; the default is 0.
- **k1–k5**—Constants that convert a metric vector into a scalar quantity. Defaults for k1 and k3 are 1; all others are 0.
Chapter 30  Configuring IP Unicast Routing

Configuring IGRP

To shut down an IGRP routing process, use the `no router igrp` global configuration command.

This example shows how to configure a router for IGRP and assign it AS 109. The `network` router configuration commands show the networks directly connected to the router.

```
Switch(config)# router igrp 109
Switch(config-router)# network 131.108.0.0
Switch(config-router)# network 192.31.7.0
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 8** timers basic update invalid holddown flush [sleeptime] | (Optional) Adjust routing protocol timers.  
  - `update`—The time (in seconds) between sending of routing updates. The default is 90 seconds.  
  - `invalid`—The timer interval (in seconds) after which a route is declared invalid. The default is 270 seconds.  
  - `holddown`—The time (in seconds) during which routing information about better paths is suppressed. The default is 280 seconds.  
  - `flush`—The time (in seconds) that must pass before a route is removed from the routing table. The default is 630 seconds.  
  - `sleeptime`—Interval in milliseconds for postponing routing updates. The default is 0. |
| **Step 9** no metric holddown | (Optional) Disable the IGRP hold-down period. The route to a network is placed in holddown if the router learns that the network is farther away than previously known or is down. Holddown keeps new routing information from being used for a certain period of time and prevents routing loops caused by slow convergence. This command disables holddown, which increases the network’s ability to quickly respond to topology changes. Use the `metric holddown` command only if other routers or access servers within the IGRP AS are not configured with the `no metric holddown` command. If all routers are not configured the same way, you increase the possibility of routing loops. |
| **Step 10** metric maximum-hops hops | (Optional) Configure the maximum network diameter. Routes with hop counts exceeding this diameter are not advertised. The default is 100 hops; the maximum is 255 hops. |
| **Step 11** no validate-update-source | (Optional) Disable validation of the source IP address of incoming routing updates. By default, the switch validates the source IP address of incoming routing updates and discards the update if the source address is not valid. |
| **Step 12** variance multiplier | (Optional) Define the variance associated with a particular path to enable unequal-cost load balancing if desired, balancing traffic across all feasible paths to converge to a new path if a path should fail. The multiplier can be from 1 to 128; the default is 1 (equal-cost load balancing). |
| **Step 13** traffic-share {balanced | min} | (Optional) Distribute traffic by one of these methods:  
  - `balanced`—Proportionately to the ratios of metrics  
  - `min`—By the minimum-cost route. |
| **Step 14** end | Return to privileged EXEC mode. |
| **Step 15** show ip protocols | Verify your entries. |
| **Step 16** copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To shut down an IGRP routing process, use the `no router igrp` global configuration command.
Configuring Split Horizon

Routers connected to broadcast-type IP networks and using distance-vector routing protocols normally use the split-horizon mechanism to reduce the possibility of routing loops. Split horizon blocks information about routes from being advertised by a router on any interface from which that information originated. This feature can optimize communication among multiple routers, especially when links are broken.

Note

In general, we do not recommend disabling split horizon unless you are certain that your application requires it to properly advertise routes.

Beginning in privileged EXEC mode, follow these steps to disable split horizon on the interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to configure.</td>
</tr>
<tr>
<td>Step 3: ip address ip-address subnet-mask</td>
<td>Configure the IP address and IP subnet.</td>
</tr>
<tr>
<td>Step 4: no ip split-horizon</td>
<td>Disable split horizon on the interface.</td>
</tr>
<tr>
<td>Step 5: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6: show ip interface interface-id</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 7: copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To enable the split horizon mechanism, use the `ip split-horizon` interface configuration command.
Configuring OSPF

This section briefly describes how to configure Open Shortest Path First (OSPF). For a complete description of the OSPF commands, refer to the “OSPF Commands” chapter of the Cisco IOS IP and IP Routing Command Reference for Release 12.1.

Note

OSPF classifies different media into broadcast, nonbroadcast, and point-to-point networks. The Catalyst 3550 switch supports broadcast (Ethernet, Token Ring, and FDDI) and point-to-point networks (Ethernet interfaces configured as point-to-point links).

OSPF is an Interior Gateway Protocol (IGP) designed expressly for IP networks, supporting IP subnetting and tagging of externally derived routing information. OSPF also allows packet authentication and uses IP multicast when sending and receiving packets. The Cisco implementation supports RFC 1253, OSPF management information base (MIB).

The Cisco implementation conforms to the OSPF Version 2 specifications with these key features:

- Definition of stub areas is supported.
- Routes learned through any IP routing protocol can be redistributed into another IP routing protocol. At the intradomain level, this means that OSPF can import routes learned through IGRP and RIP. OSPF routes can also be exported into IGRP and RIP.
- Plain text and MD5 authentication among neighboring routers within an area is supported.
- Configurable routing interface parameters include interface output cost, retransmission interval, interface transmit delay, router priority, router dead and hello intervals, and authentication key.
- Virtual links are supported.
- Not-so-stubby-areas (NSSAs) per RFC 1587 are supported.

OSPF typically requires coordination among many internal routers, area border routers (ABRs) connected to multiple areas, and autonomous system boundary routers (ASBRs). The minimum configuration would use all default parameter values, no authentication, and interfaces assigned to areas. If you customize your environment, you must ensure coordinated configuration of all routers.

This section briefly describes how to configure OSPF. It includes this information:

- Default OSPF Configuration, page 30-30
- Configuring Basic OSPF Parameters, page 30-31
- Configuring OSPF Interfaces, page 30-32
- Configuring OSPF Area Parameters, page 30-33
- Configuring Other OSPF Parameters, page 30-34
- Changing LSA Group Pacing, page 30-36
- Configuring a Loopback Interface, page 30-36
- Monitoring OSPF, page 30-37
Default OSPF Configuration

Table 30-7 shows the default OSPF configuration.

Table 30-7  Default OSPF Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface parameters</td>
<td>Cost: No default cost predefined.</td>
</tr>
<tr>
<td></td>
<td>Retransmit interval: 5 seconds.</td>
</tr>
<tr>
<td></td>
<td>Transmit delay: 1 second.</td>
</tr>
<tr>
<td></td>
<td>Priority: 1.</td>
</tr>
<tr>
<td></td>
<td>Hello interval: 10 seconds.</td>
</tr>
<tr>
<td></td>
<td>Dead interval: 4 times the hello interval.</td>
</tr>
<tr>
<td></td>
<td>No authentication.</td>
</tr>
<tr>
<td></td>
<td>No password specified.</td>
</tr>
<tr>
<td></td>
<td>MD5 authentication disabled.</td>
</tr>
<tr>
<td>Area</td>
<td>Authentication type: 0 (no authentication).</td>
</tr>
<tr>
<td></td>
<td>Default cost: 1.</td>
</tr>
<tr>
<td></td>
<td>Range: Disabled.</td>
</tr>
<tr>
<td></td>
<td>Stub: No stub area defined.</td>
</tr>
<tr>
<td></td>
<td>NSSA: No NSSA area defined.</td>
</tr>
<tr>
<td>Auto cost</td>
<td>100 Mbps.</td>
</tr>
<tr>
<td>Default-information originate</td>
<td>Disabled. When enabled, the default metric setting is 10, and the external route type default is Type 2.</td>
</tr>
<tr>
<td>Default metric</td>
<td>Built-in, automatic metric translation, as appropriate for each routing protocol.</td>
</tr>
<tr>
<td>Distance OSPF</td>
<td>dist1 (all routes within an area): 110.</td>
</tr>
<tr>
<td></td>
<td>dist2 (all routes from one area to another): 110.</td>
</tr>
<tr>
<td></td>
<td>and dist3 (routes from other routing domains): 110.</td>
</tr>
<tr>
<td>OSPF database filter</td>
<td>Disabled. All outgoing link-state advertisements (LSAs) are flooded to the interface.</td>
</tr>
<tr>
<td>IP OSPF name lookup</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Log adjacency changes</td>
<td>Enabled.</td>
</tr>
<tr>
<td>Neighbor</td>
<td>None specified.</td>
</tr>
<tr>
<td>Neighbor database filter</td>
<td>Disabled. All outgoing LSAs are flooded to the neighbor.</td>
</tr>
<tr>
<td>Network area</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Router ID</td>
<td>No OSPF routing process defined.</td>
</tr>
<tr>
<td>Summary address</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Timers LSA group pacing</td>
<td>240 seconds.</td>
</tr>
</tbody>
</table>
Chapter 30      Configuring IP Unicast Routing

Configuring OSPF

Enabling OSPF requires that you create an OSPF routing process, specify the range of IP addresses to be associated with the routing process, and assign area IDs to be associated with that range.

Beginning in privileged EXEC mode, follow these steps to enable OSPF:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>ip routing</td>
<td>Enable IP routing (required only if IP routing is disabled).</td>
</tr>
<tr>
<td>router ospf process-id</td>
<td>Enable OSPF routing, and enter router configuration mode. The process ID is an internally used identification parameter that is locally assigned and can be any positive integer. Each OSPF routing process has a unique value.</td>
</tr>
<tr>
<td>network address wildcard-mask area area-id</td>
<td>Define an interface on which OSPF runs and the area ID for that interface. You can use the wildcard-mask to use a single command to define one or more multiple interfaces to be associated with a specific OSPF area. The area ID can be a decimal value or an IP address.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show ip protocols</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To terminate an OSPF routing process, use the no router ospf process-id global configuration command.

This example shows how to configure an OSPF routing process and assign it a process number of 109:

Switch(config)# router ospf 109
Switch(config-router)# network 131.108.0.0 255.255.255.0 area 24
Switch(config-router)# end

Timers shortest path first (spf) spf delay: 5 seconds.
spf-holdtime: 10 seconds.

Virtual link
No area ID or router ID defined.
Hello interval: 10 seconds.
Retransmit interval: 5 seconds.
Transmit delay: 1 second.
Dead interval: 40 seconds.
Authentication key: no key predefined.
Message-digest key (MD5): no key predefined.
Chapter 30      Configuring IP Unicast Routing

Configuring OSPF Interfaces

You can use the ip ospf interface configuration commands to modify interface-specific OSPF parameters. You are not required to modify any of these parameters, but some interface parameters (hello interval, dead interval, and authentication key) must be consistent across all routers in an attached network. If you modify these parameters, be sure all routers in the network have compatible values.

Note

The ip ospf interface configuration commands are all optional.

Beginning in privileged EXEC mode, follow these steps to modify OSPF interface parameters:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1  configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2  interface interface-id</td>
<td>Enter interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>Step 3  ip ospf cost</td>
<td>(Optional) Explicitly specify the cost of sending a packet on the interface.</td>
</tr>
<tr>
<td>Step 4  ip ospf retransmit-interval seconds</td>
<td>(Optional) Specify the number of seconds between link state advertisement transmissions. The range is 1 to 65535 seconds. The default is 5 seconds.</td>
</tr>
<tr>
<td>Step 5  ip ospf transmit-delay seconds</td>
<td>(Optional) Set the estimated number of seconds to wait before sending a link state update packet. The range is 1 to 65535 seconds. The default is 1 second.</td>
</tr>
<tr>
<td>Step 6  ip ospf priority number</td>
<td>(Optional) Set priority to help determine the OSPF designated router for a network. The range is from 0 to 255. The default is 1.</td>
</tr>
<tr>
<td>Step 7  ip ospf hello-interval seconds</td>
<td>(Optional) Set the number of seconds between hello packets sent on an OSPF interface. The value must be the same for all nodes on a network. The range is 1 to 65535 seconds. The default is 10 seconds.</td>
</tr>
<tr>
<td>Step 8  ip ospf dead-interval seconds</td>
<td>(Optional) Set the number of seconds after the last device hello packet was seen before its neighbors declare the OSPF router to be down. The value must be the same for all nodes on a network. The range is 1 to 65535 seconds. The default is 4 times the hello interval.</td>
</tr>
<tr>
<td>Step 9  ip ospf authentication-key key</td>
<td>(Optional) Assign a password to be used by neighboring OSPF routers. The password can be any string of keyboard-entered characters up to 8 bytes in length. All neighboring routers on the same network must have the same password to exchange OSPF information.</td>
</tr>
<tr>
<td>Step 10 ip ospf message digest-key keyid md5 key</td>
<td>(Optional) Enable MDS authentication.</td>
</tr>
<tr>
<td></td>
<td>• keyid—An identifier from 1 to 255.</td>
</tr>
<tr>
<td></td>
<td>• key—An alphanumeric password of up to 16 bytes.</td>
</tr>
<tr>
<td>Step 11 ip ospf database-filter all out</td>
<td>(Optional) Block flooding of OSPF LSA packets to the interface. By default, OSPF floods new LSAs over all interfaces in the same area, except the interface on which the LSA arrives.</td>
</tr>
<tr>
<td>Step 12 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Configuring OSPF

Use the no form of these commands to remove the configured parameter value or return to the default value.

### Configuring OSPF Area Parameters

You can optionally configure several OSPF area parameters. These parameters include authentication for password-based protection against unauthorized access to an area, stub areas, and not-so-stubby-areas (NSSAs). **Stub areas** are areas into which information on external routes is not sent. Instead, the area border router (ABR) generates a default external route into the stub area for destinations outside the autonomous system (AS). An NSSA does not flood all LSAs from the core into the area, but can import AS external routes within the area by redistribution.

Route summarization is the consolidation of advertised addresses into a single summary route to be advertised by other areas. If network numbers are contiguous, you can use the `area range` router configuration command to configure the ABR to advertise a summary route that covers all networks in the range.

**Note**
The OSPF area router configuration commands are all optional.

Beginning in privileged EXEC mode, follow these steps to configure area parameters:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>router ospf process-id</td>
<td>Enable OSPF routing, and enter router configuration mode.</td>
</tr>
<tr>
<td>3</td>
<td>area area-id authentication</td>
<td>(Optional) Allow password-based protection against unauthorized access to the identified area. The identifier can be either a decimal value or an IP address.</td>
</tr>
<tr>
<td>4</td>
<td>area area-id authentication message-digest</td>
<td>(Optional) Enable MD5 authentication on the area.</td>
</tr>
<tr>
<td>5</td>
<td>area area-id stub [no-summary]</td>
<td>(Optional) Define an area as a stub area. The no-summary keyword prevents an ABR from sending summary link advertisements into the stub area.</td>
</tr>
</tbody>
</table>
| 6    | area area-id nssa [no-redistribution] [default-information-originate] [no-summary] | (Optional) Defines an area as a not-so-stubby-area. Every router within the same area must agree that the area is NSSA. Select one of these keywords:

  - no-redistribution—Select when the router is an NSSA ABR and you want the redistribute command to import routes into normal areas, but not into the NSSA.

  - default-information-originate—Select on an ABR to allow importing type 7 LSAs into the NSSA.

  - no-redistribution—Select to not send summary LSAs into the NSSA. |
Chapter 30      Configuring IP Unicast Routing

Configuring OSPF

You can optionally configure other OSPF parameters in router configuration mode.

- Route summarization: When redistributing routes from other protocols as described in the “Using Route Maps to Redistribute Routing Information” section on page 30-79, each route is advertised individually in an external LSA. To help decrease the size of the OSPF link state database, you can use the summary-address router configuration command to advertise a single router for all the redistributed routes included in a specified network address and mask.

- Virtual links: In OSPF, all areas must be connected to a backbone area. You can establish a virtual link in case of a backbone-continuity break by configuring two Area Border Routers as endpoints of a virtual link. Configuration information includes the identity of the other virtual endpoint (the other ABR) and the nonbackbone link that the two routers have in common (the transit area). Virtual links cannot be configured through a stub area.

- Default route: When you specifically configure redistribution of routes into an OSPF routing domain, the route automatically becomes an autonomous system boundary router (ASBR). You can force the ASBR to generate a default route into the OSPF routing domain.

- Domain Name Server (DNS) names for use in all OSPF show privileged EXEC command displays makes it easier to identify a router than displaying it by router ID or neighbor ID.

- Default Metrics: OSPF calculates the OSPF metric for an interface according to the bandwidth of the interface. The metric is calculated as ref-bw divided by bandwidth, where ref is 10 by default, and bandwidth (bw) is determined by the bandwidth interface configuration command. For multiple links with high bandwidth, you can specify a larger number to differentiate the cost on those links.

- Administrative distance is a rating of the trustworthiness of a routing information source, an integer between 0 and 255, with a higher value meaning a lower trust rating. An administrative distance of 255 means the routing information source cannot be trusted at all and should be ignored. OSPF uses three different administrative distances: routes within an area (interarea), routes to another area (interarea), and routes from another routing domain learned through redistribution (external). You can change any of the distance values.

- Passive interfaces: Because interfaces between two devices on an Ethernet represent only one network segment, to prevent OSPF from sending hello packets for the sending interface, you must configure the sending device to be a passive interface. Both devices can identify each other through the hello packet for the receiving interface.

### Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7 area area-id range address mask</td>
<td>(Optional) Specify an address range for which a single route is advertised. Use this command only with area border routers.</td>
</tr>
<tr>
<td>Step 8 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 9 show ip ospf [process-id]</td>
<td>Display information about the OSPF routing process in general or for a specific process ID to verify configuration.</td>
</tr>
<tr>
<td>show ip ospf [process-id [area-id]] database</td>
<td>Display lists of information related to the OSPF database for a specific router.</td>
</tr>
<tr>
<td>Step 10 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the no form of these commands to remove the configured parameter value or to return to the default value.

### Configuring Other OSPF Parameters

You can optionally configure other OSPF parameters in router configuration mode.

- Route summarization: When redistributing routes from other protocols as described in the “Using Route Maps to Redistribute Routing Information” section on page 30-79, each route is advertised individually in an external LSA. To help decrease the size of the OSPF link state database, you can use the summary-address router configuration command to advertise a single router for all the redistributed routes included in a specified network address and mask.

- Virtual links: In OSPF, all areas must be connected to a backbone area. You can establish a virtual link in case of a backbone-continuity break by configuring two Area Border Routers as endpoints of a virtual link. Configuration information includes the identity of the other virtual endpoint (the other ABR) and the nonbackbone link that the two routers have in common (the transit area). Virtual links cannot be configured through a stub area.

- Default route: When you specifically configure redistribution of routes into an OSPF routing domain, the route automatically becomes an autonomous system boundary router (ASBR). You can force the ASBR to generate a default route into the OSPF routing domain.

- Domain Name Server (DNS) names for use in all OSPF show privileged EXEC command displays makes it easier to identify a router than displaying it by router ID or neighbor ID.

- Default Metrics: OSPF calculates the OSPF metric for an interface according to the bandwidth of the interface. The metric is calculated as ref-bw divided by bandwidth, where ref is 10 by default, and bandwidth (bw) is determined by the bandwidth interface configuration command. For multiple links with high bandwidth, you can specify a larger number to differentiate the cost on those links.

- Administrative distance is a rating of the trustworthiness of a routing information source, an integer between 0 and 255, with a higher value meaning a lower trust rating. An administrative distance of 255 means the routing information source cannot be trusted at all and should be ignored. OSPF uses three different administrative distances: routes within an area (interarea), routes to another area (interarea), and routes from another routing domain learned through redistribution (external). You can change any of the distance values.

- Passive interfaces: Because interfaces between two devices on an Ethernet represent only one network segment, to prevent OSPF from sending hello packets for the sending interface, you must configure the sending device to be a passive interface. Both devices can identify each other through the hello packet for the receiving interface.
**Chapter 30 Configuring IP Unicast Routing**

**Configuring OSPF**

- **Route calculation timers:** You can configure the delay time between when OSPF receives a topology change and when it starts the shortest path first (SPF) calculation and the hold time between two SPF calculations.
- **Log neighbor changes:** You can configure the router to send a syslog message when an OSPF neighbor state changes, providing a high-level view of changes in the router.

Beginning in privileged EXEC mode, follow these steps to configure these OSPF parameters:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>router ospf process-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>summary-address address mask</td>
</tr>
<tr>
<td>Step 4</td>
<td>area area-id virtual-link router-id [hello-interval seconds] [retransmit-interval seconds] [trans] [[authentication-key key] [message-digest-key keyid md5 key]]</td>
</tr>
<tr>
<td>Step 5</td>
<td>default-information originate [always] [metric metric-value] [metric-type type-value] [route-map map-name]</td>
</tr>
<tr>
<td>Step 6</td>
<td>ip ospf name-lookup</td>
</tr>
<tr>
<td>Step 7</td>
<td>ip auto-cost reference-bandwidth ref-bw</td>
</tr>
<tr>
<td>Step 8</td>
<td>distance ospf ([inter-area dist1] [inter-area dist2] [external dist3])</td>
</tr>
<tr>
<td>Step 9</td>
<td>passive-interface type number</td>
</tr>
<tr>
<td>Step 10</td>
<td>timers spf spf-delay spf-holdtime</td>
</tr>
<tr>
<td></td>
<td>• spf-delay—Enter an integer from 0 to 65535. The default is 5 seconds; 0 means no delay.</td>
</tr>
<tr>
<td></td>
<td>• spf-holdtime—Enter an integer from 0 to 65535. The default is 10 seconds; 0 means no delay.</td>
</tr>
<tr>
<td>Step 11</td>
<td>ospf log-adj-changes</td>
</tr>
<tr>
<td>Step 12</td>
<td>end</td>
</tr>
<tr>
<td>Step 13</td>
<td>show ip ospf [process-id [area-id]] database</td>
</tr>
<tr>
<td>Step 14</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>
## Changing LSA Group Pacing

The OSPF LSA group pacing feature allows the router to group OSPF LSAs and pace the refreshing, check-summing, and aging functions for more efficient router use. This feature is enabled by default with a 4-minute default pacing interval, and you will not usually need to modify this parameter. The optimum group pacing interval is inversely proportional to the number of LSAs the router is refreshing, check-summing, and aging. For example, if you have approximately 10,000 LSAs in the database, decreasing the pacing interval would benefit you. If you have a very small database (40 to 100 LSAs), increasing the pacing interval to 10 to 20 minutes might benefit you slightly.

Beginning in privileged EXEC mode, follow these steps to configure OSPF LSA pacing:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1   configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2   router ospf process-id</td>
<td>Enable OSPF routing, and enter router config.</td>
</tr>
<tr>
<td>Step 3   timers lsa-group-pacing</td>
<td>Change the group pacing of LSAs.</td>
</tr>
<tr>
<td>Step 4   end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5   show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6   copy running-config startup-config</td>
<td>(Optional) Save your entries in the config file.</td>
</tr>
</tbody>
</table>

To return to the default value, use the **no timers lsa-group-pacing** router configuration command.

## Configuring a Loopback Interface

OSPF uses the highest IP address configured on the interfaces as its router ID. If this interface is down or removed, the OSPF process must recalculate a new router ID and resend all its routing information out its interfaces. If a loopback interface is configured with an IP address, OSPF uses this IP address as its router ID, even if other interfaces have higher IP addresses. Because loopback interfaces never fail, this provides greater stability. OSPF automatically prefers a loopback interface over other interfaces, and it chooses the highest IP address among all loopback interfaces.

Beginning in privileged EXEC mode, follow these steps to configure a loopback interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1   configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2   interface loopback 0</td>
<td>Create a loopback interface, and enter config mode.</td>
</tr>
<tr>
<td>Step 3   ip address address mask</td>
<td>Assign an IP address to this interface.</td>
</tr>
<tr>
<td>Step 4   end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5   show ip interface</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6   copy running-config startup-config</td>
<td>(Optional) Save your entries in the config file.</td>
</tr>
</tbody>
</table>

Use the **no interface loopback 0** global configuration command to disable the loopback interface.
Monitoring OSPF

You can display specific statistics such as the contents of IP routing tables, caches, and databases. Table 30-8 lists some of the privileged EXEC commands for displaying statistics. For more `show ip ospf database` privileged EXEC command options and for explanations of fields in the resulting display, refer to the Cisco IOS IP and IP Routing Command Reference for Release 12.1.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip ospf [process-id] database [router] [link-state-id]</code></td>
<td>Display lists of information related to the OSPF database.</td>
</tr>
<tr>
<td><code>show ip ospf [process-id] database [router] [self originate]</code></td>
<td></td>
</tr>
<tr>
<td><code>show ip ospf [process-id] database [router] [adv-router [ip-address]]</code></td>
<td></td>
</tr>
<tr>
<td><code>show ip ospf [process-id] database [network] [link-state-id]</code></td>
<td></td>
</tr>
<tr>
<td><code>show ip ospf [process-id] database [summary] [link-state-id]</code></td>
<td></td>
</tr>
<tr>
<td><code>show ip ospf [process-id] database [asbr-summary] [link-state-id]</code></td>
<td></td>
</tr>
<tr>
<td><code>show ip ospf [process-id area-id] database [database-summary]</code></td>
<td></td>
</tr>
<tr>
<td><code>show ip ospf border-routes</code></td>
<td>Display the internal OSPF routing ABR and ASBR table entries.</td>
</tr>
<tr>
<td><code>show ip ospf interface [interface-name]</code></td>
<td>Display OSPF-related interface information.</td>
</tr>
<tr>
<td><code>show ip ospf neighbor [interface-name] [neighbor-id] detail</code></td>
<td>Display OSPF interface neighbor information.</td>
</tr>
<tr>
<td><code>show ip ospf virtual-links</code></td>
<td>Display OSPF-related virtual links information.</td>
</tr>
</tbody>
</table>
Configuring EIGRP

Enhanced IGRP (EIGRP) is a Cisco proprietary enhanced version of the IGRP. Enhanced IGRP uses the same distance vector algorithm and distance information as IGRP; however, the convergence properties and the operating efficiency of Enhanced IGRP are significantly improved.

The convergence technology employs an algorithm referred to as the Diffusing Update Algorithm (DUAL), which guarantees loop-free operation at every instant throughout a route computation and allows all devices involved in a topology change to synchronize at the same time. Routers that are not affected by topology changes are not involved in recomputations.

IP EIGRP provides increased network width. With RIP, the largest possible width of your network is 15 hops. When IGRP is enabled, the largest possible width is 224 hops. Because the EIGRP metric is large enough to support thousands of hops, the only barrier to expanding the network is the transport-layer hop counter. EIGRP increments the transport control field only when an IP packet has traversed 15 routers and the next hop to the destination was learned through EIGRP. When a RIP route is used as the next hop to the destination, the transport control field is incremented as usual.

EIGRP offers these features:

- Fast convergence.
- Incremental updates when the state of a destination changes, instead of sending the entire contents of the routing table, minimizing the bandwidth required for EIGRP packets.
- Less CPU usage than IGRP because full update packets need not be processed each time they are received.
- Protocol-independent neighbor discovery mechanism to learn about neighboring routers.
- Variable-length subnet masks (VLSMs).
- Arbitrary route summarization.
- EIGRP scales to large networks.

Enhanced IGRP has these four basic components:

- **Neighbor discovery and recovery** is the process that routers use to dynamically learn of other routers on their directly attached networks. Routers must also discover when their neighbors become unreachable or inoperative. Neighbor discovery and recovery is achieved with low overhead by periodically sending small hello packets. As long as hello packets are received, the Cisco IOS software can determine that a neighbor is alive and functioning. When this status is determined, the neighboring routers can exchange routing information.

- **The reliable transport protocol** is responsible for guaranteed, ordered delivery of EIGRP packets to all neighbors. It supports intermixed transmission of multicast and unicast packets. Some EIGRP packets must be sent reliably, and others need not be. For efficiency, reliability is provided only when necessary. For example, on a multiaccess network that has multicast capabilities (such as Ethernet), it is not necessary to send hellos reliably to all neighbors individually. Therefore, EIGRP sends a single multicast hello with an indication in the packet informing the receivers that the packet need not be acknowledged. Other types of packets (such as updates) require acknowledgment, which is shown in the packet. The reliable transport has a provision to send multicast packets quickly when there are unacknowledged packets pending. Doing so helps ensure that convergence time remains low in the presence of varying speed links.

- **The DUAL finite state machine** embodies the decision process for all route computations. It tracks all routes advertised by all neighbors. DUAL uses the distance information (known as a metric) to select efficient, loop-free paths. DUAL selects routes to be inserted into a routing table based on feasible successors. A successor is a neighboring router used for packet forwarding that has a least-cost path to a destination that is guaranteed not to be part of a routing loop. When there are no
feasible successors, but there are neighbors advertising the destination, a recomputation must occur. This is the process whereby a new successor is determined. The amount of time it takes to recompute the route affects the convergence time. Recomputation is processor-intensive; it is advantageous to avoid recomputation if it is not necessary. When a topology change occurs, DUAL tests for feasible successors. If there are feasible successors, it uses any it finds to avoid unnecessary recomputation.

- The protocol-dependent modules are responsible for network layer protocol-specific tasks. An example is the IP EIGRP module, which is responsible for sending and receiving EIGRP packets that are encapsulated in IP. It is also responsible for parsing EIGRP packets and informing DUAL of the new information received. EIGRP asks DUAL to make routing decisions, but the results are stored in the IP routing table. EIGRP is also responsible for redistributing routes learned by other IP routing protocols.

This section briefly describes how to configure EIGRP. It includes this information:

- Default EIGRP Configuration, page 30-39
- Configuring Basic EIGRP Parameters, page 30-40
- Configuring EIGRP Interfaces, page 30-41
- Configuring EIGRP Route Authentication, page 30-42
- Monitoring and Maintaining EIGRP, page 30-43

**Default EIGRP Configuration**

Table 30-9 shows the default EIGRP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto summary</td>
<td>Enabled. Subprefixes are summarized to the classful network boundary when crossing classful network boundaries.</td>
</tr>
<tr>
<td>Default-information</td>
<td>Exterior routes are accepted and default information is passed between IGRP or EIGRP processes when doing redistribution.</td>
</tr>
<tr>
<td>Default metric</td>
<td>Only connected routes and interface static routes can be redistributed without a default metric. The metric includes:</td>
</tr>
<tr>
<td></td>
<td>• Bandwidth: 0 or greater kbps.</td>
</tr>
<tr>
<td></td>
<td>• Delay (tens of microseconds): 0 or any positive number that is a multiple of 39.1 nanoseconds.</td>
</tr>
<tr>
<td></td>
<td>• Reliability: any number between 0 and 255 (255 means 100 percent reliability).</td>
</tr>
<tr>
<td></td>
<td>• Loading: effective bandwidth as a number between 0 and 255 (255 is 100 percent loading).</td>
</tr>
<tr>
<td></td>
<td>• MTU: maximum transmission unit size of the route in bytes. 0 or any positive integer.</td>
</tr>
<tr>
<td>Distance</td>
<td>Internal distance: 90.</td>
</tr>
<tr>
<td></td>
<td>External distance: 170.</td>
</tr>
<tr>
<td>EIGRP log-neighbor changes</td>
<td>Disabled. No adjacency changes logged.</td>
</tr>
<tr>
<td>IP authentication key-chain</td>
<td>No authentication provided.</td>
</tr>
</tbody>
</table>
Configuring EIGRP

To create an EIGRP routing process, you must enable EIGRP and associate networks. EIGRP sends updates to the interfaces in the specified networks. If you do not specify an interface network, it is not advertised in any EIGRP update.

Note

If you have routers on your network that are configured for IGRP, and you want to change to EIGRP, you must designate transition routers that have both IGRP and EIGRP configured. In these cases, perform Steps 1 through 3 in the next section and also see the “Configuring IGRP” section on page 30-24. You must use the same AS number for routes to be automatically redistributed.

Configuring Basic EIGRP Parameters

Beginning in privileged EXEC mode, follow these steps to configure EIGRP. Configuring the routing process is required; other steps are optional:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip routing</td>
<td>Enable IP routing (required only if IP routing is disabled).</td>
</tr>
<tr>
<td>Step 3</td>
<td>router eigrp autonomous-system</td>
<td>Enable an EIGRP routing process, and enter router configuration mode. The AS number identifies the routes to other EIGRP routers and is used to tag routing information.</td>
</tr>
<tr>
<td>Step 4</td>
<td>network network-number</td>
<td>Associate networks with an EIGRP routing process. EIGRP sends updates to the interfaces in the specified networks. If an interface’s network is not specified, it is not advertised in any IGRP or EIGRP update.</td>
</tr>
</tbody>
</table>
### Configuring EIGRP Interfaces

Other optional EIGRP parameters can be configured on an interface basis.

Beginning in privileged EXEC mode, follow these steps to configure EIGRP interfaces:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1   configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2   interface interface-id</td>
<td>Enter interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>Step 3   ip bandwidth-percent eigrp percent</td>
<td>(Optional) Configure the percentage of bandwidth that can be used by EIGRP on an interface. The default is 50 percent.</td>
</tr>
<tr>
<td>Step 4   ip summary-address eigrp autonomous-system-number address mask</td>
<td>(Optional) Configure a summary aggregate address for a specified interface (not usually necessary if auto-summary is enabled).</td>
</tr>
<tr>
<td>Step 5   ip hello-interval eigrp autonomous-system-number seconds</td>
<td>(Optional) Change the hello time interval for an EIGRP routing process. The range is 1 to 65535 seconds. The default is 60 seconds for low-speed NBMA networks and 5 seconds for all other networks.</td>
</tr>
</tbody>
</table>

Use the no forms of these commands to disable the feature or return the setting to the default value.
Configuring EIGRP

EIGRP route authentication provides MD5 authentication of routing updates from the EIGRP routing protocol to prevent the introduction of unauthorized or false routing messages from unapproved sources.

Beginning in privileged EXEC mode, follow these steps to enable authentication:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the Layer 3 interface to configure.</td>
</tr>
<tr>
<td>ip authentication mode eigrp autonomous-system md5</td>
<td>Enable MD5 authentication in IP EIGRP packets.</td>
</tr>
<tr>
<td>ip authentication key-chain eigrp autonomous-system key-chain</td>
<td>Enable authentication of IP EIGRP packets.</td>
</tr>
<tr>
<td>exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>key chain name-of-chain</td>
<td>Identify a key chain and enter key-chain configuration mode. Match the name configured in Step 4.</td>
</tr>
<tr>
<td>key number</td>
<td>In key-chain configuration mode, identify the key number.</td>
</tr>
<tr>
<td>key-string text</td>
<td>In key-chain key configuration mode, identify the key string.</td>
</tr>
</tbody>
</table>

Use the no forms of these commands to disable the feature or return the setting to the default value.
Monitoring and Maintaining EIGRP

You can delete neighbors from the neighbor table. You can also display various EIGRP routing statistics. Table 30-10 lists the privileged EXEC commands for deleting neighbors and displaying statistics. For explanations of fields in the resulting display, refer to the Cisco IOS IP and IP Routing Command Reference for Release 12.1.

### Table 30-10  IP EIGRP Clear and Show Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip eigrp neighbors [if-address</td>
<td>interface]</td>
</tr>
<tr>
<td>show ip eigrp interface [interface] [as number]</td>
<td>Display information about interfaces configured for EIGRP.</td>
</tr>
<tr>
<td>show ip eigrp neighbors [type-number]</td>
<td>Display EIGRP discovered neighbors.</td>
</tr>
<tr>
<td>show ip eigrp topology [autonomous-system-number]</td>
<td>Display the EIGRP topology table for a given process.</td>
</tr>
<tr>
<td>show ip eigrp traffic [autonomous-system-number]</td>
<td>Display the number of packets sent and received for all or a specified EIGRP process.</td>
</tr>
</tbody>
</table>

Use the no forms of these commands to disable the feature or to return the setting to the default value.
Chapter 30 Configuring BGP

The Border Gateway Protocol (BGP) is an exterior gateway protocol used to set up an interdomain routing system that guarantees the loop-free exchange of routing information between autonomous systems. Autonomous systems are made up of routers that operate under the same administration and that run Interior Gateway Protocols (IGPs), such as RIP or OSPF, within their boundaries and that interconnect by using an Exterior Gateway Protocol (EGP). BGP version 4 is the standard EGP for interdomain routing in the Internet. The protocol is defined in RFCs 1163, 1267, and 1771. You can find detailed information about BGP in Internet Routing Architectures, published by Cisco Press, and in the “Configuring BGP” chapter in the Cisco IOS IP and IP Routing Configuration Guide.

For details about BGP commands and keywords, refer to the Cisco IOS IP and IP Routing Command Reference for Release 12.1. For a list of BGP commands not supported by the switch, see Appendix C, “Unsupported CLI Commands in Release 12.1(13)EA1.”

Routers that belong to the same autonomous system (AS) and that exchange BGP updates run internal BGP (IBGP), and routers that belong to different autonomous systems and that exchange BGP updates run external BGP (EBGP). Most configuration commands are the same for configuring EBGP and IBGP. The difference is that the routing updates are exchanged either between autonomous systems (EBGP) or within an AS (IBGP). Figure 30-5 shows a network that is running both EBGP and IBGP.

![Figure 30-5 EBGP, IBGP, and Multiple Autonomous Systems](image)

Before exchanging information with an external AS, BGP ensures that networks within the AS can be reached by defining internal BGP peering among routers within the AS and by redistributing BGP routing information to IGPs that run within the AS, such as IGRP and OSPF.

Routers that run a BGP routing process are often referred to as BGP speakers. BGP uses the Transmission Control Protocol (TCP) as its transport protocol (specifically port 179). Two BGP speakers that have a TCP connection to each other for exchanging routing information are known as peers or neighbors. In Figure 30-5, Routers A and B are BGP peers, as are Routers B and C and Routers C and D. The routing information is a series of AS numbers that describe the full path to the destination network. BGP uses this information to construct a loop-free map of autonomous systems.
The network has these characteristics:

- Routers A and B are running EBGP, and Routers B and C are running IBGP. Note that the EBGP peers are directly connected and that the IBGP peers are not. As long as there is an IGP running that allows the two neighbors to reach one another, IBGP peers do not have to be directly connected.

- All BGP speakers within an AS must establish a peer relationship with each other. That is, the BGP speakers within an AS must be fully meshed logically. BGP4 provides two techniques that reduce the requirement for a logical full mesh: confederations and route reflectors.

- AS 200 is a transit AS for AS 100 and AS 300—that is, AS 200 is used to transfer packets between AS 100 and AS 300.

BGP peers initially exchange their full BGP routing tables and then send only incremental updates. BGP peers also exchange keepalive messages (to ensure that the connection is up) and notification messages (in response to errors or special conditions).

In BGP, each route consists of a network number, a list of autonomous systems that information has passed through (the autonomous system path), and a list of other path attributes. The primary function of a BGP system is to exchange network reachability information, including information about the list of AS paths, with other BGP systems. This information can be used to determine AS connectivity, to prune routing loops, and to enforce AS-level policy decisions.

A router or switch running Cisco IOS does not select or use an IBGP route unless it has a route available to the next-hop router and it has received synchronization from an IGP (unless IGP synchronization is disabled). When multiple routes are available, BGP bases its path selection on attribute values. See the “Configuring BGP Decision Attributes” section on page 30-51 for information about BGP attributes.

BGP Version 4 supports classless interdomain routing (CIDR) so you can reduce the size of your routing tables by creating aggregate routes, resulting in supernets. CIDR eliminates the concept of network classes within BGP and supports the advertising of IP prefixes.

These sections briefly describe how to configure BGP and supported BGP features:

- Default BGP Configuration, page 30-46
- Enabling BGP Routing, page 30-48
- Managing Routing Policy Changes, page 30-50
- Configuring BGP Decision Attributes, page 30-51
- Configuring BGP Filtering with Route Maps, page 30-53
- Configuring BGP Filtering by Neighbor, page 30-54
- Configuring Prefix Lists for BGP Filtering, page 30-55
- Configuring BGP Community Filtering, page 30-56
- Configuring BGP Neighbors and Peer Groups, page 30-58
- Configuring Aggregate Addresses, page 30-60
- Configuring a Routing Domain Confederation, page 30-60
- Configuring BGP Route Reflectors, page 30-61
- Configuring Route Dampening, page 30-62
- Monitoring and Maintaining BGP, page 30-63

For detailed descriptions of BGP configuration, refer to the “Configuring BGP” chapter in the Cisco IOS IP and IP Routing Configuration Guide. For details about specific commands, refer to the Cisco IOS IP and IP Routing Command Reference for Release 12.1. For a list of BGP commands that are visible but not supported by the switch, see Appendix C, “Unsupported CLI Commands in Release 12.1(13)EA1.”
# Default BGP Configuration

Table 30-11 shows the basic default BGP configuration. For the defaults for all characteristics, refer to the specific commands in the *Cisco IOS IP and IP Routing Command Reference for Release 12.1*.

## Table 30-11 Default BGP Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate address</td>
<td>Disabled: None defined.</td>
</tr>
<tr>
<td>AS path access list</td>
<td>None defined.</td>
</tr>
<tr>
<td>Auto summary</td>
<td>Enabled.</td>
</tr>
</tbody>
</table>
| Best path                                    | • The router considers *as-path* in choosing a route and does not compare similar routes from external BGP peers.  
  • Compare router ID: Disabled.               |
| BGP community list                           | • Number: None defined. When you permit a value for the community number, the list defaults to an implicit deny for everything else that has not been permitted.  
  • Format: Cisco default format (32-bit number). |
| BGP confederation identifier/peers           | • Identifier: None configured.                                                 
  • Peers: None identified.                    |
| BGP Fast external fallover                   | Enabled.                                                                        |
| BGP local preference                         | 100. The range is 0 to 4294967295 with the higher value preferred.             |
| BGP network                                  | None specified; no backdoor route advertised.                                   |
| BGP route dampening                          | Disabled by default. When enabled:                                             
  • Half-life is 15 minutes.                   
  • Re-use is 750 (10-second increments).      
  • Suppress is 2000 (10-second increments).   
  • Max-suppress-time is 4 times half-life; 60 minutes. |
| BGP router ID                                | The IP address of a loopback interface if one is configured or the highest IP address configured for a physical interface on the router. |
| Default information originate (protocol or network redistribution) | Disabled.                                                                     |
| Default metric                               | Built-in, automatic metric translations.                                       |
| Distance                                     | • External route administrative distance: 20 (acceptable values are from 1 to 255).  
  • Internal route administrative distance: 200 (acceptable values are from 1 to 255).  
  • Local route administrative distance: 200 (acceptable values are from 1 to 255).  |
| Distribute list                              | • In (filter networks received in updates): Disabled.                           
  • Out (suppress networks from being advertised in updates): Disabled.                |
| Internal route redistribution                 | Disabled.                                                                      |
| IP prefix list                               | None defined.                                                                  |
### Table 30-11 Default BGP Configuration (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
</table>
| Multi exit discriminator (MED)   | • Always compare: Disabled. Does not compare MEDs for paths from neighbors in different autonomous systems.  
  • Best path compare: Disabled.  
  • MED missing as worst path: Disabled.  
  • Deterministic MED comparison is disabled. |
| Neighbor                         | • Advertisement interval: 30 seconds for external peers; 5 seconds for internal peers.  
  • Change logging: Enabled.  
  • Conditional advertisement: Disabled.  
  • Default originate: No default route is sent to the neighbor.  
  • Description: None.  
  • Distribute list: None defined.  
  • External BGP multihop: Only directly connected neighbors are allowed.  
  • Filter list: None used.  
  • Maximum number of prefixes received: No limit.  
  • Next hop (router as next hop for BGP neighbor): Disabled.  
  • Password: Disabled. |
| Neighbor                         | • Peer group: None defined; no members assigned.  
  • Prefix list: None specified.  
  • Remote AS (add entry to neighbor BGP table): No peers defined.  
  • Private AS number removal: Disabled.  
  • Route maps: None applied to a peer.  
  • Send community attributes: None sent to neighbors.  
  • Shutdown or soft reconfiguration: Not enabled.  
  • Timers: keepalive: 60 seconds; holdtime: 180 seconds.  
  • Update source: Best local address.  
  • Version: BGP version 4.  
  • Weight: Routes learned through BGP peer: 0; routes sourced by the local router: 32768. |
| Route reflector                  | None configured.                                                                                                                                 |
| Synchronization (BGP and IGP)    | Enabled.                                                                                                                                 |
| Table map update                 | Disabled.                                                                                                                                 |
| Timers                           | Keepalive: 60 seconds; holdtime: 180 seconds.                                                                                                                                 |
Enabling BGP Routing

To enable BGP routing, you establish a BGP routing process and define the local network. Because BGP must completely understand the relationships with its neighbors, you must also specify a BGP neighbor.

BGP supports two kinds of neighbors: internal and external. Internal neighbors are in the same AS; external neighbors are in different autonomous systems. External neighbors are usually adjacent to each other and share a subnet, but internal neighbors can be anywhere in the same AS.

The switch supports the use of private AS numbers, usually assigned by service providers and given to systems whose routes are not advertised to external neighbors. The private AS numbers are from 64512 to 65535. You can configure external neighbors to remove private AS numbers from the AS path by using the `neighbor remove-private-as` router configuration command. Then when an update is passed to an external neighbor, if the AS path includes private AS numbers, these numbers are dropped.

If your AS will be passing traffic through it from another AS to a third AS, it is important to be consistent about the routes it advertises. If BGP advertised a route before all routers in the network had learned about the route through the IGP, the AS might receive traffic that some routers could not yet route. To prevent this from happening, BGP must wait until the IGP has propagated information across the AS so that BGP is synchronized with the IGP. Synchronization is enabled by default. If your AS does not pass traffic from one AS to another AS, or if all routers in your autonomous systems are running BGP, you can disable synchronization, which allows your network to carry fewer routes in the IGP and allows BGP to converge more quickly.

Beginning in privileged EXEC mode, follow these steps to enable BGP routing, establish a BGP routing process, and specify a neighbor:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>ip routing</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>router bgp autonomous-system</code></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>network network-number [mask network-mask]</code> [route-map route-map-name]</td>
</tr>
<tr>
<td>Step 5</td>
<td>`neighbor [ip-address</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>`neighbor [ip-address</td>
</tr>
<tr>
<td>Step 7</td>
<td><code>no synchronization</code></td>
</tr>
<tr>
<td>Step 8</td>
<td><code>no auto-summary</code></td>
</tr>
</tbody>
</table>
Use the `no router bgp autonomous-system` global configuration command to remove a BGP AS. Use the `no network network-number` router configuration command to remove the network from the BGP table. Use the `no neighbor {ip-address | peer-group-name} remote-as number` router configuration command to remove a neighbor. Use the `no neighbor {ip-address | peer-group-name} remove-private-as` router configuration command to include private AS numbers in updates to a neighbor. Use the `synchronization` router configuration command to re-enable synchronization.

These examples show how to configure BGP on the routers in Figure 30-5.

**Router A:**

```
Switch(config)# router bgp 100
Switch(config-router)# neighbor 129.213.1.1 remote-as 200
```

**Router B:**

```
Switch(config)# router bgp 200
Switch(config-router)# neighbor 129.213.1.2 remote-as 100
Switch(config-router)# neighbor 175.220.1.2 remote-as 200
```

**Router C:**

```
Switch(config)# router bgp 200
Switch(config-router)# neighbor 175.220.212.1 remote-as 200
Switch(config-router)# neighbor 192.208.10.1 remote-as 300
```

**Router D:**

```
Switch(config)# router bgp 300
Switch(config-router)# neighbor 192.208.10.2 remote-as 200
```

To verify that BGP peers are running, use the `show ip bgp neighbors` privileged EXEC command. This is the output of this command on Router A:

```
Switch# show ip bgp neighbors
BGP neighbor is 129.213.1.1, remote AS 200, external link
BGP version 4, remote router ID 175.220.212.1
BGP state = established, table version = 3, up for 0:10:59
Last read 0:00:29, hold time is 180, keepalive interval is 60 seconds
Minimum time between advertisement runs is 30 seconds
Received 2828 messages, 0 notifications, 0 in queue
Sent 2826 messages, 0 notifications, 0 in queue
Connections established 11; dropped 10
```

Anything other than `state = established` means that the peers are not running. The remote router ID is the highest IP address on that router (or the highest loopback interface). Each time the table is updated with new information, the table version number increments. A table version number that continually increments means that a route is flapping, causing continual routing updates.
For exterior protocols, a reference to an IP network from the network router configuration command controls only which networks are advertised. This is in contrast to Interior Gateway Protocols (IGPs), such as IGRP, which also use the network command to determine where to send updates.

For detailed descriptions of BGP configuration, refer to the “Configuring BGP” chapter in the Cisco IOS IP and IP Routing Configuration Guide. For details about specific commands, refer to the Cisco IOS IP and IP Routing Command Reference for Release 12.1. For a list of BGP commands that are visible but not supported by the switch, see Appendix C, “Unsupported CLI Commands in Release 12.1(13)EA1.”

Managing Routing Policy Changes

Routing policies for a peer include all the configurations that might affect inbound or outbound routing table updates. When you have defined two routers as BGP neighbors, they form a BGP connection and exchange routing information. If you later change a BGP filter, weight, distance, version, or timer, or make a similar configuration change, you must reset the BGP sessions so that the configuration changes take effect.

There are two types of reset, hard reset and soft reset. Cisco IOS software releases 12.1 and later support a soft reset without any prior configuration. To use a soft reset without preconfiguration, both BGP peers must support the soft route refresh capability, which is advertised in the OPEN message sent when the peers establish a TCP session. A soft reset allows the dynamic exchange of route refresh requests and routing information between BGP routers and the subsequent re-advertisement of the respective outbound routing table.

- When soft reset generates inbound updates from a neighbor, it is called dynamic inbound soft reset.
- When soft reset sends a set of updates to a neighbor, it is called outbound soft reset.

A soft inbound reset enables the new inbound policy to take effect. A soft outbound reset causes the new local outbound policy to take effect without resetting the BGP session. As a new set of updates is sent during outbound policy reset, a new inbound policy can also take effect.

Table 30-12 lists the advantages and disadvantages hard reset and soft reset.

<table>
<thead>
<tr>
<th>Type of Reset</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>hard reset</td>
<td>No memory overhead.</td>
<td>The prefixes in the BGP, IP, and FIB tables provided by the neighbor are lost. Not recommended.</td>
</tr>
<tr>
<td>outbound soft reset</td>
<td>No configuration, no storing of routing table updates.</td>
<td>Does not reset inbound routing table updates.</td>
</tr>
<tr>
<td>dynamic inbound soft reset</td>
<td>Does not clear the BGP session and cache.</td>
<td>Both BGP routers must support the route refresh capability (in Cisco IOS Release 12.1 and later releases).</td>
</tr>
<tr>
<td></td>
<td>Does not require storing of routing table updates and has no memory overhead.</td>
<td></td>
</tr>
</tbody>
</table>
Beginning in privileged EXEC mode, follow these steps to determine if a BGP peer supports the route refresh capability and to reset the BGP session:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** show ip bgp neighbors | Display whether a neighbor supports the route refresh capability. When supported, this message appears for the router:  

Received route refresh capability from peer. |
| **Step 2** clear ip bgp {* | address | peer-group-name} | Reset the routing table on the specified connection.  

- Enter an asterisk (*) to specify that all connections be reset.  
- Enter an IP address to specify the connection to be reset.  
- Enter a peer group name to reset the peer group. |
| **Step 3** clear ip bgp {* | address | peer-group-name} soft out | (Optional) Perform an outbound soft reset to reset the inbound routing table on the specified connection. Use this command if route refresh is supported.  

- Enter an asterisk (*) to specify that all connections be reset.  
- Enter an IP address to specify the connection to be reset.  
- Enter a peer group name to reset the peer group. |
| **Step 4** show ip bgp show ip bgp neighbors | Verify the reset by checking information about the routing table and about BGP neighbors. |

### Configuring BGP Decision Attributes

When a BGP speaker receives updates from multiple autonomous systems that describe different paths to the same destination, it must choose the single best path for reaching that destination. When chosen, the selected path is entered into the BGP routing table and propagated to its neighbors. The decision is based on the value of attributes that the update contains and other BGP-configurable factors.

When a BGP peer learns two EBGP paths for a prefix from a neighboring AS, it chooses the best path and inserts that path in the IP routing table. If BGP multipath support is enabled and the EBGP paths are learned from the same neighboring autonomous systems, instead of a single best path, multiple paths are installed in the IP routing table. Then, during packet switching, per-packet or per-destination load balancing is performed among the multiple paths. The `maximum-paths` router configuration command controls the number of paths allowed.

These factors summarize the order in which BGP evaluates the attributes for choosing the best path:

1. If the path specifies a next hop that is inaccessible, drop the update. The BGP next-hop attribute, automatically determined by the software, is the IP address of the next hop that is going to be used to reach a destination. For EBGP, this is usually the IP address of the neighbor specified by the `neighbor remote-as` router configuration command. You can disable next-hop processing by using route maps or the `neighbor next-hop-self` router configuration command.

2. Prefer the path with the largest weight (a Cisco proprietary parameter). The weight attribute is local to the router and not propagated in routing updates. By default, the weight attribute is 32768 for paths that the router originates and zero for other paths. Routes with the largest weight are preferred. You can use access lists, route maps, or the `neighbor weight` router configuration command to set weights.
3. Prefer the route with the highest local preference. Local preference is part of the routing update and exchanged among routers in the same AS. The default value of the local preference attribute is 100. You can set local preference by using the `bgp default local-preference` router configuration command or by using a route map.

4. Prefer the route that was originated by BGP running on the local router.

5. Prefer the route with the shortest AS path.

6. Prefer the route with the lowest origin type. An interior route or IGP is lower than a route learned by EGP, and an EGP-learned route is lower than one of unknown origin or learned in another way.

7. Prefer the route with the lowest Multi Exit Discriminator (MED) metric attribute if the neighboring AS is the same for all routes considered. You can configure the MED by using route maps or by using the `default-metric` router configuration command. When an update is sent to an IBGP peer, the MED is included.

8. Prefer the external (EBGP) path over the internal (IBGP) path.

9. Prefer the route that can be reached through the closest IGP neighbor (the lowest IGP metric). This means that the router will prefer the shortest internal path within the AS to reach the destination (the shortest path to the BGP next-hop).

10. If the following conditions are all true, insert the route for this path into the IP routing table:
    - Both the best route and this route are external.
    - Both the best route and this route are from the same neighboring autonomous system.
    - `maximum-paths` is enabled.

11. If multipath is not enabled, prefer the route with the lowest IP address value for the BGP router ID. The router ID is usually the highest IP address on the router or the loopback (virtual) address, but might be implementation-specific.

Beginning in privileged EXEC mode, follow these steps to configure some decision attributes:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
configure terminal | Enter global configuration mode. |
| **Step 2**
router bgp autonomous-system | Enable a BGP routing process, assign it an AS number, and enter router configuration mode. |
| **Step 3**
bgp best-path as-path ignore | (Optional) Configure the router to ignore AS path length in selecting a route. |
| **Step 4**
neighbor {ip-address | peer-group-name} next-hop-self | (Optional) Disable next-hop processing on BGP updates to a neighbor by entering a specific IP address to be used instead of the next-hop address. |
| **Step 5**
neighbor {ip-address | peer-group-name} weight weight | (Optional) Assign a weight to a neighbor connection. Acceptable values are from 0 to 65535; the largest weight is the preferred route. Routes learned through another BGP peer have a default weight of 0; and routes sourced by the local router have a default weight of 32768. |
| **Step 6**
default-metric number | (Optional) Set a MED metric to set preferred paths to external neighbors. All routes without a MED will also be set to this value. The range is 1 to 4294967295. The lowest value is the most desirable. |
Configuring BGP Filtering with Route Maps

Within BGP, route maps can be used to control and to modify routing information and to define the conditions by which routes are redistributed between routing domains. See the “Using Route Maps to Redistribute Routing Information” section on page 30-79 for more information about route maps. Each route map has a name that identifies the route map (map tag) and an optional sequence number.

Beginning in privileged EXEC mode, follow these steps to use a route map to disable next-hop processing:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>route-map map-tag [[permit</td>
<td>deny]</td>
</tr>
</tbody>
</table>

Use the no form of each command to return to the default state.
Chapter 30  Configuring IP Unicast Routing

Configuring BGP

Use the `no route-map map-tag` command to delete the route map. Use the `no set ip next-hop ip-address` command to re-enable next-hop processing.

### Configuring BGP Filtering by Neighbor

You can filter BGP advertisements by using AS-path filters, such as the `as-path access-list` global configuration command and the `neighbor filter-list` router configuration command. You can also use access lists with the `neighbor distribute-list` router configuration command. Distribute-list filters are applied to network numbers. See the “Controlling Advertising and Processing in Routing Updates” section on page 30-86 for information about the `distribute-list` command.

You can use route maps on a per-neighbor basis to filter updates and to modify various attributes. A route map can be applied to either inbound or outbound updates. Only the routes that pass the route map are sent or accepted in updates. On both inbound and outbound updates, matching is supported based on AS path, community, and network numbers. Autonomous system path matching requires the `match as-path access-list` route-map command, community based matching requires the `match community-list` route-map command, and network-based matching requires the `ip access-list` global configuration command.

Beginning in privileged EXEC mode, follow these steps to apply a per-neighbor route map:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>router bgp autonomous-system</code> Enable a BGP routing process, assign it an AS number, and enter router configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>`neighbor {ip-address</td>
</tr>
<tr>
<td>Step 4</td>
<td>`neighbor {ip-address</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Use the `no neighbor distribute-list` command to remove the access list from the neighbor. Use the `no neighbor route-map map-tag` router configuration command to remove the route map from the neighbor.

Another method of filtering is to specify an access list filter on both incoming and outbound updates, based on the BGP autonomous system paths. Each filter is an access list based on regular expressions. (Refer to the “Regular Expressions” appendix in the Cisco IOS Dial Services Command Reference for more information on forming regular expressions.) To use this method, define an autonomous system path access list, and apply it to updates to and from particular neighbors.

Beginning in privileged EXEC mode, follow these steps to configure BGP path filtering:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>`ip as-path access-list access-list-number {permit</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>router bgp autonomous-system</code> Enter BGP router configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>`neighbor {ip-address</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>show ip bgp neighbors \[paths regular-expression\]</code> Verify the configuration.</td>
</tr>
<tr>
<td>Step 7</td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

### Configuring Prefix Lists for BGP Filtering

You can use prefix lists as an alternative to access lists in many BGP route filtering commands, including the `neighbor distribute-list` router configuration command. The advantages of using prefix lists include performance improvements in loading and lookup of large lists, incremental update support, easier CLI configuration, and greater flexibility.

Filtering by a prefix list involves matching the prefixes of routes with those listed in the prefix list, as when matching access lists. When there is a match, the route is used. Whether a prefix is permitted or denied is based upon these rules:

- An empty prefix list permits all prefixes.
- An implicit deny is assumed if a given prefix does not match any entries in a prefix list.
- When multiple entries of a prefix list match a given prefix, the sequence number of a prefix list entry identifies the entry with the lowest sequence number.

By default, sequence numbers are generated automatically and incremented in units of five. If you disable the automatic generation of sequence numbers, you must specify the sequence number for each entry. You can specify sequence values in any increment. If you specify increments of one, you cannot insert additional entries into the list; if you choose very large increments, you might run out of values.
You do not need to specify a sequence number when removing a configuration entry. **Show** commands include the sequence numbers in their output.

Before using a prefix list in a command, you must set up the prefix list. Beginning in privileged EXEC mode, follow these steps to create a prefix list or to add an entry to a prefix list:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| **Step 2** | `ip prefix-list list-name [seq seq-value] deny`<br>`permit network[len [ge ge-value] [le le-value]]` | Create a prefix list with an optional sequence number to `deny` or `permit` access for matching conditions. You must enter at least one `permit` or `deny` clause.  
  - `network[len]` is the network number and length (in bits) of the network mask.  
  - (Optional) `ge` and `le` values specify the range of the prefix length to be matched. The specified `ge-value` and `le-value` must satisfy this condition: `len < ge-value < le-value < 32` |
| **Step 3** | `ip prefix-list list-name seq seq-value deny`<br>`permit network[len [ge ge-value] [le le-value]]` | (Optional) Add an entry to a prefix list, and assign a sequence number to the entry. | |
| **Step 4** | `end` | Return to privileged EXEC mode. |
| **Step 5** | `show ip prefix-list [detail | summary] name [network[len]] [seq seq-num] [longer] [first-match]` | Verify the configuration by displaying information about a prefix list or prefix list entries. |
| **Step 6** | `copy running-config startup-config` | (Optional) Save your entries in the configuration file. |

To delete a prefix list and all of its entries, use the **no ip prefix-list list-name** global configuration command. To delete an entry from a prefix list, use the **no ip prefix-list seq seq-value** global configuration command. To disable automatic generation of sequence numbers, use the **no ip prefix-list sequence number** command; to reenable automatic generation, use the **ip prefix-list sequence number** command. To clear the hit-count table of prefix list entries, use the **clear ip prefix-list** privileged EXEC command.

### Configuring BGP Community Filtering

One way that BGP controls the distribution of routing information based on the value of the COMMUNITIES attribute. The attribute is a way to groups destinations into communities and to apply routing decisions based on the communities. This method simplifies configuration of a BGP speaker to control distribution of routing information.

A **community** is a group of destinations that share some common attribute. Each destination can belong to multiple communities. AS administrators can define to which communities a destination belongs. By default, all destinations belong to the general Internet community. The community is identified by the COMMUNITIES attribute, an optional, transitive, global attribute in the numerical range from 1 to 4294967200. These are some predefined, well-known communities:

- **internet**—Advertise this route to the Internet community. All routers belong to it.
- **no-export**—Do not advertise this route to EBGP peers.
- **no-advertise**—Do not advertise this route to any peer (internal or external).
- **local-as**—Do not advertise this route to peers outside the local autonomous system.
Based on the community, you can control which routing information to accept, prefer, or distribute to other neighbors. A BGP speaker can set, append, or modify the community of a route when learning, advertising, or redistributing routes. When routes are aggregated, the resulting aggregate has a COMMUNITIES attribute that contains all communities from all the initial routes.

You can use community lists to create groups of communities to use in a match clause of a route map. As with an access list, a series of community lists can be created. Statements are checked until a match is found. As soon as one statement is satisfied, the test is concluded.

To set the COMMUNITIES attribute and match clauses based on communities, see the `match community-list` and `set community` route-map configuration commands in the “Using Route Maps to Redistribute Routing Information” section on page 30-79.

By default, no COMMUNITIES attribute is sent to a neighbor. You can specify that the COMMUNITIES attribute be sent to the neighbor at an IP address by using the `neighbor send-community` router configuration command.

Beginning in privileged EXEC mode, follow these steps to create and to apply a community list:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip community-list community-list-number {permit</td>
<td>deny} community-number</td>
</tr>
<tr>
<td></td>
<td>- The <code>community-list-number</code> is an integer from 1 to 99 that identifies one or more permit or deny groups of communities.</td>
</tr>
<tr>
<td></td>
<td>- The <code>community-number</code> is the number configured by a <code>set community</code> route-map configuration command.</td>
</tr>
<tr>
<td>Step 3 router bgp autonomous-system</td>
<td>Enter BGP router configuration mode.</td>
</tr>
<tr>
<td>Step 4 neighbor {ip-address</td>
<td>peer-group name} send-community</td>
</tr>
<tr>
<td>Step 5 set comm-list list-num delete</td>
<td>(Optional) Remove communities from the community attribute of an inbound or outbound update that match a standard or extended community list specified by a route map.</td>
</tr>
<tr>
<td>Step 6 exit</td>
<td>Return to global configuration mode.</td>
</tr>
<tr>
<td>Step 7 ip bgp-community new-format</td>
<td>(Optional) Display and parse BGP communities in the format AA:NN. A BGP community is displayed in a 2-part format two bytes long. The Cisco default community format is in the format NNAA. In the most recent RFC for BGP, a community takes the form AA:NN, where the first part is the AS number and the second part is a 2-byte number.</td>
</tr>
<tr>
<td>Step 8 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 9 show ip bgp community</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td>Step 10 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Configuring BGP Neighbors and Peer Groups

Often many BGP neighbors are configured with the same update policies (that is, the same outbound route maps, distribute lists, filter lists, update source, and so on). Neighbors with the same update policies can be grouped into peer groups to simplify configuration and to make updating more efficient. When you have configured many peers, we recommend this approach.

To configure a BGP peer group, you create the peer group, assign options to the peer group, and add neighbors as peer group members. You configure the peer group by using the `neighbor` router configuration commands. By default, peer group members inherit all the configuration options of the peer group, including the remote-as (if configured), version, update-source, out-route-map, out-filter-list, out-dist-list, minimum-advertisement-interval, and next-hop-self. All peer group members also inherit changes made to the peer group. Members can also be configured to override the options that do not affect outbound updates.

To assign configuration options to an individual neighbor, specify any of these router configuration commands by using the neighbor IP address. To assign the options to a peer group, specify any of the commands by using the peer group name. You can disable a BGP peer or peer group without removing all the configuration information by using the `neighbor shutdown` router configuration command.

Beginning in privileged EXEC mode, use these commands to configure BGP peers:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>router bgp autonomous-system</code> Enter BGP router configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>neighbor peer-group-name peer-group</code> Create a BGP peer group.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>neighbor ip-address peer-group peer-group-name</code> Make a BGP neighbor a member of the peer group.</td>
</tr>
<tr>
<td>Step 5</td>
<td>`neighbor {ip-address</td>
</tr>
<tr>
<td>Step 6</td>
<td>`neighbor {ip-address</td>
</tr>
<tr>
<td>Step 7</td>
<td>`neighbor {ip-address</td>
</tr>
<tr>
<td>Step 8</td>
<td>`neighbor {ip-address</td>
</tr>
<tr>
<td>Step 9</td>
<td>`neighbor {ip-address</td>
</tr>
<tr>
<td>Step 10</td>
<td>`neighbor {ip-address</td>
</tr>
<tr>
<td>Step 11</td>
<td>`neighbor {ip-address</td>
</tr>
<tr>
<td>Step 12</td>
<td>`neighbor {ip-address</td>
</tr>
</tbody>
</table>
### Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 13</td>
<td>neighbor {ip-address</td>
<td>peer-group-name} maximum-prefix maximum [threshold]</td>
</tr>
<tr>
<td>Step 14</td>
<td>neighbor {ip-address</td>
<td>peer-group-name} next-hop-self</td>
</tr>
<tr>
<td>Step 15</td>
<td>neighbor {ip-address</td>
<td>peer-group-name} password string</td>
</tr>
<tr>
<td>Step 16</td>
<td>neighbor {ip-address</td>
<td>peer-group-name} route-map map-name {in</td>
</tr>
<tr>
<td>Step 17</td>
<td>neighbor {ip-address</td>
<td>peer-group-name} send-community</td>
</tr>
</tbody>
</table>
| Step 18 | neighbor {ip-address | peer-group-name} timers keepalive holdtime | (Optional) Set timers for the neighbor or peer group.  
  - The keepalive interval is the time within which keepalive messages are sent to peers. The range is 1 to 4294967295 seconds; the default is 60.  
  - The holdtime is the interval after which a peer is declared inactive after not receiving a keepalive message from it. The range is 1 to 4294967295 seconds; the default is 180. |
| Step 19 | neighbor {ip-address | peer-group-name} weight weight | (Optional) Specify a weight for all routes from a neighbor. | | |
| Step 20 | neighbor {ip-address | peer-group-name} distribute-list {access-list-number | name} {in | out} | (Optional) Filter BGP routing updates to or from neighbors, as specified in an access list. |
| Step 21 | neighbor {ip-address | peer-group-name} filter-list access-list-number {in | out | weight weight} | (Optional) Establish a BGP filter. |
| Step 22 | neighbor {ip-address | peer-group-name} version value | (Optional) Specify the BGP version to use when communicating with a neighbor. |
| Step 23 | neighbor {ip-address | peer-group-name} soft-reconfiguration inbound | (Optional) Configure the software to start storing received updates. |
| Step 24 | end | Return to privileged EXEC mode. |
| Step 25 | show ip bgp neighbors | Verify the configuration. |
| Step 26 | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To disable an existing BGP neighbor or neighbor peer group, use the **neighbor shutdown** router configuration command. To enable a previously existing neighbor or neighbor peer group that had been disabled, use the **no neighbor shutdown** router configuration command.
Configuring Aggregate Addresses

Classless interdomain routing (CIDR) enables you to create aggregate routes (or supernets) to minimize the size of routing tables. You can configure aggregate routes in BGP either by redistributing an aggregate route into BGP or by creating an aggregate entry in the BGP routing table. An aggregate address is added to the BGP table when there is at least one more specific entry in the BGP table.

Beginning in privileged EXEC mode, use these commands to create an aggregate address in the routing table:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>router bgp autonomous-system</td>
</tr>
<tr>
<td>Step 3</td>
<td>aggregate-address address mask</td>
</tr>
<tr>
<td>Step 4</td>
<td>aggregate-address address mask as-set</td>
</tr>
<tr>
<td>Step 5</td>
<td>aggregate-address address-mask summary-only</td>
</tr>
<tr>
<td>Step 6</td>
<td>aggregate-address address mask suppress-map map-name</td>
</tr>
<tr>
<td>Step 7</td>
<td>aggregate-address address mask advertise-map map-name</td>
</tr>
<tr>
<td>Step 8</td>
<td>aggregate-address address mask attribute-map map-name</td>
</tr>
<tr>
<td>Step 9</td>
<td>end</td>
</tr>
<tr>
<td>Step 10</td>
<td>show ip bgp neighbors [advertised-routes]</td>
</tr>
<tr>
<td>Step 11</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To delete an aggregate entry, use the no aggregate-address address mask router configuration command. To return options to the default values, use the command with keywords.

Configuring a Routing Domain Confederation

One way to reduce the IBGP mesh is to divide an autonomous system into multiple subautonomous systems and to group them into a single confederation that appears as a single autonomous system. Each autonomous system is fully meshed within itself and has a few connections to other autonomous systems in the same confederation. Even though the peers in different autonomous systems have EBGP sessions, they exchange routing information as if they were IBGP peers. Specifically, the next hop, MED, and local preference information is preserved. You can then use a single IGP for all of the autonomous systems.
To configure a BGP confederation, you must specify a confederation identifier that acts as the autonomous system number for the group of autonomous systems.

Beginning in privileged EXEC mode, use these commands to configure a BGP confederation:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>router bgp autonomous-system</td>
<td>Enter BGP router configuration mode.</td>
</tr>
<tr>
<td>3</td>
<td>bgp confederation identifier autonomous-system</td>
<td>Configure a BGP confederation identifier.</td>
</tr>
<tr>
<td>4</td>
<td>bgp confederation peers autonomous-system</td>
<td>Specify the autonomous systems that belong to the confederation and that will be treated as special EBGP peers.</td>
</tr>
<tr>
<td>5</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>6</td>
<td>show ip bgp neighbor</td>
<td>Verify the configuration.</td>
</tr>
<tr>
<td></td>
<td>show ip bgp network</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

### Configuring BGP Route Reflectors

BGP requires that all of the IBGP speakers be fully meshed. When a router receives a route from an external neighbor, it must advertise it to all internal neighbors. To prevent a routing information loop, all IBGP speakers must be connected. The internal neighbors do not send routes learned from internal neighbors to other internal neighbors.

With route reflectors, all IBGP speakers need not be fully meshed because another method is used to pass learned routes to neighbors. When you configure an internal BGP peer to be a route reflector, it is responsible for passing IBGP learned routes to a set of IBGP neighbors. The internal peers of the route reflector are divided into two groups: client peers and nonclient peers (all the other routers in the autonomous system). A route reflector reflects routes between these two groups. The route reflector and its client peers form a cluster. The nonclient peers must be fully meshed with each other, but the client peers need not be fully meshed. The clients in the cluster do not communicate with IBGP speakers outside their cluster.

When the route reflector receives an advertised route, it takes one of these actions, depending on the neighbor:

- A route from an external BGP speaker is advertised to all clients and nonclient peers.
- A route from a nonclient peer is advertised to all clients.
- A route from a client is advertised to all clients and nonclient peers. Hence, the clients need not be fully meshed.

Usually a cluster of clients have a single route reflector, and the cluster is identified by the route reflector router ID. To increase redundancy and to avoid a single point of failure, a cluster might have more than one route reflector. In this case, all route reflectors in the cluster must be configured with the same 4-byte cluster ID so that a route reflector can recognize updates from route reflectors in the same cluster. All the route reflectors serving a cluster should be fully meshed and should have identical sets of client and nonclient peers.
Beginning in privileged EXEC mode, use these commands to configure a route reflector and clients:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>router bgp autonomous-system</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>neighbor ip-address</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>bgp cluster-id cluster-id</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>no bgp client-to-client reflection</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>show ip bgp</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

### Configuring Route Dampening

Route flap dampening is a BGP feature designed to minimize the propagation of flapping routes across an internetwork. A route is considered to be flapping when it is repeatedly available, then unavailable, then available, then unavailable, and so on. When route dampening is enabled, a numeric penalty value is assigned to a route when it flaps. When a route’s accumulated penalties reach a configurable limit, BGP suppresses advertisements of the route, even if the route is running. The reuse limit is the configured value that is compared with the penalty. If the penalty is less than the reuse limit, a suppressed route that is up will be advertised again.

Dampening is not applied to routes that are learned by IBGP. This policy prevents the IBGP peers from having a higher penalty for routes external to the AS.

Beginning in privileged EXEC mode, use these commands to configure BGP route dampening:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>router bgp autonomous-system</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>bgp dampening</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>bgp dampening half-life reuse suppress max-suppress [route-map map]</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>show ip bgp flap-statistics [[regexp regexp]</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>address mask [longer-prefix]]]</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>show ip bgp dampened-paths</td>
</tr>
</tbody>
</table>
To disable flap dampening, use the `no bgp dampening` router configuration command without keywords. To set dampening factors back to the default values, use the `no bgp dampening` router configuration command with values.

## Monitoring and Maintaining BGP

You can remove all contents of a particular cache, table, or database. This might be necessary when the contents of the particular structure have become or are suspected to be invalid.

You can display specific statistics, such as the contents of BGP routing tables, caches, and databases. You can use the information to determine resource utilization and solve network problems. You can also display information about node reachability and discover the routing path your device’s packets are taking through the network.

Table 30-10 lists the privileged EXEC commands for clearing and displaying BGP. For explanations of the display fields, refer to the Cisco IOS IP and IP Routing Command Reference for Release 12.1.

### Table 30-13 IP BGP Clear and Show Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clear ip bgp address</code></td>
<td>Reset a particular BGP connection.</td>
</tr>
<tr>
<td><code>clear ip bgp *</code></td>
<td>Reset all BGP connections.</td>
</tr>
<tr>
<td><code>clear ip bgp peer-group tag</code></td>
<td>Remove all members of a BGP peer group.</td>
</tr>
<tr>
<td><code>show ip bgp prefix</code></td>
<td>Display peer groups and peers not in peer groups to which the prefix has been advertised. Also displays prefix attributes such as the next hop and the local prefix.</td>
</tr>
<tr>
<td><code>show ip bgp cidr-only</code></td>
<td>Display all BGP routes that contain subnet and supernet network masks.</td>
</tr>
<tr>
<td><code>show ip bgp community [community-number] [exact]</code></td>
<td>Display routes that belong to the specified communities.</td>
</tr>
<tr>
<td><code>show ip bgp community-list community-list-number [exact-match]</code></td>
<td>Display routes that are permitted by the community list.</td>
</tr>
<tr>
<td><code>show ip bgp filter-list access-list-number</code></td>
<td>Display routes that are matched by the specified AS path access list.</td>
</tr>
<tr>
<td><code>show ip bgp inconsistent-as</code></td>
<td>Display the routes with inconsistent originating autonomous systems.</td>
</tr>
<tr>
<td><code>show ip bgp regexp regular-expression</code></td>
<td>Display the routes that have an AS path that matches the specified regular expression entered on the command line.</td>
</tr>
<tr>
<td><code>show ip bgp</code></td>
<td>Display the contents of the BGP routing table.</td>
</tr>
</tbody>
</table>
You can also enable the logging of messages generated when a BGP neighbor resets, comes up, or goes down, by using the `bgp log-neighbor changes` router configuration command.

### Table 30-13 IP BGP Clear and Show Commands (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ip bgp neighbors [address]</code></td>
<td>Display detailed information on the BGP and TCP connections to individual neighbors.</td>
</tr>
<tr>
<td>`show ip bgp neighbors [address] [advertised-routes</td>
<td>dampened-routes</td>
</tr>
<tr>
<td><code>show ip bgp paths</code></td>
<td>Display all BGP paths in the database.</td>
</tr>
<tr>
<td><code>show ip bgp peer-group [tag] [summary]</code></td>
<td>Display information about BGP peer groups.</td>
</tr>
<tr>
<td><code>show ip bgp summary</code></td>
<td>Display the status of all BGP connections.</td>
</tr>
</tbody>
</table>
Configuring Multi-VRF CE

Virtual Private Networks (VPNs) provide a secure way for customers to share bandwidth over an ISP backbone network. A VPN is a collection of sites sharing a common routing table. A customer site is connected to the service provider network by one or more interfaces, and the service provider associates each interface with a VPN routing table. A VPN routing table is called a VPN routing/forwarding (VRF) table.

The Catalyst 3550 switch supports multiple VPN routing/forwarding (multi-VRF) instances in customer edge (CE) devices (multi-VRF CE). Multi-VRF CE allows a service provider to support two or more VPNs with overlapping IP addresses.

Note

The switch does not use Multiprotocol Label Switching (MPLS) to support VPNs. For information about MPLS VRF, refer to the Cisco IOS Switching Services Configuration Guide for Release 12.1.

This section includes these topics:

- Understanding Multi-VRF CE, page 30-65
- Default Multi-VRF CE Configuration, page 30-67
- Multi-VRF CE Configuration Guidelines, page 30-68
- Configuring VRFs, page 30-69
- Configuring a VPN Routing Session, page 30-70
- Configuring BGP PE to CE Routing Sessions, page 30-70
- Multi-VRF CE Configuration Example, page 30-71
- Displaying Multi-VRF CE Status, page 30-75

Understanding Multi-VRF CE

Multi-VRF CE is a feature that allows a service provider to support two or more VPNs, where IP addresses can be overlapped among the VPNs. Multi-VRF CE uses input interfaces to distinguish routes for different VPNs and forms virtual packet-forwarding tables by associating one or more Layer 3 interfaces with each VRF. Interfaces in a VRF can be either physical, such as Ethernet ports, or logical, such as VLAN SVIs, but an interface cannot belong to more than one VRF at any time.

Note

Multi-VRF CE interfaces must be Layer 3 interfaces.

Multi-VRF CE includes these devices:

- Customer edge (CE) devices provide customers access to the service provider network over a data link to one or more provider edge routers. The CE device advertises the site’s local routes to the router and learns the remote VPN routes from it. A Catalyst 3550 switch can be a CE.

- Provider edge (PE) routers exchange routing information with CE devices by using static routing or a routing protocol such as BGP, RIPv2, OSPF, or EIGRP. The PE is only required to maintain VPN routes for those VPNs to which it is directly attached, eliminating the need for the PE to maintain all of the service provider VPN routes. Each PE router maintains a VRF for each of its directly connected sites. Multiple interfaces on a PE router can be associated with a single VRF if all of these...
sites participate in the same VPN. Each VPN is mapped to a specified VRF. After learning local VPN routes from CEs, a PE router exchanges VPN routing information with other PE routers by using internal BGP (IBPG).

- Provider routers or core routers are any routers in the service provider network that do not attach to CE devices.

With multi-VRF CE, multiple customers can share one CE, and only one physical link is used between the CE and the PE. The shared CE maintains separate VRF tables for each customer and switches or routes packets for each customer based on its own routing table. Multi-VRF CE extends limited PE functionality to a CE device, giving it the ability to maintain separate VRF tables to extend the privacy and security of a VPN to the branch office.

Figure 30-6 shows a configuration where each Catalyst 3550 switch acts as multiple virtual CEs. This scenario is suited for customers who have low bandwidth requirements for their VPN service, for example, small companies. In this case, multi-VRF CE support is required in the Catalyst 3550 switches. Because multi-VRF CE is a Layer 3 feature, each interface in a VRF must be a Layer 3 interface.

**Figure 30-6  Catalyst 3550 Switches Acting as Multiple Virtual CEs**

When the CE switch receives a command to add a Layer 3 interface to a VRF, it sets up the appropriate mapping between the VLAN ID and the policy label (PL) in multi-VRF-CE-related data structures and adds the VLAN ID and PL to the VLAN database.

When multi-VRF CE is configured, the Layer 3 forwarding table is conceptually partitioned into two sections:

- The multi-VRF CE routing section contains the routes from different VPNs.
- The global routing section contains routes to non-VPN networks, such as the Internet.

VLAN IDs from different VRFs are mapped into different policy labels, which are used to distinguish the VRFs during processing. If no route is found in the multi-VRF CE section of the Layer 3 forwarding table, the global routing section is used to determine the forwarding path. For each new VPN route learned, the Layer 3 setup function retrieves the policy label by using the VLAN ID of the ingress port and inserts the policy label and new route to the multi-VRF CE routing section. If the packet is received from a routed port, the port internal VLAN ID number is used; if the packet is received from an SVI, the VLAN number is used.
This is the packet-forwarding process in a multi-VRF-CE-enabled network:

- When the switch receives a packet from a VPN, the switch looks up the routing table based on the input policy label number. When a route is found, the switch forwards the packet to the PE.
- When the ingress PE receives a packet from the CE, it performs a VRF lookup. When a route is found, the router adds a corresponding MPLS label to the packet and sends it to the MPLS network.
- When an egress PE receives a packet from the network, it strips the label and uses the label to identify the correct VPN routing table. Then it performs the normal route lookup. When a route is found, it forwards the packet to the correct adjacency.
- When a CE receives a packet from an egress PE, it uses the input policy label to look up the correct VPN routing table. If a route is found, it forwards the packet within the VPN.

To configure VRF, you create a VRF table and specify the Layer 3 interface associated with the VRF. Then configure the routing protocols in the VPN and between the CE and the PE. BGP is the preferred routing protocol used to distribute VPN routing information across the provider’s backbone. The multi-VRF CE network has three major components:

- VPN route target communities—lists of all other members of a VPN community. You need to configure VPN route targets for each VPN community member.
- Multiprotocol BGP peering of VPN community PE routers—propagates VRF reachability information to all members of a VPN community. You need to configure BGP peering in all PE routers within a VPN community.
- VPN forwarding—transports all traffic between all VPN community members across a VPN service-provider network.

**Default Multi-VRF CE Configuration**

Table 30-14 shows the default VRF configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRF</td>
<td>Disabled. No VRFs are defined.</td>
</tr>
<tr>
<td>Maps</td>
<td>No import maps, export maps, or route maps are defined.</td>
</tr>
<tr>
<td>VRF maximum routes</td>
<td>Fast Ethernet switches: 8000</td>
</tr>
<tr>
<td></td>
<td>Gigabit Ethernet switches: 12000.</td>
</tr>
<tr>
<td>Forwarding table</td>
<td>The default for an interface is the global routing table.</td>
</tr>
</tbody>
</table>
Multi-VRF CE Configuration Guidelines

To use multi-VRF CE, you must have the enhanced multilayer software image installed on your switch.

These are considerations when configuring VRF in your network:

- A switch with multi-VRF CE is shared by multiple customers, and each customer has its own routing table.
- Because customers use different VRF tables, the same IP addresses can be reused. Overlapped IP addresses are allowed in different VPNs.
- Multi-VRF CE lets multiple customers share the same physical link between the PE and the CE. Trunk ports with multiple VLANs separate packets among customers. Each customer has its own VLAN.
- Multi-VRF CE does not support all MPLS-VRF functionality. It does not support label exchange, LDP adjacency, or labeled packets.
- For the PE router, there is no difference between using multi-VRF CE or using multiple CEs. In Figure 30-6, multiple virtual Layer 3 interfaces are connected to the multi-VRF CE device.
- The switch supports configuring VRF by using physical ports, VLAN SVIs, or a combination of both. The SVIs can be connected through an access port or a trunk port.
- A customer can use multiple VLANs as long as they do not overlap with those of other customers. A customer’s VLANs are mapped to a specific routing table ID that is used to identify the appropriate routing tables stored on the switch.
- To support multi-VRF CE, multiple routing tables are entered into the Layer 3 TCAM table. Because an extra field is needed in the routing table to identify the table to which a route belongs, you must modify the SDM template to enable the switch to support 144-bit Layer 3 TCAM. Use the `sdm prefer extended-match`, `sdm prefer access extended-match`, or `sdm prefer routing extended-match` global configuration command to reformat the TCAM space allocated to unicast routing in the default, access, or routing template, respectively. Reformating the unicast routing TCAM halves the number of supported unicast routes in the template.

For more information on the SDM templates, see the “Optimizing System Resources for User-Selected Features” section on page 7-27.

- A Catalyst 3550 switch using VRF can support one global network and up to seven VRFs. The total number of routes supported are limited by the size of the TCAM and specified in the SDM template.
- Most routing protocols (BGP, OSPF, RIP, and static routing) can be used between the CE and the PE. However, we recommend using external BGP (EBGP) for these reasons:
  - BGP does not require multiple algorithms to communicate with multiple CEs.
  - BGP is designed for passing routing information between systems run by different administrations.
  - BGP makes it easy to pass attributes of the routes to the CE.
- Multi-VRF-CE does not support IGRP and EIGRP.
- Multi-VRF CE does not affect the packet switching rate.
- VPN multicast is not supported.
You cannot configure the Web Cache Communication Protocol (WCCP) and multi-VRF CE on the same switch at the same time.

When multi-VRF CE is configured, you cannot assign the same Hot Standby Routing Protocol (HSRP) standby address to two different VPNs.

VRF and policy-based routing (PBR) are mutually-exclusive on a switch interface. You cannot enable VRF when PBR is enabled on an interface. In contrast, you cannot enable PBR when VRF is enabled on an interface.

### Configuring VRFs

Beginning in privileged EXEC mode, follow these steps to configure one or more VRFs. For complete syntax and usage information for the commands, refer to the switch command reference for this release and the *Cisco IOS Switching Services Command Reference for Release 12.1*.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip routing</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip vrf vrf-name</td>
</tr>
<tr>
<td>Step 4</td>
<td>rd route-distinguisher</td>
</tr>
<tr>
<td>Step 5</td>
<td>route-target { export</td>
</tr>
<tr>
<td>Step 6</td>
<td>import map route-map</td>
</tr>
<tr>
<td>Step 7</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 8</td>
<td>ip vrf forwarding vrf-name</td>
</tr>
<tr>
<td>Step 9</td>
<td>end</td>
</tr>
<tr>
<td>Step 10</td>
<td>show ip vrf { brief</td>
</tr>
<tr>
<td>Step 11</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the `no ip vrf vrf-name` global configuration command to delete a VRF and to remove all interfaces from it. Use the `no ip vrf forwarding` interface configuration command to remove an interface from the VRF.
Configuring a VPN Routing Session

Routing within the VPN can be configured with any supported routing protocol (RIP, OSPF, IGRP, EIGRP, or BGP) or with static routing. The configuration shown here is for OSPF, but the process is the same for other protocols.

Beginning in privileged EXEC mode, follow these steps to configure OSPF in the VPN:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>router ospf process-id vrf vrf-name Enable OSPF routing, specify a VPN forwarding table, and enter router configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>log-adjacency-changes (Optional) Log changes in the adjacency state. This is the default state.</td>
</tr>
<tr>
<td>Step 4</td>
<td>redistribute bgp autonomous-system-number subnets Set the switch to redistribute information from the BGP network to the OSPF network.</td>
</tr>
<tr>
<td>Step 5</td>
<td>network network-number area area-id Define a network address and mask on which OSPF runs and the area ID for that network address.</td>
</tr>
<tr>
<td>Step 6</td>
<td>end Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>show ip ospf process-id Verify the configuration of the OSPF network.</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the no router ospf process-id vrf vrf-name global configuration command to disassociate the VPN forwarding table from the OSPF routing process.

Configuring BGP PE to CE Routing Sessions

Beginning in privileged EXEC mode, follow these steps to configure a BGP PE to CE routing session:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>router bgp autonomous-system-number Configure the BGP routing process with the AS number passed to other BGP routers, and enter router configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>network network-number mask network-mask Specify a network and mask to announce using BGP.</td>
</tr>
<tr>
<td>Step 4</td>
<td>redistribute ospf process-id match internal Set the switch to redistribute OSPF internal routes.</td>
</tr>
<tr>
<td>Step 5</td>
<td>network network-number area area-id Define a network address and mask on which OSPF runs and the area ID for that network address.</td>
</tr>
<tr>
<td>Step 6</td>
<td>address-family ipv4 vrf vrf-name Define BGP parameters for PE to CE routing sessions, and enter VRF address-family mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>neighbor address remote-as as-number Define a BGP session between PE and CE routers.</td>
</tr>
<tr>
<td>Step 8</td>
<td>neighbor address activate Activate the advertisement of the IPv4 address family.</td>
</tr>
</tbody>
</table>
Use the `no router bgp autonomous-system-number` global configuration command to delete the BGP routing process. Use the command with keywords to delete routing characteristics.

### Multi-VRF CE Configuration Example

**Figure 30-7** is a simplified example of the physical connections in a network similar to that in Figure 30-6. OSPF is the protocol used in VPN1, VPN2, and the global network. BGP is used in the CE to PE connections. The example commands show how to configure the CE Switch S8 and include the VRF configuration for Switches S20 and S11 and the PE router commands related to traffic with Switch S8. Commands for configuring the other switches are not included but would be similar.

**Figure 30-7  Multi-VRF CE Configuration Example**
Configuring Switch S8

On Switch S8, enable routing and configure VRF.

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# ip routing
Switch(config)# ip vrf v11
Switch(config-vrf)# rd 800:1
Switch(config-vrf)# route-target export 800:1
Switch(config-vrf)# route-target import 800:1
Switch(config-vrf)# exit
Switch(config)# ip vrf v12
Switch(config-vrf)# rd 800:2
Switch(config-vrf)# route-target export 800:2
Switch(config-vrf)# route-target import 800:2
Switch(config-vrf)# exit

Configure the loopback and physical interfaces on Switch S8. Fast Ethernet interface 0/5 is a trunk connection to the PE. Interfaces 0/7 and 0/11 connect to VPNs:

Switch(config)# interface loopback1
Switch(config-if)# ip vrf forwarding v11
Switch(config-if)# ip address 8.8.1.8 255.255.255.0
Switch(config-if)# exit

Switch(config)# interface loopback2
Switch(config-if)# ip vrf forwarding v12
Switch(config-if)# ip address 8.8.2.8 255.255.255.0
Switch(config-if)# exit

Switch(config)# interface FastEthernet0/5
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk
Switch(config-if)# no ip address
Switch(config-if)# exit

Switch(config)# interface FastEthernet0/8
Switch(config-if)# switchport access vlan 208
Switch(config-if)# no ip address
Switch(config-if)# exit

Switch(config)# interface FastEthernet0/11
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk
Switch(config-if)# no ip address
Switch(config-if)# exit

Configure the VLANs used on Switch S8. VLAN 10 is used by VRF 11 between the CE and the PE. VLAN 20 is used by VRF 12 between the CE and the PE. VLANs 118 and 208 are used for VRF for the VPNs that include Switch S11 and Switch S20, respectively:

Switch(config)# interface Vlan10
Switch(config-if)# ip vrf forwarding v11
Switch(config-if)# ip address 38.0.0.8 255.255.255.0
Switch(config-if)# exit

Switch(config)# interface Vlan20
Switch(config-if)# ip vrf forwarding v12
Switch(config-if)# ip address 83.0.0.8 255.255.255.0
Switch(config-if)# exit
Configure Multi-VRF CE

Switch (config) # interface Vlan118
Switch (config-if) # ip vrf forwarding v12
Switch (config-if) # ip address 118.0.0.8 255.255.255.0
Switch (config-if) # exit

Switch (config) # interface Vlan208
Switch (config-if) # ip vrf forwarding v11
Switch (config-if) # ip address 208.0.0.8 255.255.255.0
Switch (config-if) # exit

Configure OSPF routing in VPN1 and VPN2.

Switch (config) # router ospf 1 vrf vl1
Switch (config-router) # redistribute bgp 800 subnets
Switch (config-router) # network 208.0.0.0 0.0.0.255 area 0
Switch (config-router) # exit
Switch (config) # router ospf 2 vrf vl2
Switch (config-router) # redistribute bgp 800 subnets
Switch (config-router) # network 118.0.0.0 0.0.0.255 area 0
Switch (config-router) # exit

Configure BGP for CE to PE routing.

Switch (config) # router bgp 800
Switch (config-router) # address-family ipv4 vrf vl2
Switch (config-router-af) # redistribute ospf 2 match internal
Switch (config-router-af) # neighbor 83.0.0.3 remote-as 100
Switch (config-router-af) # neighbor 83.0.0.3 activate
Switch (config-router-af) # network 8.8.2.0 mask 255.255.255.0
Switch (config-router-af) # exit

Switch (config-router-af) # address-family ipv4 vrf vl1
Switch (config-router-af) # redistribute ospf 1 match internal
Switch (config-router-af) # neighbor 38.0.0.3 remote-as 100
Switch (config-router-af) # neighbor 38.0.0.3 activate
Switch (config-router-af) # network 8.8.1.0 mask 255.255.255.0
Switch (config-router-af) # end

Configuring Switch S20

Switch S20 belongs to VPN 1.

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# ip routing
Switch(config)# interface Fast Ethernet 0/7
Switch(config-if)# no switchport
Switch(config-if)# ip address 208.0.0.20 255.255.255.0
Switch(config-if)# exit

Switch(config)# router ospf 101
Switch(config-router)# network 208.0.0.0 0.0.0.255 area 0
Switch(config-router)# end

Configuring Switch S11

Switch S11 belongs to VPN 2.

Switch# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)# ip routing
Switch(config)# interface Gigabit Ethernet 0/3
Switch(config-if)# switchport trunk encapsulation dot1q
Switch(config-if)# switchport mode trunk
Configuring the PE Switch S3

On Switch S3 (the router), these commands only configure the connections to the CE device, Switch S8.

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# ip vrf v1
Router(config-vrf)# rd 100:1
Router(config-vrf)# route-target export 100:1
Router(config-vrf)# route-target import 100:1
Router(config-vrf)# exit

Router(config)# ip vrf v2
Router(config-vrf)# rd 100:2
Router(config-vrf)# route-target export 100:2
Router(config-vrf)# route-target import 100:2
Router(config-vrf)# exit

Router(config)# ip cef
Router(config)# interface Loopback1
Router(config-if)# ip vrf forwarding v1
Router(config-if)# ip address 3.3.1.3 255.255.255.0
Router(config-if)# exit

Router(config)# interface Loopback2
Router(config-if)# ip vrf forwarding v2
Router(config-if)# ip address 3.3.2.3 255.255.255.0
Router(config-if)# exit

Router(config)# interface Fast Ethernet3/0.10
Router(config-if)# encapsulation dot1q 10
Router(config-if)# ip vrf forwarding v1
Router(config-if)# ip address 38.0.0.3 255.255.255.0
Router(config-if)# exit

Router(config)# interface Fast Ethernet3/0.20
Router(config-if)# encapsulation dot1q 20
Router(config-if)# ip vrf forwarding v2
Router(config-if)# ip address 83.0.0.3 255.255.255.0
Router(config-if)# exit

Router(config)# router bgp 100
Router(config-router)# address-family ipv4 vrf v2
Router(config-router-af)# neighbor 83.0.0.8 remote-as 800
Router(config-router-af)# neighbor 83.0.0.8 activate
Router(config-router-af)# network 3.3.2.0 mask 255.255.255.0
Router(config-router-af)# exit
Router(config-router)# address-family ipv4 vrf v1
Router(config-router-af)# neighbor 83.0.0.8 remote-as 800
Router(config-router-af)# neighbor 83.0.0.8 activate
Router(config-router-af)# network 3.3.1.0 mask 255.255.255.0
Router(config-router-af)# exit
```
Displaying Multi-VRF CE Status

You can use the privileged EXEC commands in Table 30-8 to display information about multi-VRF CE configuration and status.

Table 30-15 Show IP OSPF Statistics Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip protocols vrf vrf-name</td>
<td>Display routing protocol information associated with a VRF.</td>
</tr>
<tr>
<td>show ip route vrf vrf-name [connected] [protocol [as-number]] [list] [mobile] [odr] [profile] [static] [summary] [supernets-only]</td>
<td>Display IP routing table information associated with a VRF.</td>
</tr>
<tr>
<td>show ip vrf [brief</td>
<td>detail</td>
</tr>
</tbody>
</table>

For more information about the information in the displays, refer to the Cisco IOS Switching Services Command Reference for Release 12.1.

Configuring Protocol-Independent Features

This section describes how to configure IP routing protocol-independent features. These features are available on switches running the SMI or the EMI, but protocol-related features with the SMI are available only for RIP. For a complete description of the IP routing protocol-independent commands in this chapter, refer to the “IP Routing Protocol-Independent Commands” chapter of the Cisco IOS IP and IP Routing Command Reference for Release 12.1.

This section includes these procedures:

- Configuring Cisco Express Forwarding, page 30-75
- Configuring the Number of Equal-Cost Routing Paths, page 30-76
- Configuring Static Unicast Routes, page 30-77
- Specifying Default Routes and Networks, page 30-78
- Using Route Maps to Redistribute Routing Information, page 30-79
- Configuring Policy-Based Routing, page 30-82
- Filtering Routing Information, page 30-85
- Managing Authentication Keys, page 30-88

Configuring Cisco Express Forwarding

Cisco Express Forwarding (CEF) is a Layer 3 IP switching technology used to optimize network performance. CEF implements an advanced IP look-up and forwarding algorithm to deliver maximum Layer 3 switching performance. CEF is less CPU-intensive than fast switching route caching, allowing more CPU processing power to be dedicated to packet forwarding. In the Catalyst 3550 switch, the hardware uses CEF to achieve Gigabit-speed line-rate IP traffic. In dynamic networks, fast switching cache entries are frequently invalidated because of routing changes, which can cause traffic to be
process-switched by using the routing table, instead of fast-switched by using the route cache. CEF uses the forwarding information base (FIB) lookup table to perform destination-based switching of IP packets.

The two main components in CEF are the FIB and adjacency tables.

- The FIB is similar to a routing table or information base and maintains a mirror image of the forwarding information in the IP routing table. When routing or topology changes occur in the network, the IP routing table is updated, and those changes are reflected in the FIB. The FIB maintains next-hop address information based on the information in the IP routing table. Because the FIB contains all known routes that exist in the routing table, CEF eliminates route cache maintenance, is more efficient for switching traffic, and is not affected by traffic patterns.

- Nodes in the network are said to be adjacent if they can reach each other with a single hop across a link layer. CEF uses adjacency tables to prepend Layer 2 addressing information. The adjacency table maintains Layer 2 next-hop addresses for all FIB entries.

CEF is enabled globally by default. If for some reason it is disabled, you can re-enable it by using the `ip cef` global configuration command.

The default configuration, which we recommend, is CEF enabled on all Layer 3 interfaces. You can disable CEF on an interface by using the `no ip route-cache cef` interface configuration command. You can enable CEF on an interface by using the `ip route-cache cef` interface configuration command.

Beginning in privileged EXEC mode, follow these steps to enable CEF on an interface after it has been disabled:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip route-cache cef</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show ip cef</td>
</tr>
<tr>
<td>Step 6</td>
<td>show adjacency</td>
</tr>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable CEF on an interface, use the `no ip route-cache cef` interface configuration command.

### Configuring the Number of Equal-Cost Routing Paths

When a router has two or more routes to the same network with the same metrics, these routes can be thought of as having an equal cost. The term parallel path is another way to refer to occurrences of equal-cost routes in a routing table. If a router has two or more equal-cost paths to a network, it can use them concurrently. Parallel paths provide redundancy in case of a circuit failure and also enable a router to load balance packets over the available paths for more efficient use of available bandwidth.

Although the router automatically learns about and configures equal-cost routes, you can control the maximum number of parallel paths supported by an IP routing protocol in its routing table.
Beginning in privileged EXEC mode, follow these steps to change the maximum number of parallel paths installed in a routing table from the default:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>step 2 router { bgp</td>
<td>rip</td>
</tr>
<tr>
<td>step 3 maximum-paths maximum</td>
<td>Set the maximum number of parallel paths for the protocol routing table. The range is from 1 to 8; the default is 4 for most IP routing protocols, but only 1 for BGP.</td>
</tr>
<tr>
<td>step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>step 5 show ip protocols</td>
<td>Verify the setting in the Maximum path field.</td>
</tr>
<tr>
<td>step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the **no maximum-paths** router configuration command to restore the default value.

### Configuring Static Unicast Routes

Static unicast routes are user-defined routes that cause packets moving between a source and a destination to take a specified path. Static routes can be important if the router cannot build a route to a particular destination and are useful for specifying a gateway of last resort to which all unroutable packets are sent.

Beginning in privileged EXEC mode, follow these steps to configure a static unicast route:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>step 2 ip route prefix mask { address</td>
<td>interface } [distance]</td>
</tr>
<tr>
<td>step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>step 4 show ip route</td>
<td>Display the current state of the routing table to verify the configuration.</td>
</tr>
<tr>
<td>step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use the **no ip route prefix mask** global configuration command to remove a static route.

The switch retains static routes until you remove them. However, you can override static routes with dynamic routing information by assigning administrative distance values. Each dynamic routing protocol has a default administrative distance, as listed in **Table 30-16**. If you want a static route to be overridden by information from a dynamic routing protocol, set the administrative distance of the static route higher than that of the dynamic protocol.

**Table 30-16 Dynamic Routing Protocol Default Administrative Distances**

<table>
<thead>
<tr>
<th>Route Source</th>
<th>Default Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected interface</td>
<td>0</td>
</tr>
<tr>
<td>Static route</td>
<td>1</td>
</tr>
</tbody>
</table>
Configuring Protocol-Independent Features

Chapter 30  Configuring IP Unicast Routing

Static routes that point to an interface are advertised through RIP, IGRP, and other dynamic routing protocols, whether or not static redistribute router configuration commands were specified for those routing protocols. These static routes are advertised because static routes that point to an interface are considered in the routing table to be connected and hence lose their static nature. However, if you define a static route to an interface that is not one of the networks defined in a network command, no dynamic routing protocols advertise the route unless a redistribute static command is specified for these protocols.

When an interface goes down, all static routes through that interface are removed from the IP routing table. When the software can no longer find a valid next hop for the address specified as the forwarding router's address in a static route, the static route is also removed from the IP routing table.

### Specifying Default Routes and Networks

A router might not be able to determine the routes to all other networks. To provide complete routing capability, you can use some routers as smart routers and give the remaining routers default routes to the smart router. (Smart routers have routing table information for the entire internetwork.) These default routes can be dynamically learned or can be configured in the individual routers. Most dynamic interior routing protocols include a mechanism for causing a smart router to generate dynamic default information that is then forwarded to other routers.

If a router has a directly connected interface to the specified default network, the dynamic routing protocols running on that device generate a default route. In RIP, it advertises the pseudonetwork 0.0.0.0. In IGRP, the network itself is advertised and flagged as an exterior route.

A router that is generating the default for a network also might need a default of its own. One way a router can generate its own default is to specify a static route to the network 0.0.0.0 through the appropriate device.

Beginning in privileged EXEC mode, follow these steps to define a static route to a network as the static default route:

1. `configure terminal`
   - Enter global configuration mode.
2. `ip default-network network number`
   - Specify a default network.

### Table 30-16 Dynamic Routing Protocol Default Administrative Distances (continued)

<table>
<thead>
<tr>
<th>Route Source</th>
<th>Default Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>EIGRP summary route</td>
<td>5</td>
</tr>
<tr>
<td>External BGP</td>
<td>20</td>
</tr>
<tr>
<td>Internal Enhanced IGRP</td>
<td>90</td>
</tr>
<tr>
<td>IGRP</td>
<td>100</td>
</tr>
<tr>
<td>OSPF</td>
<td>110</td>
</tr>
<tr>
<td>RIP</td>
<td>120</td>
</tr>
<tr>
<td>EIGRP summary route</td>
<td>170</td>
</tr>
<tr>
<td>Internal BGP</td>
<td>200</td>
</tr>
<tr>
<td>Unknown</td>
<td>225</td>
</tr>
</tbody>
</table>
Use the `no ip default-network network number` global configuration command to remove the route. When default information is passed through a dynamic routing protocol, no further configuration is required. The system periodically scans its routing table to choose the optimal default network as its default route. In IGRP networks, there might be several candidate networks for the system default. Cisco routers use administrative distance and metric information to determine the default route or the gateway of last resort.

If dynamic default information is not being passed to the system, candidates for the default route are specified with the `ip default-network` global configuration command. If this network appears in the routing table from any source, it is flagged as a possible choice for the default route. If the router has no interface on the default network, but does have a path to it, the network is considered as a possible candidate, and the gateway to the best default path becomes the gateway of last resort.

### Using Route Maps to Redistribute Routing Information

The switch can run multiple routing protocols simultaneously, and it can redistribute information from one routing protocol to another. For example, you can instruct the switch to readvertise IGRP-derived routes by using RIP or to readvertise static routes by using IGRP. Redistributing information from one routing protocol to another applies to all supported IP-based routing protocols.

You can conditionally control the redistribution of routes between routing domains by defining route maps between the two domains. The `match` and `set` route-map configuration commands define the condition portion of a route map. The `match` command specifies that a criterion must be matched; the `set` command specifies an action to be taken if the routing update meets the conditions defined by the match command. Although redistribution is a protocol-independent feature, some of the `match` and `set` route-map configuration commands are specific to a particular protocol.

One or more `match` commands and one or more `set` commands follow a `route-map` command. If there are no `match` commands, everything matches. If there are no `set` commands, nothing is done, other than the match. Therefore, you need at least one `match` or `set` command.

**Note:** Although each of Steps 3 through 16 in the following section is optional, you must enter at least one `match` route-map configuration command and one `set` route-map configuration command. For complete syntax information for the command, refer to the *Cisco IOS IP and IP Routing Command Reference for Release 12.1*. 

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td><code>show ip route</code></td>
<td>Display the selected default route in the gateway of last resort display.</td>
</tr>
<tr>
<td>5</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>
Beginning in privileged EXEC mode, follow these steps to configure a route map for redistribution:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| 2    | route-map map-tag [permit | deny] [sequence number] | Define any route maps used to control redistribution and enter route-map configuration mode.  
  
  map-tag—A meaningful name for the route map. The redistribute router configuration command uses this name to reference the route map. Multiple route maps might share the same map tag name.  
  
  (Optional) If permit is specified and the match criteria are met for this route map, the route is redistributed as controlled by the set actions. If deny is specified, the route is not redistributed.  
  
  sequence number (Optional)—Number that indicates the position of a new route map in the list of route maps already configured with the same name. |
3	match as-path path-list-number	Match a BGP AS path access list.		
4	match community-list community-list-number [exact]	Match a BGP community list.		
5	match ip address {access-list-number	access-list-name} [...access-list-number	...access-list-name]	Match a standard access list by specifying the name or number. It can be an integer from 1 to 199.
6	match metric metric-value	Match the specified route metric. The metric-value can be an IGRP 5-part metric with a value from 0 to 4294967295.		
7	match ip next-hop {access-list-number	access-list-name} [...access-list-number	...access-list-name]	Match a next-hop router address passed by one of the access lists specified (numbered from 1 to 199).
8	match tag tag value [...tag-value]	Match the specified tag value in a list of one or more route tag values. Each can be an integer from 0 to 4294967295.		
9	match interface type number [...type number]	Match the specified next hop route out one of the specified interfaces.		
10	match ip route-source {access-list-number	access-list-name} [...access-list-number	...access-list-name]	Match the address specified by the specified advertised access lists.
11	match route-type [local	internal	external [type-1	type-2]
  
  • local—Locally generated BGP routes.  
  
  • internal—OSPF intra-area and interarea routes or EIGRP internal routes.  
  
  • external—OSPF external routes (Type 1 or Type 2) or EIGRP external routes. |
12	set dampening halflife reuse suppress max-suppress-time	Set BGP route dampening factors.		
13	set local-preference value	Assign a value to a local BGP path.		
14	set origin {igp	egp as	incomplete}	Set the BGP origin code.
To delete an entry, use the `no route-map map tag` global configuration command or the `no match` or `no set` route-map configuration commands.

You can distribute routes from one routing domain into another and control route distribution.

Beginning in privileged EXEC mode, follow these steps to control route redistribution. Note that the keywords are the same as defined in the previous procedure.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>router { bgp</td>
<td>rip</td>
</tr>
</tbody>
</table>
To disable redistribution, use the `no` form of the commands.

The metrics of one routing protocol do not necessarily translate into the metrics of another. For example, the RIP metric is a hop count, and the IGRP metric is a combination of five qualities. In these situations, an artificial metric is assigned to the redistributed route. Uncontrolled exchanging of routing information between different routing protocols can create routing loops and seriously degrade network operation.

If you have not defined a default redistribution metric that replaces metric conversion, some automatic metric translations occur between routing protocols:

- RIP can automatically redistribute static routes. It assigns static routes a metric of 1 (directly connected).
- IGRP can automatically redistribute static routes and information from other IGRP-routed autonomous systems. IGRP assigns static routes a metric that identifies them as directly connected. It does not change the metrics of routes derived from IGRP updates from other autonomous systems.
- Any protocol can redistribute other routing protocols if a default mode is in effect.

### Configuring Policy-Based Routing

You can use policy-based routing (PBR) to configure a defined policy for traffic flows. By using PBR, you can have more control over routing by reducing the reliance on routes derived from routing protocols. PBR can determine and implement routing policies that allow or deny paths based on:

- Identity of a particular end system
- Application
- Protocol

You can use PBR to provide equal-access and source-sensitive routing, routing based on interactive versus batch traffic, or routing based on dedicated links. For example, you could transfer stock records to a corporate office on a high-bandwidth, high-cost link for a short time while transmitting routine application data such as e-mail over a low-bandwidth, low-cost link.
PBR is applied to incoming packets. All packets received on an interface with PBR enabled are considered for PBR. The switch passes the packets through route maps. Based on the criteria defined in the route maps, packets are forwarded (routed) to the appropriate next hop. For more information about configuring route maps see the “Using Route Maps to Redistribute Routing Information” section on page 30-79.

**Note**

For details about PBR commands and keywords, refer to the *Cisco IOS IP and IP Routing Command Reference for Release 12.1*. For a list of PBR commands not supported by the switch, see Appendix C, “Unsupported CLI Commands in Release 12.1(13)EA1.”

### PBR Configuration Guidelines

Before configuring PBR, you should be aware of this information:

- To use PBR, you must have the EMI installed on your switch.
- Multicast traffic is not policy-routed. PBR applies only to unicast traffic.
- You can enable PBR on a routed port, an SVI, or an EtherChannel port channel in Layer 3 mode.
- You can define a maximum of 247 IP policy route-maps on the switch.
- VRF and PBR are mutually-exclusive on a switch interface. You cannot enable VRF when PBR is enabled on an interface. In contrast, you cannot enable PBR when VRF is enabled on an interface.
- WCCP and PBR are mutually-exclusive on a switch interface. You cannot enable WCCP when PBR is enabled on an interface. In contrast, you cannot enable PBR when WCCP is enabled on an interface.
- The number of TCAM entries used by PBR depends on the route-map itself, the ACLs used, and the order of the ACLs and route-map entries.
- You must modify the SDM template to enable the switch to support the 144-bit Layer 3 TCAM. Use the `sdm prefer extended-match`, `sdm prefer access extended-match`, or the `sdm prefer routing extended-match` global configuration commands to reformat the TCAM space allocated to unicast routing in the default, access, or routing template, respectively. Reformatting the unicast routing TCAM reduces by half the number of supported unicast routes in the template.

See the “Optimizing System Resources for User-Selected Features” section on page 7-27 and the “Displaying ACL Resource Usage and Configuration Problems” section on page 27-43 for more information about managing the memory resources in the switch.
Enabling PBR

By default, PBR is disabled on the switch. To enable PBR, you must create a route map that specifies the match criteria and the resulting action if all of the match clauses are met. Then, you must enable PBR for that route map on an interface. All packets arriving on the specified interface matching the match clauses will be subject to PBR.

Beginning in privileged EXEC mode, follow these steps to configure PBR:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: route-map map-tag [permit</td>
<td>Define any route maps used to control where packets are output and enter route-map configuration mode.</td>
</tr>
<tr>
<td></td>
<td>deny] [sequence number]</td>
</tr>
<tr>
<td></td>
<td>map-tag—A meaningful name for the route map. The ip policy route-map</td>
</tr>
<tr>
<td></td>
<td>interface configuration command uses this name to reference the route map</td>
</tr>
<tr>
<td></td>
<td>Multiple route maps might share the same map tag name.</td>
</tr>
<tr>
<td></td>
<td>(Optional) If permit is specified and the match criteria are met for</td>
</tr>
<tr>
<td></td>
<td>this route map, the route is policy-routed as controlled by the set</td>
</tr>
<tr>
<td></td>
<td>actions. If deny is specified, the route is not policy-routed.</td>
</tr>
<tr>
<td></td>
<td>sequence number (Optional)— Number that shows the position of a new</td>
</tr>
<tr>
<td></td>
<td>route map in the list of route maps already configured with the same</td>
</tr>
<tr>
<td></td>
<td>name.</td>
</tr>
<tr>
<td></td>
<td>Step 3: match ip address {access-list-number</td>
</tr>
<tr>
<td></td>
<td>...access-list-number</td>
</tr>
<tr>
<td></td>
<td>If you do not specify a match command, the route map applies to all</td>
</tr>
<tr>
<td></td>
<td>packets.</td>
</tr>
<tr>
<td></td>
<td>Step 4: set ip next-hop ip-address [..ip-address]</td>
</tr>
<tr>
<td></td>
<td>Step 5: interface interface-id</td>
</tr>
<tr>
<td></td>
<td>Step 6: ip policy route-map map-tag</td>
</tr>
<tr>
<td></td>
<td>Step 7: ip local policy route-map map-tag</td>
</tr>
<tr>
<td></td>
<td>Step 8: ip route-cache policy</td>
</tr>
<tr>
<td></td>
<td>Step 9: end</td>
</tr>
</tbody>
</table>
Use the `no route-map map-tag` global configuration command or the `no match` or `no set` route-map configuration commands to delete an entry. Use the `no ip policy route-map map-tag interface` configuration command to disable PBR on an interface.

**Filtering Routing Information**

You can filter routing protocol information by performing the tasks described in this section.

**Note**

When routes are redistributed between OSPF processes, no OSPF metrics are preserved.

**Setting Passive Interfaces**

To prevent other routers on a local network from dynamically learning about routes, you can use the `passive-interface` router configuration command to keep routing update messages from being sent through a router interface. When you use this command in the OSPF protocol, the interface address you specify as passive appears as a stub network in the OSPF domain. OSPF routing information is neither sent nor received through the specified router interface.

In networks with many interfaces, to avoid having to manually set them as passive, you can set all interfaces to be passive by default by using the `passive-interface default` router configuration command and manually setting interfaces where adjacencies are desired.
Beginning in privileged EXEC mode, follow these steps to configure passive interfaces:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 router {bgp</td>
<td>rip</td>
</tr>
<tr>
<td>Step 3 passive-interface interface-id</td>
<td>Suppress sending routing updates through the specified Layer 3 interface.</td>
</tr>
<tr>
<td>Step 4 passive-interface default</td>
<td>(Optional) Set all interfaces as passive by default.</td>
</tr>
<tr>
<td>Step 5 no passive-interface interface type</td>
<td>(Optional) Activate only those interfaces that need to have adjacencies sent.</td>
</tr>
<tr>
<td>Step 6 network network-address</td>
<td>(Optional) Specify the list of networks for the routing process. The network-address is an IP address.</td>
</tr>
<tr>
<td>Step 7 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 8 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

Use a network monitoring privileged EXEC command such as `show ip ospf interface` to verify the interfaces that you enabled as passive, or use the `show ip interface` privileged EXEC command to verify the interfaces that you enabled as active.

To re-enable the sending of routing updates, use the `no passive-interface interface-id` router configuration command. The `default` keyword sets all interfaces as passive by default. You can then configure individual interfaces where you want adjacencies by using the `no passive-interface` router configuration command. The `default` keyword is useful in Internet service provider and large enterprise networks where many of the distribution routers have more than 200 interfaces.

### Controlling Advertising and Processing in Routing Updates

You can use the `distribute-list` router configuration command with access control lists to suppress routes from being advertised in routing updates and to prevent other routers from learning one or more routes. When used in OSPF, this feature applies to only external routes, and you cannot specify an interface name.

You can also use a `distribute-list` router configuration command to avoid processing certain routes listed in incoming updates. (This feature does not apply to OSPF.)

Beginning in privileged EXEC mode, follow these steps to control the advertising or processing of routing updates:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 router {bgp</td>
<td>rip</td>
</tr>
<tr>
<td>Step 3 distribute-list [access-list-number</td>
<td>access-list-name] out [interface-name</td>
</tr>
<tr>
<td>Step 4 distribute-list [access-list-number</td>
<td>access-list-name] in [type-number]</td>
</tr>
</tbody>
</table>
Use the `no distribute-list in` router configuration command to change or cancel a filter. To cancel suppression of network advertisements in updates, use the `no distribute-list out` router configuration command.

### Filtering Sources of Routing Information

Because some routing information might be more accurate than others, you can use filtering to prioritize information coming from different sources. An *administrative distance* is a rating of the trustworthiness of a routing information source, such as a router or group of routers. In a large network, some routing protocols can be more reliable than others. By specifying administrative distance values, you enable the router to intelligently discriminate between sources of routing information. The router always picks the route whose routing protocol has the lowest administrative distance. Table 30-16 on page 30-77 shows the default administrative distances for various routing information sources.

Because each network has its own requirements, there are no general guidelines for assigning administrative distances.

Beginning in privileged EXEC mode, follow these steps to filter sources of routing information:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>router {bgp</td>
</tr>
<tr>
<td>Step 3</td>
<td>distance weight {ip-address {ip-address mask}} [ip access list]</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show ip protocols</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To remove a distance definition, use the `no distance` router configuration command.
# Managing Authentication Keys

Key management is a method of controlling authentication keys used by routing protocols. Not all protocols can use key management. Authentication keys are available for EIGRP and RIP Version 2.

Before you manage authentication keys, you must enable authentication. See the appropriate protocol section to see how to enable authentication for that protocol. To manage authentication keys, define a key chain, identify the keys that belong to the key chain, and specify how long each key is valid. Each key has its own key identifier (specified with the `key number` key chain configuration command), which is stored locally. The combination of the key identifier and the interface associated with the message uniquely identifies the authentication algorithm and Message Digest 5 (MD5) authentication key in use.

You can configure multiple keys with life times. Only one authentication packet is sent, regardless of how many valid keys exist. The software examines the key numbers in order from lowest to highest, and uses the first valid key it encounters. The lifetimes allow for overlap during key changes. Note that the router must know these lifetimes.

Beginning in privileged EXEC mode, follow these steps to manage authentication keys:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>key chain name-of-chain</td>
</tr>
<tr>
<td></td>
<td>Identify a key chain, and enter key chain configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>key number</td>
</tr>
<tr>
<td></td>
<td>Identify the key number. The range is 0 to 2147483647.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>key-string text</td>
</tr>
<tr>
<td></td>
<td>Identify the key string. The string can contain from 1 to 80 uppercase and lowercase alphanumeric characters, but the first character cannot be a number.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>accept-lifetime start-time {infinite</td>
</tr>
<tr>
<td></td>
<td>(Optional) Specify the time period during which the key can be received.</td>
</tr>
<tr>
<td></td>
<td>The <code>start-time</code> and <code>end-time</code> syntax can be either <code>hh:mm:ss Month date year</code> or <code>hh:mm:ss date Month year</code>. The default is forever with the default <code>start-time</code> and the earliest acceptable date as January 1, 1993. The default <code>end-time</code> and <code>duration</code> is <code>infinite</code>.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>send-lifetime start-time {infinite</td>
</tr>
<tr>
<td></td>
<td>(Optional) Specify the time period during which the key can be sent.</td>
</tr>
<tr>
<td></td>
<td>The <code>start-time</code> and <code>end-time</code> syntax can be either <code>hh:mm:ss Month date year</code> or <code>hh:mm:ss date Month year</code>. The default is forever with the default <code>start-time</code> and the earliest acceptable date as January 1, 1993. The default <code>end-time</code> and <code>duration</code> is <code>infinite</code>.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>show key chain</td>
</tr>
<tr>
<td></td>
<td>Display authentication key information.</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>copy running-config startup-config</td>
</tr>
<tr>
<td></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the key chain, use the `no key chain name-of-chain` global configuration command.
Monitoring and Maintaining the IP Network

You can remove all contents of a particular cache, table, or database. You can also display specific statistics. Use the privileged EXEC commands in Table 30-17 to clear routes or display status:

Table 30-17 Commands to Clear IP Routes or Display Route Status

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip route {network [mask</td>
<td>*]}</td>
</tr>
<tr>
<td>show ip protocols</td>
<td>Display the parameters and state of the active routing protocol process.</td>
</tr>
<tr>
<td>show ip route [address [mask] [longer-prefixes]]</td>
<td>Display the current state of the routing table.</td>
</tr>
<tr>
<td>show ip route summary</td>
<td>Display the current state of the routing table in summary form.</td>
</tr>
<tr>
<td>show ip route supernets-only</td>
<td>Display supernets.</td>
</tr>
<tr>
<td>show ip cache</td>
<td>Display the routing table used to switch IP traffic.</td>
</tr>
<tr>
<td>show route-map [map-name]</td>
<td>Display all route maps configured or only the one specified.</td>
</tr>
</tbody>
</table>
Configuring HSRP

This chapter describes how to use Hot Standby Router Protocol (HSRP) on your Catalyst 3550 switch to provide routing redundancy for routing IP traffic without being dependent on the availability of any single router.

Note: You can also use a version of HSRP in Layer 2 mode to configure a redundant command switch to take over cluster management if the cluster command switch fails. For more information about clustering, see Chapter 6, “Clustering Switches.”

Note: For complete syntax and usage information for the commands used in this chapter, refer to the switch command reference for this release and the Cisco IOS IP and IP Routing Command Reference for Release 12.1.

This chapter consists of these sections:
- Understanding HSRP, page 31-1
- Configuring HSRP, page 31-3
- Displaying HSRP Configurations, page 31-10

Understanding HSRP

HSRP is Cisco’s standard method of providing high network availability by providing first-hop redundancy for IP hosts on an IEEE 802 LAN configured with a default gateway IP address. HSRP routes IP traffic without relying on the availability of any single router. It enables a set of router interfaces to work together to present the appearance of a single virtual router or default gateway to the hosts on a LAN. When HSRP is configured on a network or segment, it provides a virtual Media Access Control (MAC) address and an IP address that is shared among a group of configured routers. HSRP allows two or more HSRP-configured routers to use the MAC address and IP network address of a virtual router. The virtual router does not exist; it represents the common target for routers that are configured to provide backup to each other. One of the routers is selected to be the active router and another to be the standby router, which assumes control of the group MAC address and IP address should the designated active router fail.
Routers in an HSRP group can be any router interface that supports HSRP, including Catalyst 3550 routed ports and switch virtual interfaces (SVIs).

HSRP provides high network availability by providing redundancy for IP traffic from hosts on networks. In a group of router interfaces, the active router is the router of choice for routing packets; the standby router is the router that takes over the routing duties when an active router fails or when preset conditions are met.

HSRP is useful for hosts that do not support a router discovery protocol and cannot switch to a new router when their selected router reloads or loses power. When HSRP is configured on a network segment, it provides a virtual MAC address and an IP address that is shared among router interfaces in a group of router interfaces running HSRP. The router selected by the protocol to be the active router receives and routes packets destined for the group’s MAC address. For $n$ routers running HSRP, there are $n+1$ IP and MAC addresses assigned.

HSRP detects when the designated active router fails, and a selected standby router assumes control of the Hot Standby group’s MAC and IP addresses. A new standby router is also selected at that time. Devices running HSRP send and receive multicast UDP-based hello packets to detect router failure and to designate active and standby routers. When HSRP is configured on an interface, Internet Control Message Protocol (ICMP) redirect messages are disabled by default for the interface.

You can configure multiple Hot Standby groups among Catalyst 3550 switches that are operating in Layer 3 to make more use of the redundant routers. To do so, specify a group number for each Hot Standby command group you configure for an interface. For example, you might configure an interface on switch 1 as an active router and one on switch 2 as a standby router and also configure another interface on switch 2 as an active router with another interface on switch 1 as its standby router.

Figure 31-1 shows a segment of a network configured for HSRP. Each router is configured with the MAC address and IP network address of the virtual router. Instead of configuring hosts on the network with the IP address of Router A, you configure them with the IP address of the virtual router as their default router. When Host C sends packets to Host B, it sends them to the MAC address of the virtual router. If for any reason, Router A stops transferring packets, Router B responds to the virtual IP address and virtual MAC address and becomes the active router, assuming the active router duties. Host C continues to use the IP address of the virtual router to address packets destined for Host B, which Router B now receives and sends to Host B. Until Router A resumes operation, HSRP allows Router B to provide uninterrupted service to users on Host C’s segment that need to communicate with users on Host B’s segment and also continues to perform its normal function of handling packets between the Host A segment and Host B.
Figure 31-1 Typical HSRP Configuration

These sections include HSRP configuration information:
- Default HSRP Configuration, page 31-4
- Enabling HSRP, page 31-4
- Configuring HSRP Group Attributes, page 31-6
- Configuring HSRP Groups and Clustering, page 31-9

Note
If HSRP is enabled, the Catalyst 3550 switch can recognize 16 additional MAC addresses, each associated with a set of VLANs or routing interfaces.

In the following procedures, the specified interface must be one of these Layer 3 interfaces:
- Routed port: a physical port configured as a Layer 3 port by entering the `no switchport` interface configuration command.
- SVI: a VLAN interface created by using the `interface vlan vlan_id` global configuration command and by default a Layer 3 interface.
• Etherchannel port channel in Layer 3 mode: a port-channel logical interface created by using the `interface port-channel port-channel-number` global configuration command and binding the Ethernet interface into the channel group. For more information, see the “Configuring Layer 3 EtherChannels” section on page 29-11.

All Layer 3 interfaces must have IP addresses assigned to them. See the “Configuring Layer 3 Interfaces” section on page 10-18.

**Default HSRP Configuration**

Table 31-1 shows the default HSRP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSRP groups</td>
<td>None configured</td>
</tr>
<tr>
<td>Standby group number</td>
<td>0</td>
</tr>
<tr>
<td>Standby MAC address</td>
<td>System assigned as: 0000.0c07.acXX, where XX is the HSRP group number</td>
</tr>
<tr>
<td>Standby priority</td>
<td>100</td>
</tr>
<tr>
<td>Standby delay</td>
<td>0 (no delay)</td>
</tr>
<tr>
<td>Standby track interface priority</td>
<td>10</td>
</tr>
<tr>
<td>Standby hello time</td>
<td>3 seconds</td>
</tr>
<tr>
<td>Standby holdtime</td>
<td>10 seconds</td>
</tr>
</tbody>
</table>

**Enabling HSRP**

The `standby ip` interface configuration command activates HSRP on the configured interface. If an IP address is specified, that address is used as the designated address for the Hot Standby group. If no IP address is specified, the address is learned through the standby function. You must configure at least one routing port on the cable with the designated address. Configuring an IP address always overrides another designated address currently in use.

When the `standby ip` command is enabled on an interface and proxy ARP is enabled, if the interface’s Hot Standby state is active, proxy ARP requests are answered using the Hot Standby group MAC address. If the interface is in a different state, proxy ARP responses are suppressed.

**Note**

When multi-VRF CE is configured, you cannot assign the same HSRP standby address to two different VPNs.
Beginning in privileged EXEC mode, follow these steps to create or enable HSRP on a Layer 3 interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>standby [group-number] ip [ip-address [secondary]]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show standby [interface-id [group]]</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

Use the no standby [group-number] ip [ip-address] interface configuration command to disable HSRP.

This example shows how to activate HSRP for group 1 on Gigabit Ethernet interface 0/1. The IP address used by the hot standby group is learned by using HSRP.

Note

This procedure is the minimum number of steps required to enable HSRP.

```
Switch# configure terminal
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# standby 1 ip
Switch(config-if)# end
Switch# show standby
```
Configuring HSRP Group Attributes

Although HSRP can run with no other configuration required, you can configure attributes for the HSRP group, including authentication, priority, preemption and preemption delay, timers, or MAC address.

Configuring HSRP Priority

The **standby priority**, **standby preempt**, and **standby track** interface configuration commands are all used to set characteristics for determining active and standby routers and behavior regarding when a new active router takes over. When configuring priority, follow these guidelines:

- Assigning priority helps select the active and standby routers. If preemption is enabled, the router with the highest priority becomes the designated active router. If priorities are equal, the primary IP addresses are compared, and the higher IP address has priority.
- The highest number (1 to 255) represents the highest priority (most likely to become the active router).
- When setting the priority, preempt, or both, you must specify at least one keyword (**priority**, **preempt**, or both).
- The priority of the device can change dynamically if an interface is configured with the **standby track** command and another interface on the router goes down.
- The **standby track** interface configuration command ties the router hot standby priority to the availability of its interfaces and is useful for tracking interfaces that are not configured for HSRP. When a tracked interface fails, the hot standby priority on the device on which tracking has been configured decreases by 10. If an interface is not tracked, its state changes do not affect the hot standby priority of the configured device. For each interface configured for hot standby, you can configure a separate list of interfaces to be tracked.
- The **standby track interface-priority** interface configuration command specifies how much to decrement the hot standby priority when a tracked interface goes down. When the interface comes back up, the priority is incremented by the same amount.
- When multiple tracked interfaces are down and **interface-priority** values have been configured, the configured priority decrements are cumulative. If tracked interfaces that were not configured with priority values fail, the default decrement is 10, and it is noncumulative.
- When routing is first enabled for the interface, it does not have a complete routing table. If it is configured to preempt, it becomes the active router, even though it is unable to provide adequate routing services. To solve this problem, configure a delay time to allow the router to update its routing table.
Beginning in privileged EXEC mode, use one or more of these steps to configure HSRP priority characteristics on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
</tbody>
</table>
| **Step 3** | | standby [group-number] priority priority [preempt [delay delay]] | Set a priority value used in choosing the active router. The range is 1 to 255; the default priority is 100. The highest number represents the highest priority.  
  - (Optional) group-number—The group number to which the command applies.  
  - (Optional) preempt—Select so that when the local router has a higher priority than the active router, it assumes control as the active router.  
  - (Optional) delay—Set to cause the local router to postpone taking over the active role for the shown number of seconds. The range is 0 to 36000 (1 hour); the default is 0 (no delay before taking over). Use the no form of the command to restore the default values. |
| **Step 4** | | standby [group-number] [priority priority] preempt [delay delay] | Configure the router to preempt, which means that when the local router has a higher priority than the active router, it assumes control as the active router.  
  - (Optional) group-number—The group number to which the command applies.  
  - (Optional) priority—Enter to set or change the group priority. The range is 1 to 255; the default is 100.  
  - (Optional) delay—Set to cause the local router to postpone taking over the active role for the number of seconds shown. The range is 0 to 36000 (1 hour); the default is 0 (no delay before taking over). Use the no form of the command to restore the default values. |
| **Step 5** | | standby [group-number] track type number [interface-priority] | Configure an interface to track other interfaces so that if one of the other interfaces goes down, the device’s Hot Standby priority is lowered.  
  - (Optional) group-number—The group number to which the command applies.  
  - type—Enter the interface type (combined with interface number) that is tracked.  
  - number—Enter the interface number (combined with interface type) that is tracked.  
  - (Optional) interface-priority—Enter the amount by which the hot standby priority for the router is decremented or incremented when the interface goes down or comes back up. The default value is 10. |
| **Step 6** | | end | Return to privileged EXEC mode. |
| **Step 7** | | show running-config | Verify the configuration of the standby groups. |
| **Step 8** | | copy running-config startup-config | (Optional) Save your entries in the configuration file. |
Use the `no standby [group-number] priority priority [preempt [delay delay]]` and `no standby [group-number] priority priority preempt [delay delay]` interface configuration commands to restore default priority, preempt, and delay values.

Use the `no standby [group-number] track type number [interface-priority]` interface configuration command to remove the tracking.

This activates Gigabit Ethernet interface 0/1, sets an IP address and a priority of 120 (higher than the default value), and waits for 300 seconds (5 minutes) before attempting to become the active router:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# standby ip 172.19.108.254
Switch(config-if)# standby priority 120 preempt delay 300
Switch(config-if)# end
```

### Configuring HSRP Authentication and Timers

You can optionally configure an HSRP authentication string or change the hello-time interval and holdtime.

When configuring these attributes, follow these guidelines:

- The authentication string is sent unencrypted in all HSRP messages. You must configure the same authentication string on all routers and access servers on a cable to ensure interoperation. Authentication mismatch prevents a device from learning the designated Hot Standby IP address and timer values from other routers configured with HSRP.
- Routers or access servers on which standby timer values are not configured can learn timer values from the active or standby router. The timers configured on an active router always override any other timer settings.
- All routers in a Hot Standby group should use the same timer values. Normally, the `holdtime` is greater than or equal to 3 times the `hellotime`.

Beginning in privileged EXEC mode, use one or more of these steps to configure HSRP authentication and timers on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>standby [group-number] authentication string</td>
</tr>
</tbody>
</table>
Chapter 31  Configuring HSRP

Configuring HSRP

Use the `no standby [group-number] authentication string` interface configuration command to delete an authentication string. Use the `no standby [group-number] timers hellotime holdtime` interface configuration command to restore timers to their default values.

This example shows how to configure `word` as the authentication string required to allow Hot Standby routers in group 1 to interoperate:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# standby 1 authentication word
Switch(config-if)# end
Switch#
```

This example shows how to set the timers on standby group 1 with the time between hello packets at 5 seconds and the time after which a router is considered down to be 15 seconds:

```
Switch# configure terminal
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# standby 1 ip
Switch(config-if)# standby 1 timers 5 15
Switch(config-if)# end
Switch#
```

### Configuring HSRP Groups and Clustering

When a device is participating in an HSRP standby routing and clustering is enabled, you can use the same standby group for command switch redundancy and HSRP redundancy. Use the `cluster standby-group HSRP-group-name [routing-redundancy]` global configuration command to enable the same HSRP standby group to be used for command switch and routing redundancy. If you create a cluster with the same HSRP standby group name without entering the `routing-redundancy` keyword, HSRP standby routing is disabled for the group.

This example shows how to bind standby group `my_hsrp` to the cluster and enable the same HSRP group to be used for command switch redundancy and router redundancy. The command can only be executed on the command switch. If the standby group name or number does not exist, or if the switch is a member switch, an error message appears.

```
Switch# configure terminal
Switch(config)# cluster standby-group my_hsrp routing-redundancy
Switch(config)# end
```
Displaying HSRP Configurations

From privileged EXEC mode, use this command to display HSRP settings:

```
show standby [interface-id [group]] [brief] [detail]
```

You can display HSRP information for the whole switch, for a specific interface, for an HSRP group, or for an HSRP group on an interface. You can also specify whether to display a concise overview of HSRP information or detailed HSRP information. The default display is `detail`. If there are a large number of HSRP groups, using the `show standby` command without qualifiers can result in an unwieldy display.

This is an example of output from the `show standby` privileged EXEC command, displaying HSRP information for two standby groups (group 1 and group 100):

```
Switch# show standby
VLAN1 - Group 1
 Local state is Standby, priority 105, may preempt
 Hello time 3 holdtime 10
 Next hello sent in 00:00:02.182
 Hot standby IP address is 10.0.0.1 configured
 Active router is 172.20.138.35 expires in 00:00:09
 Standby router is local
 Standby virtual mac address is 0000.0c07.ac01
 Name is bbb
VLAN1 - Group 100
 Local state is Active, priority 105, may preempt
 Hello time 3 holdtime 10
 Next hello sent in 00:00:02.262
 Hot standby IP address is 172.20.138.51 configured
 Active router is local
 Standby router is unknown expired
 Standby virtual mac address is 0000.0c07.ac64
 Name is test
```
Configuring Web Cache Services By Using WCCP

This chapter describes how to configure your Catalyst 3550 switch to redirect traffic to cache engines (web caches such as the Cisco Cache Engine 550) by using the Web Cache Communication Protocol (WCCP). WCCP is a Cisco-developed content-routing technology that you can use to integrate cache engines into your network infrastructure. The cache engines transparently store frequently accessed content and then fulfill successive requests for the same content, eliminating repetitive transmissions of identical content from web servers. Cache engines accelerate content delivery and ensure maximum scalability and availability of content. In a service-provider network, you can deploy the WCCP and cache engine solution at the points of presence (POPs). In an enterprise network, you can deploy the WCCP and cache engine solution at the regional site and the small branch office.

To use this feature, you must have the enhanced multilayer software image (EMI) installed on your switch.

Note

For complete syntax and usage information for the commands used in this chapter, refer to the “WCCP Router Configuration Commands” section in the “Cisco IOS System Management Commands” part of the Cisco IOS Configuration Fundamentals Command Reference for Release 12.2.

This chapter consists of these sections:

- Understanding WCCP, page 32-2
- Configuring WCCP, page 32-5
- Monitoring and Maintaining WCCP, page 32-9
Understanding WCCP

The WCCP and Cisco cache engines (or other caches running WCCP) localize web-traffic patterns in the network, enabling content requests to be fulfilled locally.

WCCP enables supported Cisco routers and switches to transparently redirect content requests. With transparent redirection, users do not have to configure their browsers to use a web proxy. Instead, they can use the target URL to request content, and their requests are automatically redirected to a cache engine. The word *transparent* means that the end user does not know that a requested file (such as a web page) came from the cache engine instead of from the originally specified server.

When a cache engine receives a request, it attempts to service it from its own local cache. If the requested information is not present, the cache engine sends a separate request to the end server to retrieve the requested information. After receiving the requested information, the cache engine forwards it to the requesting client and also caches it to fulfill future requests.

This software release supports only WCCP version 2 (WCCPv2). Only a subset of WCCPv2 features are supported. For more information, see the “Unsupported WCCPv2 Features” section on page 32-4.

With WCCPv2, multiple routers or switches can service the cache-engine cluster (a series of cache engines); however, in this release, only one Catalyst 3550 switch can service the cluster, as shown Figure 32-1. Content is not duplicated on the cache engines.

**Figure 32-1  Cisco Cache Engine and WCCPv2 Network Configuration**
Chapter 32 Configuring Web Cache Services By Using WCCP

Understanding WCCP

WCCP Message Exchange

This sequence of events describes the WCCP message exchange:

1. The cache engines send their IP addresses to the WCCP-enabled switch by using WCCP, signaling their presence through a Here I am message. The switch and cache engines communicate to each other through a control channel based on UDP port 2048.

2. The WCCP-enabled switch uses the cache engine IP information to create a cluster view (a list of caches in the cluster). This view is sent through an I see you message to each cache engine in the cluster, essentially making all the cache engines aware of each other. A stable view is established after the membership of the cluster remains the same for a certain amount of time.

3. When a stable view is established, the cache engine in the cluster with the lowest IP address is elected as the designated cache engine.

WCCP Negotiation

In the exchange of WCCP protocol messages, the designated cache engine and the WCCP-enabled switch negotiate these items:

- Forwarding method (the method by which the switch forwards packets to the cache engine). The switch rewrites the Layer 2 header by replacing the packet’s destination MAC address with the target cache engine’s MAC address. It then forwards the packet to the cache engine. This forwarding method requires the target cache engine to be directly connected to the switch at Layer 2.

- Assignment method (the method by which packets are distributed among the cache engines in the cluster). The switch uses some of the least-significant bits of the destination IP address to determine which cache engine receives the redirected packet. The number of bits used is based on the number of cache engines. If the number of cache engines is equal to a power of 2 (for example, 1, 2, 4 and so forth), the switch evenly distributes (load balances) the traffic among the cache engines. The switch does not support the mask assignment method described in the WCCP V2.0 Internet Draft.

- Packet-return method (the method by which packets are returned from the cache engine to the switch for normal forwarding). These are the typical reasons why a cache engine rejects packets and initiates the packet-return feature:
  - The cache engine is overloaded and has no room to service the packets.
  - The cache engine receives an error message (such as a protocol or authentication error) from the web server and implements the dynamic client bypass feature. The bypass enables clients to bypass the cache engines and to connect directly to the web server.

The cache engine returns a packet to the WCCP-enabled switch to forward to the web server as if the cache engine is not present. The cache engine does not intercept the reconnection attempt. In this way, the cache engine effectively cancels the redirection of a packet to the cache engine and creates a bypass flow. The switch receives the returned packet through a generic-route encapsulation (GRE) tunnel. The switch CPU uses Cisco express forwarding (CEF) to send these packets to the target web server. When the server responds with the requested information, the switch uses the normal Layer 3 forwarding to return the information to the requesting client.
MD5 Security

WCCPv2 provides an optional security component in each protocol message to enable the switch to use MD5 authentication on messages between the switch and the cache engine. Messages that do not authenticate (when authentication of the switch is enabled) are discarded by the switch. You enable the security feature by using the `ip wccp web-cache password password` global configuration command. The password string is combined with the MD5 value to create security for the connection between the switch and the cache engine. You must configure the same password on each cache engine.

Packet Redirection

After WCCP is configured on the switch, the switch forwards all HTTP TCP port 80 packets received from clients to the cache engines. However, these packets are not redirected:

- Packets originating from the cache engine and targeted to the web server.
- Packets originating from the cache engine and targeted to the client.
- Packets returned or rejected by the cache engine. These packets are sent to the web server.

Unsupported WCCPv2 Features

These WCCPv2 features are not supported in this software release:

- WCCP service numbers, which are configured by using the `ip wccp [service-number]` global and interface configuration commands. These commands are not supported.
  
  This software release supports caching only for TCP port 80.

- Packet redirection on an outbound interface, which is configured by using the `ip wccp redirect out` interface configuration command. This command is not supported.
  
  This software release supports packet redirection only on an inbound interface.

- The connection of multiple Catalyst 3550 switches to multiple cache engines.
  
  This software release supports the connection of only one switch to multiple cache engines.

- WCCP multicasting. The `ip wccp web-cache group-address` and `ip wccp web-cache group listen` global configuration commands are not supported.

- WCCP access lists. The `ip wccp web-cache redirect-list` and `ip wccp web-cache group-list` global configuration commands are not supported.

- Statistics for WCCP-related counters. Statistics for counters are not provided; they appear as zeros in the `show ip wccp web-cache view` privileged EXEC command output.
Chapter 32  Configuring Web Cache Services By Using WCCP

Configuring WCCP

These sections describe how to configure WCCP on your switch:

- Default WCCP Configuration, page 32-5
- WCCP Configuration Guidelines, page 32-5
- Enabling the Web Cache Service, Setting the Password, and Redirecting Traffic Received From a Client, page 32-6 (required)

Default WCCP Configuration

Table 32-1 shows the default WCCP configuration.

Table 32-1  Default WCCP Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCCP enable state.</td>
<td>WCCP services are disabled.</td>
</tr>
<tr>
<td>Protocol version.</td>
<td>WCCPv2</td>
</tr>
<tr>
<td>Redirecting traffic received on an interface.</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>

WCCP Configuration Guidelines

Before configuring WCCP on your switch, make sure to follow these configuration guidelines:

- Do not configure the cache engine for GRE because the switch does not support traffic forwarding by using GRE. For more information, refer to the documentation that shipped with the cache engines.
- Make a direct Layer 2 connection from the cache engines to the switch so that the switch can perform Layer 2 rewrites for WCCP redirection. The Cisco Cache Engines require the use of a Fast Ethernet interface for a direct connection. You also can connect the switch to the cache engine by using a 10/100/1000 port if the connection is a direct Layer 2 connection.
- Connect up to 32 cache engines to a single Catalyst 3550 switch.
- Connect only one Catalyst 3550 switch to multiple cache engines. Do not connect multiple Catalyst 3550 switches to multiple cache engines.
- Configure the switch interfaces that are connected to the web clients, the cache engines, and the web server as Layer 3 interfaces (routed ports and switch virtual interfaces [SVIs]). For HTTP packet redirection to work, the servers, cache engines, and clients must be on different subnets.
- Do not configure the clients, cache engines, or web servers on the same switch interface.
- Do not configure the switch with both WCCP and multiple VPN routing/forwarding (multi-VRF) instances in customer edge (CE) devices.
- Modify the Switch Database Management (SDM) template to enable the switch to support 144-bit Layer 3 TCAM by using the `sdm prefer extended-match`, `sdm prefer access extended-match`, or `sdm prefer routing extended-match` global configuration command. For more information on the SDM templates, see the “Optimizing System Resources for User-Selected Features” section on page 7-27.
- Do not configure WCCP and policy-based routing (PBR) on the same switch interface.
Enabling the Web Cache Service, Setting the Password, and Redirecting Traffic Received From a Client

MD5 password security requires that the switch and cache engines be configured with the same password. Each cache engine or switch authenticates the security component in a received WCCP packet immediately after validating the WCCP message header. Packets failing authentication are discarded.

For WCCP packet redirection to operate, you must configure the switch interface connected to the client to redirect inbound HTTP packets.

This procedure shows how to configure these features on routed ports. To configure these features on SVIs, see the configuration examples that follow the procedure.

Beginning in privileged EXEC mode, follow these steps to enable the web cache service, to set a password, to configure routed interfaces, and to redirect inbound packets received from a client to the cache engine. This procedure is required.

Before configuring WCCP commands, configure the SDM template, and reboot the switch. For more information, see the “Optimizing System Resources for User-Selected Features” section on page 7-27.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>configure terminal</strong></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>ip wccp web-cache [password encryption-number password]</strong></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>interface interface-id</strong></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>no switchport</strong></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>ip address ip-address subnet-mask</strong></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>no shutdown</strong></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><strong>exit</strong></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td><strong>interface interface-id</strong></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td><strong>no switchport</strong></td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td><strong>ip address ip-address subnet-mask</strong></td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td><strong>no shutdown</strong></td>
</tr>
</tbody>
</table>
Configuring WCCP

To disable the web cache service, use the `no ip wccp web-cache` global configuration command. To disable inbound packet redirection, use the `no ip wccp web-cache redirect in` interface configuration command.

This example shows how to configure routed interfaces and to enable the web cache service. Fast Ethernet interface 0/1 is connected to the cache engine, is configured as a routed port with an IP address of 172.20.10.30, and is re-enabled. Gigabit Ethernet interface 0/1 is connected through the Internet to the web server, is configured as a routed port with an IP address of 175.20.20.10, and is re-enabled. Fast Ethernet interfaces 0/2 to 0/5 are connected to the clients and are configured as routed ports with IP addresses 175.20.30.20, 175.20.40.30, 175.20.50.40, and 175.20.60.50. The switch redirects HTTP packets received from the client interfaces to the cache engine.

To disable the web cache service, use the `no ip wccp web-cache` global configuration command. To disable inbound packet redirection, use the `no ip wccp web-cache redirect in` interface configuration command.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 12 ip wccp web-cache redirect in</td>
<td>Redirect packets received from the client to the cache engine.</td>
</tr>
<tr>
<td>Step 13 exit</td>
<td>Return to global configuration mode. Repeat Steps 8 through 13 for each client.</td>
</tr>
<tr>
<td>Step 14 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 15 show ip wccp web-cache</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 15 show running-config</td>
<td></td>
</tr>
<tr>
<td>Step 16 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable the web cache service, use the `no ip wccp web-cache` global configuration command. To disable inbound packet redirection, use the `no ip wccp web-cache redirect in` interface configuration command.
Switch(config)# interface fastethernet0/5
Switch(config-if)# no switchport
Switch(config-if)# ip address 175.20.60.50 255.255.255.0
Switch(config-if)# no shutdown
Switch(config-if)# ip wccp web-cache redirect in
Switch(config-if)# exit

This example shows how to configure SVIs and how to enable the web cache service. VLAN 299 is created and configured with an IP address of 175.20.20.10. Gigabit Ethernet interface 0/1 is connected through the Internet to the web server and is configured as an access port in VLAN 299. VLAN 300 is created and configured with an IP address of 172.20.10.30. Fast Ethernet interface 0/1 is connected to the cache engine and is configured as an access port in VLAN 300. VLAN 301 is created and configured with an IP address of 175.20.30.50. Fast Ethernet interface 0/2 to 0/5, which are connected to the clients, are configured as access ports in VLAN 301. The switch redirects HTTP packets received from the client interfaces to the cache engine.

Switch(config)# configure terminal
Switch(config)# ip wccp web-cache
Switch(config)# vlan 299
Switch(config-vlan)# exit
Switch(config)# interface vlan 299
Switch(config-if)# ip address 175.20.20.10 255.255.255.0
Switch(config-if)# exit
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# switchport mode access
Switch(config-if)# switchport access vlan 299
Switch(config)# vlan 300
Switch(config-vlan)# exit
Switch(config)# interface vlan 300
Switch(config-if)# ip address 172.20.10.30 255.255.255.0
Switch(config-if)# exit
Switch(config)# interface fastethernet0/1
Switch(config-if)# switchport mode access
Switch(config-if)# switchport access vlan 300
Switch(config-if)# exit
Switch(config)# vlan 301
Switch(config-vlan)# exit
Switch(config)# interface vlan 301
Switch(config-if)# ip address 175.20.30.20 255.255.255.0
Switch(config-if)# ip wccp web-cache redirect in
Switch(config-if)# exit
Switch(config)# interface range fastethernet0/2 - 5
Switch(config-if-range)# switchport mode access
Switch(config-if-range)# switchport access vlan 301
Switch(config-if-range)# exit
Monitoring and Maintaining WCCP

To monitor and maintain WCCP, use one or more of the privileged EXEC commands in Table 32-2:

**Table 32-2 Commands for Monitoring and Maintaining WCCP**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip wccp web-cache</td>
<td>Removes statistics for the web-cache service.</td>
</tr>
<tr>
<td>show ip wccp web-cache</td>
<td>Displays global information related to WCCP.</td>
</tr>
<tr>
<td>show ip wccp web-cache detail</td>
<td>Displays information for the switch and all cache engines in the WCCP cluster.</td>
</tr>
<tr>
<td>show ip interface</td>
<td>Displays status about any IP WCCP redirection commands that are configured on an interface; for example, <em>Web Cache Redirect is enabled / disabled</em>.</td>
</tr>
<tr>
<td>show ip wccp web-cache view</td>
<td>Displays which other members have or have not been detected.</td>
</tr>
</tbody>
</table>
Configuring IP Multicast Routing

IP multicasting is a more efficient way to use network resources, especially for bandwidth-intensive services such as audio and video. IP multicast allows a host (source) to send packets to a group of hosts (receivers) anywhere within the IP network by using a special form of IP address called the IP multicast group address. The sending host inserts the multicast group address into the IP destination address field of the packet, and IP multicast routers and multilayer switches forward incoming IP multicast packets out all interfaces that lead to members of the multicast group.

IP multicast addresses are assigned to the old class D address space by the Internet Assigned Number Authority (IANA). The high-order bits of a Class D address are 1110. Therefore, host group addresses can be in the range 224.0.0.0 through 239.255.255.255. The address 224.0.0.0 is guaranteed not to be assigned to any group. The address 224.0.0.1 is assigned to the all-hosts multicast group on a subnet. The address 224.0.0.2 is assigned to the all-multicast-routers group on a subnet.

Any host, regardless of whether it is a member of a group, can send to a group. However, only the members of a group receive the message. Membership in a multicast group is dynamic; hosts can join and leave at any time. There is no restriction on the location or number of members in a multicast group. A host can be a member of more than one multicast group at a time. How active a multicast group is and what members it has can vary from group to group and from time to time. A multicast group can be active for a long time, or it can be very short-lived. Membership in a group can constantly change. A group that has members can have no activity.

Note

For complete syntax and usage information for the commands used in this chapter, refer to the Cisco IOS IP and IP Routing Command Reference for Release 12.1.

This chapter describes how to configure IP multicast routing on your Catalyst 3550 multilayer switch. To use this feature, you must have the enhanced multilayer software image (EMI) installed on your switch.

This chapter consists of these sections:

- Cisco Implementation of IP Multicast Routing, page 33-2
- Configuring IP Multicast Routing, page 33-13
- Configuring Advanced PIM Features, page 33-28
- Configuring Optional IGMP Features, page 33-31
- Configuring Optional Multicast Routing Features, page 33-37
Cisco Implementation of IP Multicast Routing

The Cisco IOS software supports these protocols to implement IP multicast routing:

- Internet Group Management Protocol (IGMP) is used among hosts on a LAN and the routers (and multilayer switches) on that LAN to track the multicast groups of which hosts are members.
- Protocol-Independent Multicast (PIM) protocol is used among routers and multilayer switches to track which multicast packets to forward to each other and to their directly connected LANs.
- Distance Vector Multicast Routing Protocol (DVMRP) is used on the multicast backbone of the Internet (MBONE). The Cisco IOS software supports PIM-to-DVMRP interaction.
- Cisco Group Management Protocol (CGMP) is used on Cisco routers and multilayer switches connected to Layer 2 Catalyst switches to perform tasks similar to those performed by IGMP.

Figure 33-1 shows where these protocols operate within the IP multicast environment.

**Figure 33-1 IP Multicast Routing Protocols**

Note

When you are configuring multicast routing parameters for the switch, to allocate system resources to maximize the number of possible multicast routes allowed, you can use the `sdm prefer routing` global configuration command to set the Switch Database Management feature to the routing template. For more information on the SDM templates, see the “Optimizing System Resources for User-Selected Features” section on page 7-27.
Understanding IGMP

To participate in IP multicasting, multicast hosts, routers, and multilayer switches must have IGMP operating. This protocol is the group membership protocol used by hosts to inform routers and multilayer switches of the existence of members on their directly connected networks and to allow them to send and receive multicast datagrams.

Multicast routers and switches learn about group membership when a host joining a new group sends an IGMP message to the group address declaring its membership.

Using the information obtained through IGMP, routers and switches maintain a list of multicast group memberships on a per-interface basis. A multicast group membership is active on an interface if at least one host on that interface has sent an IGMP join message to receive the multicast group traffic.

IGMP Version 1

Most IP stacks in hosts today still use IGMPv1. This version primarily uses a query-response model that allows the multicast router and multilayer switch to determine which multicast groups are active (have one or more hosts interested in a multicast group) on the local subnet. In this model, the router or switch acting as the IGMP querier periodically (every 60 seconds) multicasts an IGMPv1 membership query to the all-hosts multicast group (224.0.0.1) on the local subnet. All hosts enabled for multicasting listen for this address and receive the query. A host responds with an IGMPv1 membership report to receive multicast traffic for a specific group, and routers or switches on the subnet learn where active receivers are for the multicast groups.

A host can also join a multicast group by sending one or more unsolicited membership reports as shown in Figure 33-2. In this example, Host 3 sends an unsolicited report to receive traffic for multicast group 224.3.3.3 instead of waiting for the next membership query from Router 1.

A host leaves a multicast group by ceasing to process traffic for the multicast group and to respond to IGMP queries.

Figure 33-2 IGMPv1 Join Process

IGMPv1 relies on the Layer 3 IP multicast routing protocols (PIM, DVMRP, and so forth) to resolve which one of multiple multicast routers or multilayer switches on a subnet should be the querier. The query router sends IGMPv1 queries to determine which multicast groups are active (have one or more hosts sending unsolicited reports) on the local subnet. In general, a designated router is selected as the querier.
IGMP Version 2

IGMPv2 provides enhancements over IGMPv1. The query and membership report messages are identical to IGMPv1 message with two exceptions. The first difference is that the IGMPv2 query message is broken into two categories: general queries, which perform the same function as the IGMPv1 queries, and group-specific queries, which are queries directed to a single group. The second difference is that different type codes are used with IGMPv1 and IGMPv2 membership reports. IGMPv2 also includes new features:

- **Querier election process**—IGMPv2 routers or multilayer switches can elect the query router without having to rely on the multicast routing protocol to perform this process.

  As each IGMPv2 router or multilayer switch starts, it sends an IGMPv2 general query message to the all-host multicast group (224.0.0.1) with its interface address in the source IP address field of the message. Each IGMPv2 device compares the source IP address in the message with its own interface address, and the device with the lowest IP address on the subnet is elected as the querier.

- **Maximum response time field**—this field in the query message permits the query router to specify the maximum query-response time and controls the burstiness of the response process.

  This feature can be important when large numbers of groups are active on a subnet and you want to spread the responses over a longer period of time. However, increasing the maximum response timer value also increases the leave latency; the query router must now wait longer to make sure there are no more hosts for the group on the subnet.

- **Group-specific query message**—permits the query router to perform the query operation on a specific group instead of all groups.

- **Leave group messages**—provides hosts with a method of notifying routers and multilayer switches on the network that they are leaving a group as shown in Figure 33-3.

![Figure 33-3 IGMPv2 Leave Process](image)

In this example, Hosts 2 and 3 are members of multicast group 224.1.1.1. Host 2 sends an IGMPv2 leave message to the all-multicast-routers group (224.0.0.2) to inform all routers and multilayer switches on the subnet that it is leaving the group. Router 1, the query router, receives the message, but because it keeps a list only of the group memberships that are active on a subnet and not individual hosts that are members, it sends a group-specific query to the target group (224.1.1.1) to determine whether any hosts remain for the group. Host 3 is still a member of multicast group 224.1.1.1 and receives the
group-specific query. It responds with an IGMPv2 membership report to inform Router 1 that a member is still present. When Router 1 receives the report, it keeps the group active on the subnet. If no response is received, the query router stops forwarding its traffic to the subnet.

**Understanding PIM**

PIM is called *protocol-independent*: regardless of the unicast routing protocols used to populate the unicast routing table, PIM uses this information to perform multicast forwarding instead of maintaining a separate multicast routing table.

**PIM Versions**

Two versions of PIM are supported in the IOS software. With PIM Version 1 (PIMv1), Cisco introduced support in IOS Release 11.1(6) for a new feature called Auto-RP. This proprietary feature eliminates the need to manually configure the rendezvous point (RP) information in every router and multilayer switch in the network. For more information, see the "Auto-RP" section on page 33-8.

Beginning with IOS Release 11.3, Cisco introduced support for PIM Version 2 (PIMv2) and its associated bootstrap router (BSR) capability. Like Auto-RP, the PIMv2 BSR mechanism eliminates the need to manually configure RP information in every router and multilayer switch in the network. For more information, see the "Bootstrap Router" section on page 33-8.

All systems using Cisco IOS Release 11.3(2)T or later start in PIMv2 mode by default. PIMv2 includes these improvements over PIMv1:

- A single, active RP exists per multicast group, with multiple backup RPs. This single RP compares to multiple active RPs for the same group in PIMv1.
- A BSR provides a fault-tolerant, automated RP discovery and distribution mechanism that enables routers and multilayer switches to dynamically learn the group-to-RP mappings.
- Sparse mode and dense mode are properties of a group, as opposed to an interface. We strongly recommend sparse-dense mode, as opposed to either sparse mode or dense mode only.
- PIM join and prune messages have more flexible encoding for multiple address families.
- A more flexible hello packet format replaces the query packet to encode current and future capability options.
- Register messages to an RP specify whether they are sent by a border router or a designated router.
- PIM packets are no longer inside IGMP packets; they are standalone packets.

**PIM Modes**

PIM can operate in dense mode (DM), sparse mode (SM), or in sparse-dense mode (PIM DM-SM), which handles both sparse groups and dense groups at the same time.

**PIM DM**

In dense mode, a PIM DM router or multilayer switch assumes that all other routers or multilayer switches forward multicast packets for a group. If a PIM DM device receives a multicast packet and has no directly connected members or PIM neighbors present, a prune message is sent back to the source. Subsequent multicast packets are not flooded to this router or switch on this pruned branch. PIM DM builds source-based multicast distribution trees.
The simplest form of a multicast distribution tree is a source tree whose root is the source of the multicast traffic and whose branches form a spanning tree through the network to the receivers. Because this tree uses the shortest path through the network, it is also referred to as a *shortest-path tree* (SPT). A separate SPT exists for every individual source sending to each group. The special notation of \((S,G)\) (pronounced \(S\ comma \ G\)) identifies an SPT where \(S\) is the IP address of the source and \(G\) is the multicast group address.

Figure 33-4 shows an example of SPT for group 224.1.1.1 rooted at the source, Host A, and connecting two receivers, Hosts B and C. The SPT notation for this group would be \((194.1.1.1, 224.1.1.1)\).

![Host A Shortest-Path Tree](image)

If Host B is also sending traffic to group 224.1.1.1 and Hosts A and C are receivers, then a separate \((S,G)\) SPT would exist with the notation of \((194.2.2.2, 224.1.1.1)\).

PIM DM employs only SPTs to deliver \((S,G)\) multicast traffic by using a flood and prune method. It assumes that every subnet in the network has at least one receiver of the \((S,G)\) multicast traffic, and therefore the traffic is flooded to all points in the network.

To avoid unnecessary consumption of network resources, PIM DM devices send prune messages up the source distribution tree to stop unwanted multicast traffic. Branches without receivers are pruned from the distribution tree, leaving only branches that contain receivers. Prunes have a timeout value associated with them, after which the PIM DM device puts the interface into the forwarding state and floods multicast traffic out the interface. When a new receiver on a previously pruned branch of the tree joins a multicast group, the PIM DM device detects the new receiver and immediately sends a graft message up the distribution tree toward the source. When the upstream PIM DM device receives the graft message, it immediately puts the interface on which the graft was received into the forwarding state so that the multicast traffic begins flowing to the receiver.
PIM SM

PIM SM uses shared trees and SPTs to distribute multicast traffic to multicast receivers in the network. In PIM SM, a router or multilayer switch assumes that other routers or switches do not forward multicast packets for a group, unless there is an explicit request for the traffic (join message). When a host joins a multicast group using IGMP, its directly connected PIM SM device sends PIM join messages toward the root, also known as the RP. This join message travels router-by-router toward the root, constructing a branch of the shared tree as it goes. The RP keeps track of multicast receivers; it also registers sources through register messages received from the source’s first-hop router (designated router [DR]) to complete the shared tree path from the source to the receiver. The branches of the shared tree are maintained by periodic join refresh messages that the PIM SM devices send along the branch.

When using a shared tree, sources must send their traffic to the RP so that the traffic reaches all receivers. The special notation *,G, (pronounced star comma G) is used to represent the tree, where * means all sources and G represents the multicast group. Figure 33-5 shows a shared tree for group 224.2.2.2 with the RP located at Router 3. Multicast group traffic from source Hosts A and D travels to the RP (Router 3) and then down the shared tree to two receivers, Hosts B and C. Because all sources in the multicast group use a common shared tree, the special notation (*, 224.2.2.2) describes this shared tree.

Figure 33-5 Shared Distribution Tree

In addition to using the shared distribution tree, PIM SM can also use SPTs. By joining an SPT, multicast traffic is routed directly to the receivers without having to go through the RP, thereby reducing network latency and possible congestion at the RP. The disadvantage is that PIM SM devices must create and maintain (S,G) state entries in their routing tables along with the (S,G) SPT. This action consumes router resources.
Prune messages are sent up the distribution tree to prune multicast group traffic. This action permits branches of the shared tree or SPT that were created with explicit join messages to be torn down when they are no longer needed. For example, if a leaf router (a router without any downstream connections) detects that it no longer has any directly connected hosts (or downstream multicast routers) for a particular multicast group, it sends a prune message up the distribution tree to stop the flow of unwanted multicast traffic.

**Auto-RP**

This proprietary feature eliminates the need to manually configure the rendezvous point (RP) information in every router and multilayer switch in the network. For Auto-RP to work, you configure a Cisco router or multilayer switch as the mapping agent. It uses IP multicast to learn which routers or switches in the network are possible candidate RPs by joining the well-known Cisco-RP-announce multicast group (224.0.1.39) to receive candidate RP announcements. Candidate RPs send multicast RP-announce messages to a particular group or group range every 60 seconds (default) to announce their availability. Each RP-announce message contains a holdtime that tells the mapping agent how long the candidate RP announcement is valid. The default is 180 seconds.

Mapping agents listen to these candidate RP announcements and use the information to create entries in their Group-to-RP mapping caches. Only one mapping cache entry is created for any Group-to-RP range received, even if multiple candidate RPs are sending RP announcements for the same range. As the RP-announce messages arrive, the mapping agent selects the router or switch with the highest IP address as the active RP and stores this RP address in the Group-to-RP mapping cache.

Mapping agents multicast the contents of their Group-to-RP mapping cache in RP-discovery messages every 60 seconds (default) to the Cisco-RP-discovery multicast group (224.0.1.40), which all Cisco PIM routers and multilayer switches join to receive Group-to-RP mapping information. Thus, all routers and switches automatically discover which RP to use for the groups they support. The discovery messages also contain a holdtime, which defines how long the Group-to-RP mapping is valid. If a router or switch fails to receive RP-discovery messages and the Group-to-RP mapping information expires, it switches to a statically configured RP that was defined with the `ip pim rp-address` global configuration command. If no statically configured RP exists, the router or switch changes the group to dense-mode operation.

Multiple RPs serve different group ranges or serve as hot backups of each other.

**Bootstrap Router**

PIMv2 BSR is another method to distribute group-to-RP mapping information to all PIM routers and multilayer switches in the network. It eliminates the need to manually configure RP information in every router and switch in the network. However, instead of using IP multicast to distribute group-to-RP mapping information, BSR uses hop-by-hop flooding of special BSR messages to distribute the mapping information.

The BSR is elected from a set of candidate routers and switches in the domain that have been configured to function as BSRS. The election mechanism is similar to the root-bridge election mechanism used in bridged LANs. The BSR election is based on the BSR priority of the device contained in the BSR messages that are sent hop-by-hop through the network. Each BSR device examines the message and forwards out all interfaces only the message that has either a higher BSR priority than its BSR priority or the same BSR priority, but with a higher BSR IP address. Using this method, the BSR is elected.

The elected BSR sends BSR messages to the all-PIM-routers multicast group (224.0.0.13) with a TTL of 1. Neighboring PIMv2 routers or multilayer switches receive the BSR message and multicast it out all other interfaces (except the one on which it was received) with a TTL of 1. In this way, BSR messages
travel hop-by-hop throughout the PIM domain. Because BSR messages contain the IP address of the current BSR, the flooding mechanism allows candidate RPs to automatically learn which device is the elected BSR.

Candidate RPs send candidate RP advertisements showing the group range for which they are responsible directly to the BSR, which stores this information in its local candidate-RP cache. The BSR periodically advertises the contents of this cache in BSR messages to all other PIM devices in the domain. These messages travel hop-by-hop through the network to all routers and switches, which store the RP information in the BSR message in their local RP cache. The routers and switches select the same RP for a given group because they all use a common RP hashing algorithm.

### Multicast Forwarding and Reverse Path Check

With unicast routing, routers and multilayer switches forward traffic through the network along a single path from the source to the destination host whose IP address appears in the destination address field of the IP packet. Each router and switch along the way makes a unicast forwarding decision, using the destination IP address in the packet, by looking up the destination address in the unicast routing table and forwarding the packet through the specified interface to the next hop toward the destination.

With multicasting, the source is sending traffic to an arbitrary group of hosts represented by a multicast group address in the destination address field of the IP packet. To determine whether to forward or drop an incoming multicast packet, the router or multilayer switch uses a reverse path forwarding (RPF) check on the packet as follows and shown in Figure 33-6:

1. The router or multilayer switch examines the source address of the arriving multicast packet to determine whether the packet arrived on an interface that is on the reverse path back to the source.
2. If the packet arrives on the interface leading back to the source, the RPF check is successful and the packet is forwarded to all interfaces in the outgoing interface list (which might not be all interfaces on the router).
3. If the RPF check fails, the packet is discarded.

Some multicast routing protocols, such as DVMRP, maintain a separate multicast routing table and use it for the RPF check. However, PIM uses the unicast routing table to perform the RPF check.

Figure 33-6 shows Gigabit Ethernet interface 0/2 receiving a multicast packet from source 151.10.3.21. A check of the routing table shows that the interface on the reverse path to the source is Gigabit Ethernet interface 0/1, not interface 0/2. Because the RPF check fails, the multilayer switch discards the packet.

Another multicast packet from source 151.10.3.21 is received on interface 0/1, and the routing table shows this interface is on the reverse path to the source. Because the RPF check passes, the switch forwards the packet to all interfaces in the outgoing interface list.
Cisco Implementation of IP Multicast Routing

Chapter 33 Configuring IP Multicast Routing

Figure 33-6 RPF Check

PIM uses both source trees and RP-rooted shared trees to forward datagrams (described in the “PIM DM” section on page 33-5 and the “PIM SM” section on page 33-7); the RPF check is performed differently for each:

- If a PIM router or multilayer switch has a source-tree state (that is, an (S,G) entry is present in the multicast routing table), it performs the RPF check against the IP address of the source of the multicast packet.
- If a PIM router or multilayer switch has a shared-tree state (and no explicit source-tree state), it performs the RPF check on the rendezvous point (RP) address (which is known when members join the group).

Sparse-mode PIM uses the RPF lookup function to determine where it needs to send joins and prunes:
- (S,G) joins (which are source-tree states) are sent toward the source.
- (*,G) joins (which are shared-tree states) are sent toward the RP.

DVMRP and dense-mode PIM use only source trees and use RPF as previously described.

Neighbor Discovery

PIM uses a neighbor discovery mechanism to establish PIM neighbor adjacencies. To establish adjacencies, a PIM router or multilayer switch sends PIM hello messages to the all-PIM-routers multicast group (224.0.0.13) on each of its multicast-enabled interfaces. The hello message contains a holdtime, which tells the receiver when the neighbor adjacency associated with the sender expires if no more PIM hello messages are received. (Keeping track of adjacencies is important for PIM DM operation for building the source distribution tree.)

PIM hello messages are also used to elect the DR for multi-access networks (Ethernet). The router or multilayer switch on the network with the highest IP address is the DR. With PIM DM operation, the DR has meaning only if IGMPv1 is in use; IGMPv1 does not have an IGMP querier election process, so the elected DR functions as the IGMP querier. In PIM SM operation, the DR is the router or switch that is directly connected to the multicast source. It sends PIM register messages to notify the RP that multicast traffic from a source needs to be forwarded down the shared tree.
Understanding DVMRP

Distance Vector Multicast Routing Protocol (DVMRP) is implemented in the equipment of many vendors and is based on the public-domain mrouted program. This protocol has been deployed in the multicast backbone (MBONE) and in other intradomain multicast networks.

Cisco routers and multilayer switches run PIM and can forward multicast packets to and receive from a DVMRP neighbor. It is also possible to propagate DVMRP routes into and through a PIM cloud. The Cisco IOS software propagates DVMRP routes and builds a separate database for these routes on each router and multilayer switch, but PIM uses this routing information to make the packet-forwarding decision. The Cisco IOS software does not implement the complete DVMRP. The Cisco IOS software supports dynamic discovery of DVMRP routers and can interoperate with them over traditional media (such as Ethernet and FDDI) or over DVMRP-specific tunnels.

DVMRP Neighbor Discovery

A DVMRP router learns about other DVMRP routers by periodically sending DVMRP probe messages to the all-DVMRP-routers multicast group (224.0.0.4). A second DVMRP router receiving the message adds the IP address of the first router that sent the probe to its internal list of DVMRP neighbors on the received interface and then sends its own probe message. This probe message contains all the addresses of neighboring DVMRP routers in its neighbor list, including the address of the first router. When the first DVMRP router receives a probe with its own address listed in the neighbor list, a two-way adjacency is formed between itself and the neighbor that sent the probe.

DVMRP Route Table

DVMRP neighbors build a route table by periodically exchanging source network routing information in route-report messages. These messages contain entries that advertise a source network with a mask and a hop count that is used as the routing metric. The routing information stored in the DVMRP routing table is separate from the unicast routing table and is used to build a source distribution tree and to perform multicast forward using reverse-path forwarding (RPF).

DVMRP Source Distribution Tree

DVMRP is a dense-mode protocol and builds a parent-child database using a constrained multicast model to build a forwarding tree rooted at the source of the multicast packets. Multicast packets are initially flooded down this source tree. If redundant paths are on the source tree, packets are not forwarded along those paths. Forwarding occurs until prune messages are received on those parent-child links, which further constrain the broadcast of multicast packets. DVMRP supports a reliable graft and graft-ack mechanism that grafts previously pruned branches of a tree. The graft-ack messages are sent by the upstream router in response to received graft messages, preventing the loss of a graft message because of congestion.

Understanding CGMP

This software release provides CGMP-server support on your multilayer switches; no client-side functionality is provided. The multilayer switch serves as a CGMP server for devices that do not support IGMP snooping but have CGMP-client functionality.
CGMP is a protocol used on Cisco routers and multilayer switches connected to Layer 2 Catalyst switches to perform tasks similar to those performed by IGMP. CGMP permits Layer 2 group membership information to be communicated from the CGMP server to the switch, which can learn on which ports multicast members reside instead of flooding multicast traffic to all switch ports. (IGMP snooping is another method to constrain the flooding of multicast packets. For more information, see Chapter 19, “Configuring IGMP Snooping and MVR.”)

CGMP is necessary because the Layer 2 switch cannot distinguish between IP multicast data packets and IGMP report messages, which are both at the MAC-level and are addressed to the same group address.

### Joining a Group with CGMP

Hosts connected to a Layer 2 Catalyst switch can join a multicast group by sending an unsolicited IGMP membership report message to the target group (224.1.2.3) as shown in Figure 33-7. Because LAN switches operate at Layer 2 and understand only MAC addresses, the source and destination fields of the frame contain 48-bit MAC addresses for Host 3 (0080.c7a2.1093) and MAC-address equivalent of the multicast group address (0100.5e01.0203).

The IGMP membership report is received by the Layer 2 switch and forwarded to the CGMP server for normal IGMP processing. The CGMP server, which must have CGMP enabled on the interface connected to the Layer 2 switch, receives the membership report and translates the report into a CGMP join message. It sends the CGMP join message to the switch through the well-known CGMP multicast MAC address (0x0100.0cdd.dddd). When the Layer 2 switch receives the join message, it updates its forwarding table to include the MAC-equivalent of the group destination address and the applicable input and output switch ports.

![Figure 33-7 Host Joining a Group Using CGMP](image)
Leaving a Group with CGMP

When an IGMPv2 host leaves a group, it can send an IGMP leave group message to the all-multicast-routers group (224.0.0.2). The CGMP server translates this leave group message into a CGMP leave message and sends it to the switch.

To expedite a host on a LAN leaving a multicast group, some Layer 2 Catalyst switch software offers the CGMP Fast-Leave feature, which allows the switch to perform IGMPv2 leave processing locally without involving the CGMP server and accelerates the removal of unused CGMP groups. The host sends the leave group message to the all-multicast-routers group (224.0.0.2). The Layer 2 switch processes it and does not forward it to the CGMP server. The Layer 2 switch sends an IGMP general query message on the port where the leave message was received to determine if there are remaining members for the group on the port. If no response is received, the Layer 2 switch sends an IGMP leave message to the CGMP server, which sends a group-specific query to the multicast group to see if there are any remaining members in the group. If there is no response, the CGMP server updates its multicast routing table and sends a CGMP delete group message to the Layer 2 switch, which updates its routing table.

Configuring IP Multicast Routing

These sections describe how to configure IP multicast routing:

- Default Multicast Routing Configuration, page 33-13
- Multicast Routing Configuration Guidelines, page 33-14
- Configuring Basic Multicast Routing, page 33-15 (required procedure)
- Configuring a Rendezvous Point, page 33-17 (required for spare-mode or sparse-dense-mode operation)
- Using Auto-RP and a BSR, page 33-27
- Monitoring the RP Mapping Information, page 33-27
- Troubleshooting PIMv1 and PIMv2 Interoperability Problems, page 33-28

Default Multicast Routing Configuration

Table 33-1 shows the default multicast routing configuration.

**Table 33-1. Default Multicast Routing Configuration**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast routing</td>
<td>Disabled on all interfaces.</td>
</tr>
<tr>
<td>PIM version</td>
<td>Version 2 (for devices running IOS Release 11.3(2)T or later).</td>
</tr>
<tr>
<td>PIM mode</td>
<td>No mode is defined.</td>
</tr>
<tr>
<td>PIM RP address</td>
<td>None configured.</td>
</tr>
<tr>
<td>PIM domain border</td>
<td>Disabled.</td>
</tr>
<tr>
<td>PIM multicast boundary</td>
<td>None.</td>
</tr>
<tr>
<td>Candidate BSRs</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Candidate RPs</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>
Chapter 33 Configuring IP Multicast Routing

Configuring IP Multicast Routing

Multicast Routing Configuration Guidelines

To avoid misconfiguring multicast routing on your multilayer switch, review the information in these sections:

- PIMv1 and PIMv2 Interoperability, page 33-14
- Auto-RP and BSR Configuration Guidelines, page 33-15

PIMv1 and PIMv2 Interoperability

The Cisco PIMv2 implementation allows interoperability and transition between Version 1 and Version 2, although there might be some minor problems.

You can upgrade to PIMv2 incrementally. PIM Versions 1 and 2 can be configured on different routers and multilayer switches within one network. Internally, all routers and multilayer switches on a shared media network must run the same PIM version. Therefore, if a PIMv2 device detects a PIMv1 device, the Version 2 device downgrades itself to Version 1 until all Version 1 devices have been shut down or upgraded.

PIMv2 uses the BSR to discover and announce RP-set information for each group prefix to all the routers and multilayer switches within a PIM domain. PIMv1, together with the Auto-RP feature, can perform the same tasks as the PIMv2 BSR. However, Auto-RP is a standalone protocol, separate from PIMv1, and is a proprietary Cisco protocol. PIMv2 is a standards track protocol in the IETF. We recommend that you use PIMv2. The BSR mechanism interoperates with Auto-RP on Cisco routers and multilayer switches. For more information, see the “Auto-RP and BSR Configuration Guidelines” section on page 33-15.

When PIMv2 devices interoperate with PIMv1 devices, Auto-RP should have already been deployed. A PIMv2 BSR that is also an Auto-RP mapping agent automatically advertises the RP elected by Auto-RP. That is, Auto-RP sets its single RP on every router or multilayer switch in the group. Not all routers and switches in the domain use the PIMv2 hash function to select multiple RPs.

Dense-mode groups in a mixed PIMv1 and PIMv2 region need no special configuration; they automatically interoperate.

Sparse-mode groups in a mixed PIMv1 and PIMv2 region are possible because the Auto-RP feature in PIMv1 inter-operates with the PIMv2 RP feature. Although all PIMv2 devices can also use PIMv1, we recommend that the RPs be upgraded to PIMv2 (or at least upgraded to PIMv1 in the Cisco IOS Release 11.3 software). To ease the transition to PIMv2, we have these recommendations:

- Use Auto-RP throughout the region.
- Configure sparse-dense mode throughout the region.

If Auto-RP is not already configured in the PIMv1 regions, configure Auto-RP. For more information, see the “Configuring Auto-RP” section on page 33-18.

---

Table 33-1 Default Multicast Routing Configuration (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shortest-path tree threshold rate</td>
<td>0 kbps.</td>
</tr>
<tr>
<td>PIM router query message interval</td>
<td>30 seconds.</td>
</tr>
</tbody>
</table>

---

Catalyst 3550 Multilayer Switch Software Configuration Guide
Auto-RP and BSR Configuration Guidelines

There are two approaches to using PIMv2. You can use Version 2 exclusively in your network or migrate to Version 2 by employing a mixed PIM version environment.

- If your network is all Cisco routers and multilayer switches, you can use either Auto-RP or BSR.
- If you have non-Cisco routers in your network, you must use BSR.
- If you have Cisco PIMv1 and PIMv2 routers and multilayer switches and non-Cisco routers, you must use both Auto-RP and BSR.
- Because bootstrap messages are sent hop-by-hop, a PIMv1 device prevents these messages from reaching all routers and multilayer switches in your network. Therefore, if your network has a PIMv1 device in it and only Cisco routers and multilayer switches, it is best to use Auto-RP.
- If you have a network that includes non-Cisco routers, configure the Auto-RP mapping agent and the BSR on a Cisco PIMv2 router or multilayer switch. Ensure that no PIMv1 device is on the path between the BSR and a non-Cisco PIMv2 router.
- If you have non-Cisco PIMv2 routers that need to interoperate with Cisco PIMv1 routers and multilayer switches, both Auto-RP and a BSR are required. We recommend that a Cisco PIMv2 device be both the Auto-RP mapping agent and the BSR. For more information, see the “Using Auto-RP and a BSR” section on page 33-27.

Configuring Basic Multicast Routing

You must enable IP multicast routing and configure the PIM version and PIM mode so that the IOS software can forward multicast packets and determine how the multilayer switch populates its multicast routing table.

You can configure an interface to be in PIM dense mode, sparse mode, or sparse-dense mode. The mode determines how the switch populates its multicast routing table and how it forwards multicast packets it receives from its directly connected LANs. You must enable PIM in one of these modes for an interface to perform IP multicast routing. Enabling PIM on an interface also enables IGMP operation on that interface.

By default, multicast routing is disabled, and there is no default mode setting. The following procedure is required.

Beginning in privileged EXEC mode, follow these steps to enable IP multicasting and a PIM mode on your multilayer switch:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td></td>
<td><code>ip multicast-routing</code></td>
<td>Enable IP multicast forwarding.</td>
</tr>
</tbody>
</table>
Chapter 33  Configuring IP Multicast Routing

Configuring IP Multicast Routing

To disable multicasting, use the `no ip multicast-routing` global configuration command. To return to the default PIM version, use the `no ip pim version` interface configuration command. To disable PIM on an interface, use the `no ip pim` interface configuration command.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 3    | `interface interface-id` | Enter interface configuration mode, and specify the Layer 3 interface on which you want to enable multicast routing. The specified interface must be one of the following:  
  • A routed port: a physical port that has been configured as a Layer 3 port by entering the `no switchport` interface configuration command.  
  • An SVI: a VLAN interface created by using the `interface vlan vlan-id` global configuration command.  
These ports must have IP addresses assigned to them. For more information, see the “Configuring Layer 3 Interfaces” section on page 10-18. |
| 4    | `ip pim version [1 | 2]` | Configure the PIM version on the interface. By default, Version 2 is enabled and is the recommended setting.  
  **Note** All IP multicast-capable Cisco PIM routers using IOS Release 11.3(2)T or later start in PIMv2 by default.  
  An interface in PIMv2 mode automatically downgrades to PIMv1 mode if that interface has a PIMv1 neighbor. The interface returns to Version 2 mode after all Version 1 neighbors are shut down or upgraded. For more information, see the “PIMv1 and PIMv2 Interoperability” section on page 33-14. |
| 5    | `ip pim {dense-mode | sparse-mode | sparse-dense-mode}` | Enable a PIM mode on the interface. By default, no mode is configured. The keywords have these meanings:  
  • *dense-mode*—Enables dense mode of operation.  
  • *sparse-mode*—Enables sparse mode of operation.  
  • *sparse-dense-mode*—Causes the interface to be treated in the mode in which the group belongs. Sparse-dense-mode is the recommended setting.  
  **Note** If you are use sparse-mode or sparse-dense mode, you must also configure an RP. For more information, see the “Configuring a Rendezvous Point” section on page 33-17. |
| 6    | `end` | Return to privileged EXEC mode. |
| 7    | `show running-config` | Verify your entries. |
| 8    | `copy running-config startup-config` | (Optional) Save your entries in the configuration file. |

To disable multicasting, use the `no ip multicast-routing` global configuration command. To return to the default PIM version, use the `no ip pim version` interface configuration command. To disable PIM on an interface, use the `no ip pim` interface configuration command.
Configuring a Rendezvous Point

If you have configured PIM SM or PIM SM-DM, you must configure an RP for the multicast group. You can use several methods, as described in these sections:

- Manually Assigning an RP to Multicast Groups, page 33-17
- Configuring Auto-RP, page 33-18 (a standalone, Cisco-proprietary protocol separate from PIMv1)
- Configuring PIMv2 BSR, page 33-22 (a standards track protocol in the Internet Engineering Task Force (IETF))

You can use Auto-RP, BSR, or a combination of both, depending on the PIM version you are running and the types of routers in your network. For more information, see the “PIMv1 and PIMv2 Interoperability” section on page 33-14 and the “Auto-RP and BSR Configuration Guidelines” section on page 33-15.

Manually Assigning an RP to Multicast Groups

This section explains how to manually configure an RP. If the RP for a group is learned through a dynamic mechanism (such as Auto-RP or BSR), you need not perform this task for that RP.

Senders of multicast traffic announce their existence through register messages received from the source’s first-hop router (designated router) and forwarded to the RP. Receivers of multicast packets use RPs to join a multicast group by using explicit join messages. RPs are not members of the multicast group; rather, they serve as a meeting place for multicast sources and group members.

Beginning in privileged EXEC mode, follow these steps to manually configure the address of the RP:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>ip pim rp-address ip-address</td>
<td>Configure the address of a PIM RP.</td>
</tr>
<tr>
<td>[access-list-number] [override]</td>
<td>By default, no PIM RP address is configured. You must configure the IP address of RPs on all routers and multilayer switches (including the RP). If there is no RP configured for a group, the multilayer switch treats the group as dense, using the dense-mode PIM techniques. A PIM device can use multiple RPs, but only one per group.</td>
</tr>
<tr>
<td></td>
<td>- For ip-address, enter the unicast address of the RP in dotted-decimal notation.</td>
</tr>
<tr>
<td></td>
<td>- (Optional) For access-list-number, enter an IP standard access list number from 1 to 99. If no access list is configured, the RP is used for all groups.</td>
</tr>
<tr>
<td></td>
<td>- (Optional) The override keyword means that if there is a conflict between the RP configured with this command and one learned by Auto-RP or BSR, the RP configured with this command prevails.</td>
</tr>
</tbody>
</table>
### Configuring IP Multicast Routing

#### Configuring Auto-RP

Auto-RP uses IP multicast to automate the distribution of group-to-RP mappings to all Cisco routers and multilayer switches in a PIM network. It has these benefits:

- It is easy to use multiple RPs within a network to serve different group ranges.
- It allows load splitting among different RPs and arrangement of RPs according to the location of group participants.
- It avoids inconsistent, manual RP configurations on every router and multilayer switch in a PIM network, which can cause connectivity problems.

**Note**

If you configure PIM in sparse mode or sparse-dense mode and do not configure Auto-RP, you must manually configure an RP as described in the “Manually Assigning an RP to Multicast Groups” section on page 33-17.

**Note**

If routed interfaces are configured in sparse mode, Auto-RP can still be used if all devices are configured with a manual RP address for the Auto-RP groups.

---

### Command Table

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td>`access-list access-list-number {deny</td>
<td></td>
</tr>
<tr>
<td>permit} source [source-wildcard]`</td>
<td>necessary.</td>
</tr>
<tr>
<td></td>
<td>• For <code>access-list-number</code>, enter the access list number specified in</td>
</tr>
<tr>
<td></td>
<td>Step 2.</td>
</tr>
<tr>
<td></td>
<td>• The <code>deny</code> keyword denies access if the conditions are matched. The</td>
</tr>
<tr>
<td></td>
<td><code>permit</code> keyword permits access if the conditions are matched.</td>
</tr>
<tr>
<td></td>
<td>• For <code>source</code>, enter the multicast group address for which the RP</td>
</tr>
<tr>
<td></td>
<td>should be used.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For <code>source-wildcard</code>, enter the wildcard bits in dotted</td>
</tr>
<tr>
<td></td>
<td>decimal notation to be applied to the source. Place ones in the bit</td>
</tr>
<tr>
<td></td>
<td>positions that you want to ignore.</td>
</tr>
<tr>
<td></td>
<td>Recall that the access list is always terminated by an implicit deny</td>
</tr>
<tr>
<td></td>
<td>statement for everything.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><code>show running-config</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td></td>
</tr>
</tbody>
</table>

To remove an RP address, use the `no ip pim rp-address ip-address [access-list-number] [override]` global configuration command.

This example shows how to configure the address of the RP to 147.106.6.22 for multicast group 225.2.2.2 only:

```
Switch(config)# access-list 1 permit 225.2.2.2 0.0.0.0
Switch(config)# ip pim rp-address 147.106.6.22 1
```
These sections describe how to configure Auto-RP:

- Setting up Auto-RP in a New Internetwork, page 33-19
- Adding Auto-RP to an Existing Sparse-Mode Cloud, page 33-19
- Preventing Join Messages to False RPs, page 33-20
- Preventing Candidate RP Spoofing, page 33-21

For overview information, see the “Auto-RP” section on page 33-8.

### Setting up Auto-RP in a New Internetwork

If you are setting up Auto-RP in a new internetwork, you do not need a default RP because you configure all the interfaces for sparse-dense mode. Follow the process described in the section “Adding Auto-RP to an Existing Sparse-Mode Cloud” section on page 33-19. However, skip Step 3 to configure a PIM router as the RP for the local group.

### Adding Auto-RP to an Existing Sparse-Mode Cloud

This section contains some suggestions for the initial deployment of Auto-RP into an existing sparse-mode cloud to minimize disruption of the existing multicast infrastructure.

Beginning in privileged EXEC mode, follow these steps to deploy Auto-RP in an existing sparse-mode cloud:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>show running-config</strong></td>
</tr>
<tr>
<td></td>
<td>Verify that a default RP is already configured on all PIM devices and</td>
</tr>
<tr>
<td></td>
<td>the RP in the sparse-mode network.</td>
</tr>
<tr>
<td></td>
<td>This step is not required for spare-dense-mode environments.</td>
</tr>
<tr>
<td></td>
<td>The selected RP should have good connectivity and be available across</td>
</tr>
<tr>
<td></td>
<td>the network. Use this RP for the global groups (for example 224.x.x.x</td>
</tr>
<tr>
<td></td>
<td>and other global groups). Do not reconfigure the group address range</td>
</tr>
<tr>
<td></td>
<td>that this RP serves. RPs dynamically discovered through Auto-RP take</td>
</tr>
<tr>
<td></td>
<td>precedence over statically configured RPs. Assume that it is desirable</td>
</tr>
<tr>
<td></td>
<td>to use a second RP for the local groups.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>configure terminal</strong></td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>ip pim send-rp-announce</strong></td>
</tr>
<tr>
<td></td>
<td><strong>interface-id scope ttl group-list access-list-number interval seconds</strong></td>
</tr>
<tr>
<td></td>
<td>Configure another PIM device to be the candidate RP for local groups.</td>
</tr>
<tr>
<td></td>
<td>• For <em>interface-id</em>, enter the interface type and number that identifies</td>
</tr>
<tr>
<td></td>
<td>the RP address. Valid interfaces include physical ports, port</td>
</tr>
<tr>
<td></td>
<td>channels, and VLANs.</td>
</tr>
<tr>
<td></td>
<td>• For <em>scope ttl</em>, specify the time-to-live value in hops. Enter a hop</td>
</tr>
<tr>
<td></td>
<td>count that is high enough so that the RP-announce messages reach all</td>
</tr>
<tr>
<td></td>
<td>mapping agents in the network. There is no default setting. The range</td>
</tr>
<tr>
<td></td>
<td>is 1 to 255.</td>
</tr>
<tr>
<td></td>
<td>• For <em>group-list access-list-number</em>, enter an IP standard access list</td>
</tr>
<tr>
<td></td>
<td>number from 1 to 99. If no access list is configured, the RP is used</td>
</tr>
<tr>
<td></td>
<td>for all groups.</td>
</tr>
<tr>
<td></td>
<td>• For <em>interval seconds</em>, specify how often the announcement messages</td>
</tr>
<tr>
<td></td>
<td>must be sent. The default is 60 seconds. The range is 1 to 16383.</td>
</tr>
</tbody>
</table>
Chapter 33  Configuring IP Multicast Routing

To remove the PIM device configured as the candidate RP, use the `no ip pim send-rp-announce` global configuration command. To remove the multilayer switch as the RP-mapping agent, use the `no ip pim send-rp-discovery` global configuration command.

This example shows how to send RP announcements out all PIM-enabled interfaces for a maximum of 31 hops. The IP address of Gigabit Ethernet interface 0/1 is the RP. Access list 5 describes the group for which this multilayer switch serves as RP:

```
Switch(config)# ip pim send-rp-announce gigabitethernet0/1 scope 31 group-list 5
Switch(config)# access-list 5 permit 224.0.0.0 15.255.255.255
```

### Preventing Join Messages to False RPs

Determine whether the `ip pim accept-rp` command was previously configured throughout the network by using the `show running-config` privileged EXEC command. If the `ip pim accept-rp` command is not configured on any device, this problem can be addressed later. In those routers or multilayer switches already configured with the `ip pim accept-rp` command, you must enter the command again to accept the newly advertised RP.

To accept all RPs advertised with Auto-RP and reject all other RPs by default, use the `ip pim accept-rp auto-rp` global configuration command.
Configuring IP Multicast Routing

If all interfaces are in sparse mode, use a default-configured RP to support the two well-known groups 224.0.1.39 and 224.0.1.40. Auto-RP uses these two well-known groups to collect and distribute RP-mapping information. When this is the case and the `ip pim accept-rp auto-rp` command is configured, another `ip pim accept-rp` command accepting the RP must be configured as follows:

```
Switch(config)# ip pim accept-rp 172.10.20.1 1
Switch(config)# access-list 1 permit 224.0.1.39
Switch(config)# access-list 1 permit 224.0.1.40
```

Preventing Candidate RP Spoofing

You can add configuration commands to the mapping agents to prevent a maliciously configured router from masquerading as a candidate RP and causing problems.

Beginning in privileged EXEC mode, follow these steps to filter incoming RP announcement messages:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip pim rp-announce-filter rp-list</td>
<td>Filter incoming RP announcement messages.</td>
<td></td>
</tr>
<tr>
<td>access-list-number</td>
<td>Enter this command on each mapping agent in the network.</td>
<td></td>
</tr>
<tr>
<td>group-list</td>
<td>Without this command, all incoming RP-announce messages are accepted by default.</td>
<td></td>
</tr>
<tr>
<td>access-list-number</td>
<td>For <code>rp-list access-list-number</code>, configure an access list of candidate RP addresses that, if permitted, is accepted for the group ranges supplied in the <code>group-list access-list-number</code> variable. If this variable is omitted, the filter applies to all multicast groups.</td>
<td></td>
</tr>
<tr>
<td>If more than one mapping agent is used, the filters must be consistent across all mapping agents to ensure that no conflicts occur in the Group-to-RP mapping information.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list access-list-number {deny</td>
<td>permit} source [source-wildcard]</td>
<td>Create a standard access list, repeating the command as many times as necessary.</td>
</tr>
<tr>
<td>• For <code>access-list-number</code>, enter the access list number specified in Step 2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• The <code>deny</code> keyword denies access if the conditions are matched. The <code>permit</code> keyword permits access if the conditions are matched.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Create an access list that specifies from which routers and multilayer switches the mapping agent accepts candidate RP announcements (rp-list ACL).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Create an access list that specifies the range of multicast groups from which to accept or deny (group-list ACL).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• For <code>source</code>, enter the multicast group address range for which the RP should be used.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• (Optional) For <code>source-wildcard</code>, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recall that the access list is always terminated by an implicit deny statement for everything.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
<td></td>
</tr>
</tbody>
</table>
To remove a filter on incoming RP announcement messages, use the `no ip pim rp-announce-filter rp-list access-list-number group-list access-list-number` global configuration command.

This example shows a sample configuration on an Auto-RP mapping agent that is used to prevent candidate RP announcements from being accepted from unauthorized candidate RPs:

```
Switch(config)# ip pim rp-announce-filter rp-list 10 group-list 20
Switch(config)# access-list 10 permit host 172.16.5.1
Switch(config)# access-list 10 permit host 172.16.2.1
Switch(config)# access-list 20 deny 239.0.0.0 0.0.255.255
Switch(config)# access-list 20 permit 224.0.0.0 15.255.255.255
```

In this example, the mapping agent accepts candidate RP announcements from only two devices, 172.16.5.1 and 172.16.2.1. The mapping agent accepts candidate RP announcements from these two devices only for multicast groups that fall in the group range of 224.0.0.0 to 239.255.255.255. The mapping agent does not accept candidate RP announcements from any other devices in the network. Furthermore, the mapping agent does not accept candidate RP announcements from 172.16.5.1 or 172.16.2.1 if the announcements are for any groups in the 239.0.0.0 through 239.255.255.255 range. This range is the administratively scoped address range.

### Configuring PIMv2 BSR

BSR automates the distribution of group-to-RP mappings to all routers and multilayer switches in a PIMv2 network. It eliminates the need to manually configure RP information in every device in the network. However, instead of using IP multicast to distribute group-to-RP mapping information, BSR uses hop-by-hop flooding of special BSR messages to distribute the mapping information. For overview information, see the “Bootstrap Router” section on page 33-8.

These sections describe how to set up BSR in your PIMv2 network:

- Defining the PIM Domain Border, page 33-22
- Defining the IP Multicast Boundary, page 33-24
- Configuring Candidate BSRs, page 33-25
- Configuring Candidate RPs, page 33-26

### Defining the PIM Domain Border

As IP multicast becomes more widespread, the chances of one PIMv2 domain bordering another PIMv2 domain is increasing. Because these two domains probably do not share the same set of RPs, BSR, candidate RPs, and candidate BSRs, you need to constrain PIMv2 BSR messages from flowing into or out of the domain. Allowing these messages to leak across the domain borders could adversely affect the normal BSR election mechanism and elect a single BSR across all bordering domains and co-mingle candidate RP advertisements, resulting in the election of RPs in the wrong domain.
Beginning in privileged EXEC mode, follow these steps to define the PIM domain border:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to be configured.</td>
</tr>
<tr>
<td>Step 3 ip pim bsr-border</td>
<td>Define a PIM bootstrap message boundary for the PIM domain. Enter this command on each interface that connects to other bordering PIM domains. This command instructs the multilayer switch to neither send or receive PIMv2 BSR messages on this interface as shown in Figure 33-8.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the PIM border, use the **no ip pim bsr-border** interface configuration command.

*Figure 33-8 Constraining PIMv2 BSR Messages*
Defining the IP Multicast Boundary

You define a multicast boundary to prevent Auto-RP messages from entering the PIM domain. You create an access list to deny packets destined for 224.0.1.39 and 224.0.1.40, which carry Auto-RP information.

Beginning in privileged EXEC mode, follow these steps to define a multicast boundary:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>access-list access-list-number deny source [source-wildcard]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recall that the access list is always terminated by an implicit deny statement for everything.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>interface interface-id</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>ip multicast boundary access-list-number</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>show running-config</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To remove the boundary, use the **no ip multicast boundary** interface configuration command.

This example shows a portion of an IP multicast boundary configuration that denies Auto-RP information:

```
Switch(config)# access-list 1 deny 224.0.1.39
Switch(config)# access-list 1 deny 224.0.1.40
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# ip multicast boundary 1
```
Configuring Candidate BSRs

You can configure one or more candidate BSRs. The devices serving as candidate BSRs should have good connectivity to other devices and be in the backbone portion of the network.

Beginning in privileged EXEC mode, follow these steps to configure your multilayer switch as a candidate BSR:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong>&lt;br&gt;configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2**<br>ip pim bsr-candidate interface-id hash-mask-length [priority] | Configure your multilayer switch to be a candidate BSR.  
- For interface-id, enter the interface type and number on this switch from which the BSR address is derived to make it a candidate. This interface must be enabled with PIM. Valid interfaces include physical ports, port channels, and VLANs.  
- For hash-mask-length, specify the mask length (32 bits maximum) that is to be ANDed with the group address before the hash function is called. All groups with the same seed hash correspond to the same RP. For example, if this value is 24, only the first 24 bits of the group addresses matter.  
- (Optional) For priority, enter a number from 0 to 255. The BSR with the larger priority is preferred. If the priority values are the same, the device with the highest IP address is selected as the BSR. The default is 0. |
| **Step 3**<br>end | Return to privileged EXEC mode. |
| **Step 4**<br>show running-config | Verify your entries. |
| **Step 5**<br>copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To remove this device as a candidate BSR, use the **no ip pim bsr-candidate** global configuration command.

This example shows how to configure a candidate BSR, which uses the IP address 172.21.24.18 on Gigabit Ethernet interface 0/2 as the advertised BSR address, uses 30 bits as the hash-mask-length, and has a priority of 10.

Switch(config)# interface gigabitethernet0/2
Switch(config-if)# ip address 172.21.24.18 255.255.255.0
Switch(config-if)# ip pim sparse-dense-mode
Switch(config-if)# ip pim bsr-candidate gigabitethernet0/2 30 10
Configuring Candidate RPs

You can configure one or more candidate RPs. Similar to BSRs, the RPs should also have good connectivity to other devices and be in the backbone portion of the network. An RP can serve the entire IP multicast address space or a portion of it. Candidate RPs send candidate RP advertisements to the BSR. When deciding which devices should be RPs, consider these options:

- In a network of Cisco routers and multilayer switches where only Auto-RP is used, any device can be configured as an RP.
- In a network that includes only Cisco PIMv2 routers and multilayer switches and with routers from other vendors, any device can be used as an RP.
- In a network of Cisco PIMv1 routers, Cisco PIMv2 routers, and routers from other vendors, configure only Cisco PIMv2 routers and multilayer switches as RPs.

Beginning in privileged EXEC mode, follow these steps to configure your multilayer switch to advertise itself as a PIMv2 candidate RP to the BSR:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>ip pim rp-candidate interface-id [group-list access-list-number]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>access-list access-list-number {deny</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>end</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>show running-config</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To remove this device as a candidate RP, use the no ip pim rp-candidate global configuration command.
This example shows how to configure the multilayer switch to advertise itself as a candidate RP to the BSR in its PIM domain. Standard access list number 4 specifies the group prefix associated with the RP that has the address identified by Gigabit Ethernet interface 0/2. That RP is responsible for the groups with the prefix 239.

```
Switch(config)# ip pim rp-candidate gigabitethernet0/2 group-list 4
Switch(config)# access-list 4 permit 239.0.0.0 0.255.255.255
```

## Using Auto-RP and a BSR

If you have non-Cisco PIMv2 routers that need to interoperate with Cisco PIMv1 routers and multilayer switches, both Auto-RP and a BSR are required. We recommend that a Cisco PIMv2 router or multilayer switch be both the Auto-RP mapping agent and the BSR.

If you must have one or more BSRs, we have these recommendations:

- Configure the candidate BSRs as the RP-mapping agents for Auto-RP. For more information, see the “Configuring Auto-RP” section on page 33-18 and the “Configuring Candidate BSRs” section on page 33-25.
- For group prefixes advertised through Auto-RP, the PIMv2 BSR mechanism should not advertise a subrange of these group prefixes served by a different set of RPs. In a mixed PIMv1 and PIMv2 domain, have backup RPs serve the same group prefixes. This prevents the PIMv2 DRs from selecting a different RP from those PIMv1 DRs, due to the longest match lookup in the RP-mapping database.

Beginning in privileged EXEC mode, follow these steps to verify the consistency of group-to-RP mappings:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> show ip pim rp [group-name</td>
<td>group-address</td>
</tr>
<tr>
<td></td>
<td>(Optional) For group-name, specify the name of the group about which to display RPs.</td>
</tr>
<tr>
<td></td>
<td>(Optional) For group-address, specify the address of the group about which to display RPs.</td>
</tr>
<tr>
<td></td>
<td>(Optional) Use the mapping keyword to display all group-to-RP mappings of which the Cisco device is aware (either configured or learned from Auto-RP).</td>
</tr>
<tr>
<td><strong>Step 2</strong> show ip pim rp-hash group</td>
<td>On a PIMv2 router or multilayer switch, confirm that the same RP is the one that a PIMv1 system chooses.</td>
</tr>
<tr>
<td></td>
<td>For group, enter the group address for which to display RP information.</td>
</tr>
</tbody>
</table>

### Monitoring the RP Mapping Information

To monitor the RP mapping information, use these commands in privileged EXEC mode:

- `show ip pim bsr` displays information about the elected BSR.
- `show ip pim rp-hash group` displays the RP that was selected for the specified group.
- `show ip pim rp [group-name | group-address | mapping]` displays how the multilayer switch learns of the RP (through the BSR or the Auto-RP mechanism).
Troubleshooting PIMv1 and PIMv2 Interoperability Problems

When debugging interoperability problems between PIMv1 and PIMv2, check these in the order shown:

1. Verify RP mapping with the `show ip pim rp-hash` privileged EXEC command, making sure that all systems agree on the same RP for the same group.

2. Verify interoperability between different versions of DRs and RPs. Make sure the RPs are interacting with the DRs properly (by responding with register-stops and forwarding decapsulated data packets from registers).

Configuring Advanced PIM Features

These sections describe the optional advanced PIM features:

- Understanding PIM Shared Tree and Source Tree, page 33-28
- Delaying the Use of PIM Shortest-Path Tree, page 33-29
- Modifying the PIM Router-Query Message Interval, page 33-30

Understanding PIM Shared Tree and Source Tree

By default, members of a group receive data from senders to the group across a single data-distribution tree rooted at the RP. Figure 33-9 shows this type of shared-distribution tree. Data from senders is delivered to the RP for distribution to group members joined to the shared tree.

If the data rate warrants, leaf routers (routers without any downstream connections) on the shared tree can use the data distribution tree rooted at the source. This type of distribution tree is called a shortest-path tree or source tree. By default, the IOS software switches to a source tree upon receiving the first data packet from a source.
This process describes the move from a shared tree to a source tree:

1. A receiver joins a group; leaf Router C sends a join message toward the RP.
2. The RP puts a link to Router C in its outgoing interface list.
3. A source sends data; Router A encapsulates the data in a register message and sends it to the RP.
4. The RP forwards the data down the shared tree to Router C and sends a join message toward the source. At this point, data might arrive twice at Router C, once encapsulated and once natively.
5. When data arrives natively (unencapsulated) at the RP, it sends a register-stop message to Router A.
6. By default, reception of the first data packet prompts Router C to send a join message toward the source.
7. When Router C receives data on (S,G), it sends a prune message for the source up the shared tree.
8. The RP deletes the link to Router C from the outgoing interface of (S,G). The RP triggers a prune message toward the source.

Join and prune messages are sent for sources and RPs. They are sent hop-by-hop and are processed by each PIM device along the path to the source or RP. Register and register-stop messages are not sent hop-by-hop. They are sent by the designated router that is directly connected to a source and are received by the RP for the group.

Multiple sources sending to groups use the shared tree.

You can configure the PIM device to stay on the shared tree. For more information, see the “Delaying the Use of PIM Shortest-Path Tree” section on page 33-29.

**Delaying the Use of PIM Shortest-Path Tree**

The change from shared to source tree happens when the first data packet arrives at the last-hop router (Router C in Figure 33-9). This change occurs because the `ip pim spt-threshold` interface configuration command controls that timing; its default setting is 0 kbps.

The shortest-path tree requires more memory than the shared tree but reduces delay. You might want to postpone its use. Instead of allowing the leaf router to immediately move to the shortest-path tree, you can specify that the traffic must first reach a threshold.

You can configure when a PIM leaf router should join the shortest-path tree for a specified group. If a source sends at a rate greater than or equal to the specified kbps rate, the multilayer switch triggers a PIM join message toward the source to construct a source tree (shortest-path tree). If the traffic rate from the source drops below the threshold value, the leaf router switches back to the shared tree and sends a prune message toward the source.

You can specify to which groups the shortest-path tree threshold applies by using a group list (a standard access list). If a value of 0 is specified or if the group list is not used, the threshold applies to all groups.
Beginning in privileged EXEC mode, follow these steps to configure a traffic rate threshold that must be reached before multicast routing is switched from the source tree to the shortest-path tree:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| **Step 2** | access-list access-list-number {deny | permit} source [source-wildcard] | Create a standard access list.  
  - For access-list-number, the range is 1 to 99.  
  - The deny keyword denies access if the conditions are matched. The permit keyword permits access if the conditions are matched.  
  - For source, specify the multicast group to which the threshold will apply.  
  - (Optional) For source-wildcard, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore. Recall that the access list is always terminated by an implicit deny statement for everything. |
| **Step 3** | interface interface-id | Enter interface configuration mode, and specify the interface on the leaf router that connects to the source tree. |
| **Step 4** | ip pim spt-threshold {kbps | infinity} [group-list access-list-number] | Specify the threshold that must be reached before moving to shortest-path tree (spt).  
  - For kbps, specify the traffic rate in kilobits per second. The default is 0 kbps. The range is 0 to 4294967.  
  - Specify infinity if you want all sources for the specified group to use the shared tree, never switching to the source tree.  
  - (Optional) For group-list access-list-number, specify the access list created in Step 2. If the value is 0 or if the group-list is not used, the threshold applies to all groups. |
| **Step 5** | end | Return to privileged EXEC mode. |
| **Step 6** | show running-config | Verify your entries. |
| **Step 7** | copy running-config startup-config | (Optional) Save your entries in the configuration file. |

To return to the default threshold, use the **no ip pim spt-threshold** interface configuration command.

**Modifying the PIM Router-Query Message Interval**

PIM routers and multilayer switches send PIM router-query messages to determine which device will be the DR for each LAN segment (subnet). The DR is responsible for sending IGMP host-query messages to all hosts on the directly connected LAN.

With PIM DM operation, the DR has meaning only if IGMPv1 is in use. IGMPv1 does not have an IGMP querier election process, so the elected DR functions as the IGMP querier. With PIM SM operation, the DR is the device that is directly connected to the multicast source. It sends PIM register messages to notify the RP that multicast traffic from a source needs to be forwarded down the shared tree. In this case, the DR is the device with the highest IP address.
By default, multicast routers and multilayer switches send PIM router-query messages every 30 seconds. Beginning in privileged EXEC mode, follow these steps to modify the router-query message interval:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td><code>interface interface-id</code></td>
<td>Enter interface configuration mode, and specify the interface to be configured.</td>
</tr>
<tr>
<td>3</td>
<td><code>ip pim query-interval seconds</code></td>
<td>Configure the frequency at which the multilayer switch sends PIM router-query messages. The default is 30 seconds. The range is 1 to 65535.</td>
</tr>
<tr>
<td>4</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td><code>show ip igmp interface [interface-id]</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>6</td>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default interval, use the `no ip pim query-interval [seconds]` interface configuration command.

### Configuring Optional IGMP Features

These sections describe how to configure optional IGMP features:

- Default IGMP Configuration, page 33-31
- Changing the IGMP Version, page 33-32
- Changing the IGMP Query Timeout for IGMPv2, page 33-32
- Changing the Maximum Query Response Time for IGMPv2, page 33-33
- Configuring the Multilayer Switch as a Member of a Group, page 33-34
- Controlling Access to IP Multicast Groups, page 33-35
- Modifying the IGMP Host-Query Message Interval, page 33-36
- Configuring the Multilayer Switch as a Statically Connected Member, page 33-36

### Default IGMP Configuration

Table 33-2 shows the default IGMP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP version</td>
<td>Version 2 on all interfaces.</td>
</tr>
<tr>
<td>IGMP query timeout</td>
<td>60 seconds on all interfaces.</td>
</tr>
<tr>
<td>IGMP maximum query response time</td>
<td>10 seconds on all interfaces.</td>
</tr>
<tr>
<td>Multilayer switch as a member of a multicast group</td>
<td>No group memberships are defined.</td>
</tr>
</tbody>
</table>
Configuring Optional IGMP Features

Chapter 33 Configuring IP Multicast Routing

Table 33-2 Default IGMP Configuration (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access to multicast groups</td>
<td>All groups are allowed on an interface.</td>
</tr>
<tr>
<td>IGMP host-query message interval</td>
<td>60 seconds on all interfaces.</td>
</tr>
<tr>
<td>Multilayer switch as a statically connected member</td>
<td>Disabled.</td>
</tr>
</tbody>
</table>

Changing the IGMP Version

By default, the multilayer switch uses IGMP Version 2, which allows features such as the IGMP query timeout and the maximum query response time.

All systems on the subnet must support the same version. The switch does not automatically detect Version 1 systems and switch to Version 1.

Configure the switch for Version 1 if your hosts do not support Version 2.

Beginning in privileged EXEC mode, follow these steps to change the IGMP version:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1   configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2   interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to be configured.</td>
</tr>
<tr>
<td>Step 3   ip igmp version {2</td>
<td>1}</td>
</tr>
<tr>
<td>Note</td>
<td>If you change to version 1, you cannot configure the ip igmp query-interval or the ip igmp query-max-response-time interface configuration commands.</td>
</tr>
<tr>
<td>Step 4   end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5   show ip igmp interface [interface-id]</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6   copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default version (2), use the no ip igmp version interface configuration command.

Changing the IGMP Query Timeout for IGMPv2

If you are using IGMPv2, you can specify the period of time before the multilayer switch takes over as the querier for the interface. By default, the switch waits twice the query interval controlled by the ip igmp query-interval interface configuration command. After that time, if the switch has received no queries, it becomes the querier.
You can determine the query interval by entering the `show ip igmp interface interface-id` privileged EXEC command.

Beginning in privileged EXEC mode, follow these steps to change the IGMP query timeout:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td>Enter interface configuration mode, and specify the interface to be configured.</td>
</tr>
<tr>
<td><code>ip igmp querier-timeout seconds</code></td>
<td>Specify the IGMP query timeout. The default is 60 seconds (twice the query interval). The range is 60 to 300.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>show ip igmp interface [interface-id]</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default timeout value, use the `no ip igmp query-timeout` interface configuration command.

### Changing the Maximum Query Response Time for IGMPv2

If you are using IGMPv2, you can change the maximum query response time advertised in IGMP queries. The maximum query response time allows the multilayer switch to quickly detect that there are no more directly connected group members on a LAN. Decreasing the value allows the switch to prune groups faster.

Beginning in privileged EXEC mode, follow these steps to change the maximum query response time:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td>Enter interface configuration mode, and specify the interface to be configured.</td>
</tr>
<tr>
<td><code>ip igmp query-max-response-time seconds</code></td>
<td>Change the maximum query response time advertised in IGMP queries. The default is 10 seconds. The range is 1 to 25.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>show ip igmp interface [interface-id]</code></td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><code>copy running-config startup-config</code></td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default query-response time, use the `no ip igmp query-max-response-time` interface configuration command.
### Configuring the Multilayer Switch as a Member of a Group

Multilayer switches can be configured as members of a multicast group. This is useful to determine multicast reachability in a network. If all the multicast-capable routers and multilayer switches that you administer are members of a multicast group, pinging that group causes all these devices to respond. The devices respond to ICMP echo-request packets addressed to a group of which they are members. Another example is the multicast trace-route tools provided in the Cisco IOS software.

Beginning in privileged EXEC mode, follow these steps to configure the multilayer switch to be a member of a group:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to be configured.</td>
</tr>
</tbody>
</table>
| **Step 3** ip igmp join-group group-address | Configure the switch to join a multicast group.  
By default, no group memberships are defined.  
For group-address, specify the multicast IP address in dotted decimal notation. |
| **Step 4** end                  | Return to privileged EXEC mode.                                          |
| **Step 5** show ip igmp interface [interface-id] | Verify your entries.                                                      |
| **Step 6** copy running-config startup-config | (Optional) Save your entries in the configuration file.                  |

To cancel membership in a group, use the **no ip igmp join-group group-address** interface configuration command.

This example shows how to allow the switch to join multicast group 255.2.2.2:

```
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# ip igmp join-group 255.2.2.2
```
Controlling Access to IP Multicast Groups

The multilayer switch sends IGMP host-query messages to determine which multicast groups have members on attached local networks. The switch then forwards to these group members all packets addressed to the multicast group. You can place a filter on each interface to restrict the multicast groups that hosts on the subnet serviced by the interface can join.

Beginning in privileged EXEC mode, follow these steps to filter multicast groups allowed on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip igmp access-group access-list-number</td>
</tr>
<tr>
<td>Step 4</td>
<td>exit</td>
</tr>
<tr>
<td>Step 5</td>
<td>access-list access-list-number {deny</td>
</tr>
<tr>
<td>Step 6</td>
<td>end</td>
</tr>
<tr>
<td>Step 7</td>
<td>show ip igmp interface [interface-id]</td>
</tr>
<tr>
<td>Step 8</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable groups on an interface, use the no ip igmp access-group access-list-number interface configuration command.

This example shows how to configure hosts attached to Gigabit Ethernet interface 0/1 as able to join only group 255.2.2.2:

Switch(config)# access-list 1 255.2.2.2 0.0.0.0
Switch(config-if)# interface gigabitethernet0/1
Switch(config-if)# ip igmp access-group 1

switch(config-if)# access-list 1 permit 255.2.2.2 0.0.0.0
Modifying the IGMP Host-Query Message Interval

The multilayer switch periodically sends IGMP host-query messages to discover which multicast groups are present on attached networks. These messages are sent to the all-hosts multicast group (224.0.0.1) with a time-to-live (TTL) of 1. The switch sends host-query messages to refresh its knowledge of memberships present on the network. If, after some number of queries, the IOS software discovers that no local hosts are members of a multicast group, the software stops forwarding multicast packets to the local network from remote origins for that group and sends a prune message upstream toward the source.

The switch elects a PIM designated router (DR) for the LAN (subnet). The DR is the router or multilayer switch with the highest IP address for IGMPv2; for IGMPv1, the DR is elected according to the multicast routing protocol that runs on the LAN. The designated router is responsible for sending IGMP host-query messages to all hosts on the LAN. In sparse mode, the designated router also sends PIM register and PIM join messages toward the RP router.

Beginning in privileged EXEC mode, follow these steps to modify the host-query interval:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip igmp query-interval seconds</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show ip igmp interface [interface-id]</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default frequency, use the no ip igmp query-interval interface configuration command.

Configuring the Multilayer Switch as a Statically Connected Member

Sometimes there is either no group member on a network segment or a host cannot report its group membership by using IGMP. However, you might want multicast traffic to go to that network segment. These are ways to pull multicast traffic down to a network segment:

- Use the ip igmp join-group interface configuration command. With this method, the multilayer switch accepts the multicast packets in addition to forwarding them. Accepting the multicast packets prevents the switch from fast switching.

- Use the ip igmp static-group interface configuration command. With this method, the multilayer switch does not accept the packets itself, but only forwards them. This method allows fast switching. The outgoing interface appears in the IGMP cache, but the switch itself is not a member, as evidenced by lack of an L (local) flag in the multicast route entry.
Beginning in privileged EXEC mode, follow these steps to configure the switch itself to be a statically connected member of a group (and allow fast switching):

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2: interface interface-id</td>
<td>Enter interface configuration mode, and specify</td>
</tr>
<tr>
<td></td>
<td>the interface to be configured.</td>
</tr>
<tr>
<td>Step 3: ip igmp static-group</td>
<td>Configure the switch as a statically connected</td>
</tr>
<tr>
<td>group-address</td>
<td>member of a group.</td>
</tr>
<tr>
<td>Step 4: end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5: show ip igmp interface</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>[interface-id]</td>
<td></td>
</tr>
<tr>
<td>Step 6: copy running-config</td>
<td>(Optional) Save your entries in the configuration</td>
</tr>
<tr>
<td>startup-config</td>
<td>file.</td>
</tr>
</tbody>
</table>

To remove the switch as a member of the group, use the `no ip igmp static-group` interface configuration command.

### Configuring Optional Multicast Routing Features

This section describes how to configure optional multicast routing features, which are grouped as follows:

- Features for Layer 2 connectivity and MBONE multimedia conference session and set up:
  - Enabling CGMP Server Support, page 33-38
  - Configuring sdr Listener Support, page 33-39
- Features that control bandwidth utilization:
  - Configuring the TTL Threshold, page 33-40
  - Configuring an IP Multicast Boundary, page 33-42
Enabling CGMP Server Support

The multilayer switch serves as a CGMP server for devices that do not support IGMP snooping but have CGMP client functionality. CGMP is a protocol used on Cisco routers and multilayer switches connected to Layer 2 Catalyst switches to perform tasks similar to those performed by IGMP. CGMP is necessary because the Layer 2 switch cannot distinguish between IP multicast data packets and IGMP report messages, which are both at the MAC-level and are addressed to the same group address.

Beginning in privileged EXEC mode, follow these steps to enable the CGMP server on the multilayer switch interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface that is connected to the Layer 2 Catalyst switch.</td>
</tr>
<tr>
<td>Step 3 ip cgmp [proxy]</td>
<td>Enable CGMP on the interface. By default, CGMP is disabled on all interfaces. Enabling CGMP triggers a CGMP join message. Enable CGMP only on Layer 3 interfaces connected to Layer 2 Catalyst switches. (Optional) When you enter the proxy keyword, the CGMP proxy function is enabled. The proxy router advertises the existence of non-CGMP-capable routers by sending a CGMP join message with the non-CGMP-capable router MAC address and a group address of 0000.0000.0000.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Verify the Layer 2 Catalyst switch CGMP-client configuration. For more information, refer to the documentation that shipped with the product.</td>
</tr>
</tbody>
</table>

To disable CGMP on the interface, use the no ip cgmp interface configuration command.

When multiple Cisco CGMP-capable devices are connected to a switched network and the ip cgmp proxy command is needed, we recommend that all devices be configured with the same CGMP option and have precedence for becoming the IGMP querier over non-Cisco routers.
Configuring sdr Listener Support

The MBONE is the small subset of Internet routers and hosts that are interconnected and capable of forwarding IP multicast traffic. Other interesting multimedia content is often broadcast over the MBONE. Before you can join a multimedia session, you need to know what multicast group address and port are being used for the session, when the session is going to be active, and what sort of applications (audio, video, and so forth) are required on your workstation. The MBONE Session Directory version 2 (sdr) tool provides this information. This freeware application can be downloaded from several sites on the World Wide Web, one of which is http://www.video.ja.net/mice/index.html.

SDR is a multicast application that listens to a well-known multicast group address and port for Session Announcement Protocol (SAP) multicast packets from SAP clients, which announce their conference sessions. These SAP packets contain a session description, the time the session is active, its IP multicast group addresses, media format, contact person, and other information about the advertised multimedia session. The information in the SAP packet is displayed in the SDR Session Announcement window.

Enabling sdr Listener Support

By default, the multilayer switch does not listen to session directory advertisements.

Beginning in privileged EXEC mode, follow these steps to enable the switch to join the default session directory group (224.2.127.254) on the interface and listen to session directory advertisements:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip sdr listen</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable sdr support, use the no ip sdr listen interface configuration command.

Limiting How Long an sdr Cache Entry Exists

By default, entries are never deleted from the sdr cache. You can limit how long the entry remains active so that if a source stops advertising SAP information, old advertisements are not needlessly kept.

Beginning in privileged EXEC mode, follow these steps to limit how long an sdr cache entry stays active in the cache:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip sdr cache-timeout minutes</td>
</tr>
</tbody>
</table>

By default, entries are never deleted from the cache.

For minutes, specify a number from 1 to 4294967295.
Configuring Optional Multicast Routing Features

Chapter 33 Configuring IP Multicast Routing

Configuring IP Multicast Routing

Configuring Optional Multicast Routing Features

To return to the default setting, use the `no ip sdr cache-timeout` global configuration command. To delete the entire cache, use the `clear ip sdr` privileged EXEC command.

To display the session directory cache, use the `show ip sdr` privileged EXEC command.

**Configuring the TTL Threshold**

Each time an IP multicast packet is forwarded by the multilayer switch, the time-to-live (TTL) value in the IP header is decremented by one. If the packet TTL decrements to zero, the switch drops the packet. TTL thresholds can be applied to individual interfaces of the multilayer switch to prevent multicast packets with a TTL less than the TTL threshold from being forwarded out the interface. TTL thresholds provide a simple method to prevent the forwarding of multicast traffic beyond the boundary of a site or region, based on the TTL field in a multicast packet. This is known as TTL scoping.

*Figure 33-10* shows a multicast packet arriving on Gigabit Ethernet interface 0/2 with a TTL value of 24. Assuming that the RPF check succeeds and that Gigabit Ethernet interfaces 0/1, 0/3, and 0/4 are all in the outgoing interface list, the packet would normally be forwarded out these interfaces. Because some TTL thresholds have been applied to these interfaces, the multilayer switch makes sure that the packet TTL value, which is decremented by 1 to 23, is greater than or equal to the interface TTL threshold before forwarding the packet out the interface. In this example, the packet is forwarded out interfaces 0/1 and 0/4, but not interface 0/3.

### Figure 33-10 TTL Thresholds

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>show running-config</code> Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no ip sdr cache-timeout` global configuration command. To delete the entire cache, use the `clear ip sdr` privileged EXEC command.

To display the session directory cache, use the `show ip sdr` privileged EXEC command.

**Configuring the TTL Threshold**

Each time an IP multicast packet is forwarded by the multilayer switch, the time-to-live (TTL) value in the IP header is decremented by one. If the packet TTL decrements to zero, the switch drops the packet. TTL thresholds can be applied to individual interfaces of the multilayer switch to prevent multicast packets with a TTL less than the TTL threshold from being forwarded out the interface. TTL thresholds provide a simple method to prevent the forwarding of multicast traffic beyond the boundary of a site or region, based on the TTL field in a multicast packet. This is known as TTL scoping.

*Figure 33-10* shows a multicast packet arriving on Gigabit Ethernet interface 0/2 with a TTL value of 24. Assuming that the RPF check succeeds and that Gigabit Ethernet interfaces 0/1, 0/3, and 0/4 are all in the outgoing interface list, the packet would normally be forwarded out these interfaces. Because some TTL thresholds have been applied to these interfaces, the multilayer switch makes sure that the packet TTL value, which is decremented by 1 to 23, is greater than or equal to the interface TTL threshold before forwarding the packet out the interface. In this example, the packet is forwarded out interfaces 0/1 and 0/4, but not interface 0/3.

**Figure 33-10 TTL Thresholds**

<table>
<thead>
<tr>
<th>Output Interface List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gigabit Ethernet 0/1: TTL threshold = 16</td>
</tr>
<tr>
<td>Gigabit Ethernet 0/3: TTL threshold = 64</td>
</tr>
<tr>
<td>Gigabit Ethernet 0/4: TTL threshold = 0</td>
</tr>
</tbody>
</table>

*Figure 33-11* shows an example of TTL threshold boundaries being used to limit the forwarding of multicast traffic. Company XYZ has set a TTL threshold of 100 on all routed interfaces at the perimeter of its network. Multicast applications that constrain traffic to within the company’s network need to send...
multicast packets with an initial TTL value set to 99. The engineering and marketing departments have set a TTL threshold of 40 at the perimeter of their networks; therefore, multicast applications running on these networks can prevent their multicast transmissions from leaving their respective networks.

**Figure 33-11 TTL Boundaries**

Beginning in privileged EXEC mode, follow these steps to change the default TTL threshold value:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to be configured.</td>
</tr>
<tr>
<td><strong>Step 3</strong> ip multicast ttl-threshold ttl-value</td>
<td>Configure the TTL threshold of packets being forwarded out an interface.</td>
</tr>
<tr>
<td></td>
<td>The default TTL value is 0 hops, which means that all multicast packets are forwarded out the interface. The range is 0 to 255.</td>
</tr>
<tr>
<td></td>
<td>Only multicast packets with a TTL value greater than the threshold are forwarded out the interface.</td>
</tr>
<tr>
<td></td>
<td>You should configure the TTL threshold only on routed interfaces at the perimeter of the network.</td>
</tr>
<tr>
<td><strong>Step 4</strong> end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 5</strong> show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td><strong>Step 6</strong> copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default TTL setting, use the no ip multicast ttl-threshold interface configuration command.
Configuring an IP Multicast Boundary

Like TTL thresholds, administratively-scoped boundaries can also be used to limit the forwarding of multicast traffic outside of a domain or subdomain. This approach uses a special range of multicast addresses, called *administratively-scoped addresses*, as the boundary mechanism. If you configure an administratively-scoped boundary on a routed interface, multicast traffic whose multicast group addresses fall in this range can not enter or exit this interface, thereby providing a firewall for multicast traffic in this address range.

Figure 33-12 shows that Company XYZ has an administratively-scoped boundary set for the multicast address range 239.0.0.0/8 on all routed interfaces at the perimeter of its network. This boundary prevents any multicast traffic in the range 239.0.0.0 through 239.255.255.255 from entering or leaving the network. Similarly, the engineering and marketing departments have an administratively-scoped boundary of 239.128.0.0/16 around the perimeter of their networks. This boundary prevents multicast traffic in the range of 239.128.0.0 through 239.128.255.255 from entering or leaving their respective networks.

![Figure 33-12 Administratively-Scoped Boundaries](image)

You can define an administratively-scoped boundary on a routed interface for multicast group addresses. A standard access list defines the range of addresses affected. When a boundary is defined, no multicast data packets are allowed to flow across the boundary from either direction. The boundary allows the same multicast group address to be reused in different administrative domains.

The IANA has designated the multicast address range 239.0.0.0 to 239.255.255.255 as the administratively-scoped addresses. This range of addresses can then be reused in domains administered by different organizations. The addresses would be considered local, not globally unique.
Beginning in privileged EXEC mode, follow these steps to set up an administratively-scoped boundary:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| 2      | access-list access-list-number {deny \| permit} source [source-wildcard] | Create a standard access list, repeating the command as many times as necessary.  
  • For access-list-number, the range is 1 to 99.  
  • The deny keyword denies access if the conditions are matched. The permit keyword permits access if the conditions are matched.  
  • For source, enter the number of the network or host from which the packet is being sent.  
  • (Optional) For source-wildcard, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.  
  Recall that the access list is always terminated by an implicit deny statement for everything. |
| 3      | interface interface-id                       | Enter interface configuration mode, and specify the interface to be configured. |
| 4      | ip multicast boundary access-list-number     | Configure the boundary, specifying the access list you created in Step 2. |
| 5      | end                                          | Return to privileged EXEC mode.                                          |
| 6      | show running-config                          | Verify your entries.                                                    |
| 7      | copy running-config startup-config           | (Optional) Save your entries in the configuration file.                 |

To remove the boundary, use the no ip multicast boundary interface configuration command.

This example shows how to set up a boundary for all administratively-scoped addresses:

```
Switch(config)# access-list 1 deny 239.0.0.0 0.255.255.255
Switch(config)# access-list 1 permit 224.0.0.0 15.255.255.255
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# ip multicast boundary 1
```

## Configuring Basic DVMRP Interoperability Features

These sections describe how to perform basic configuration tasks on your multilayer switch to interoperate with DVMRP devices:

- Configuring DVMRP Interoperability, page 33-44
- Controlling Unicast Route Advertisements, page 33-44
- Configuring a DVMRP Tunnel, page 33-46
- Advertising Network 0.0.0.0 to DVMRP Neighbors, page 33-48
- Responding to mrinfo Requests, page 33-49

For more advanced DVMRP features, see the “Configuring Advanced DVMRP Interoperability Features” section on page 33-50.
Configuring DVMRP Interoperability

Cisco multicast routers and multilayer switches using PIM can interoperate with non-Cisco multicast routers that use the DVMRP.

PIM devices dynamically discover DVMRP multicast routers on attached networks by listening to DVMR probe messages. When a DVMRP neighbor has been discovered, the PIM device periodically sends DVMRP report messages advertising the unicast sources reachable in the PIM domain. By default, directly connected subnets and networks are advertised. The device forwards multicast packets that have been forwarded by DVMRP routers and, in turn, forwards multicast packets to DVMRP routers.

DVMRP interoperability is automatically activated when a Cisco PIM device receives a DVMRP probe message on a multicast-enabled interface. No specific IOS command is configured to enable DVMRP interoperability; however, you must enable multicast routing. For more information, see the “Configuring Basic Multicast Routing” section on page 33-15.

Controlling Unicast Route Advertisements

You should configure an access list on the PIM routed interface connected to the MBONE to limit the number of unicast routes that are advertised in DVMRP route reports; otherwise, all routes in the unicast routing table are advertised.

The mrouted protocol is a public-domain implementation of DVMRP. You must use mrouted Version 3.8 (which implements a nonpruning version of DVMRP) when Cisco routers and multilayer switches are directly connected to DVMRP routers or interoperate with DVMRP routers over an MBONE tunnel. DVMRP advertisements produced by the Cisco IOS software can cause older versions of the mrouted protocol to corrupt their routing tables and those of their neighbors.

You can configure what sources are advertised and what metrics are used by configuring the `ip dvmrp metric` interface configuration command. You can also direct all sources learned through a particular unicast routing process to be advertised into DVMRP.
Beginning in privileged EXEC mode, follow these steps to configure the sources that are advertised and the metrics that are used when DVMRP route-report messages are sent:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>access-list access-list-number {deny</td>
<td>permit} source [source-wildcard]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For access-list-number, the range is 1 to 99.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The deny keyword denies access if the conditions are matched. The permit keyword permits access if the conditions are matched.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For source, enter the number of the network or host from which the packet is being sent.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) For source-wildcard, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recall that the access list is always terminated by an implicit deny statement for everything.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface connected to the MBONE and enabled for multicast routing.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>ip dvmrp metric metric [list access-list-number] [[protocol process-id]</td>
<td>Configure the metric associated with a set of destinations for DVMRP reports.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For metric, the range is 0 to 32. A value of 0 means that the route is not advertised. A value of 32 is equivalent to infinity (unreachable).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) For list access-list-number, enter the access list number created in Step 2. If specified, only the multicast destinations that match the access list are reported with the configured metric.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) For protocol process-id, enter the name of the unicast routing protocol, such as eigrp, igrp, ospf, rip, static, or dvmrp, and the process ID number of the routing protocol. If specified, only routes learned by the specified routing protocol are advertised in DVMRP report messages.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) If specified, the dvmrp keyword allows routes from the DVMRP routing table to be advertised with the configured metric or filtered.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable the metric or route map, use the **no ip dvmrp metric metric [list access-list-number] [[protocol process-id] | [dvmrp]]** or the **no ip dvmrp metric metric route-map map-name** interface configuration command.

A more sophisticated way to achieve the same results as the preceding command is to use a route map (ip dvmrp metric metric route-map map-name interface configuration command) instead of an access list. You subject unicast routes to route-map conditions before they are injected into DVMRP.
This example shows how to configure DVMRP interoperability when the PIM device and the DVMRP router are on the same network segment. In this example, access list 1 advertises the networks (198.92.35.0, 198.92.36.0, 198.92.37.0, 131.108.0.0, and 150.136.0.0) to the DVMRP router, and access list 2 prevents all other networks from being advertised (ip dvmrp metric 0 interface configuration command).

```
Switch(config-if)# interface gigabitethernet0/1
Switch(config-if)# ip address 131.119.244.244 255.255.255.0
Switch(config-if)# ip pim dense-mode
Switch(config-if)# ip dvmrp metric 1 list 1
Switch(config-if)# ip dvmrp metric 0 list 2
Switch(config-if)# exit
Switch(config)# access-list 1 permit 198.92.35.0 0.0.0.255
Switch(config)# access-list 1 permit 198.92.36.0 0.0.0.255
Switch(config)# access-list 1 permit 198.92.37.0 0.0.0.255
Switch(config)# access-list 1 permit 131.108.0.0 0.0.255.255
Switch(config)# access-list 1 permit 150.136.0.0 0.0.255.255
Switch(config)# access-list 1 deny 0.0.0.0 255.255.255.255
Switch(config)# access-list 2 permit 0.0.0.0 255.255.255.255
```

Configuring a DVMRP Tunnel

The Cisco IOS software supports DVMRP tunnels to the MBONE. You can configure a DVMRP tunnel on a router or multilayer switch if the other end is running DVMRP. The software then sends and receives multicast packets through the tunnel. This strategy allows a PIM domain to connect to the DVMRP router when all routers on the path do not support multicast routing. You cannot configure a DVMRP tunnel between two routers.

When a Cisco router or multilayer switch runs DVMRP through a tunnel, it advertises sources in DVMRP report messages, much as it does on real networks. The software also caches DVMRP report messages it receives and uses them in its Reverse Path Forwarding (RPF) calculation. This behavior allows the software to forward multicast packets received through the tunnel.

When you configure a DVMRP tunnel, you should assign an IP address to a tunnel in these cases:

- To send IP packets through the tunnel
- To configure the Cisco IOS software to perform DVMRP summarization

The software does not advertise subnets through the tunnel if the tunnel has a different network number from the subnet. In this case, the software advertises only the network number through the tunnel.
Beginning in privileged EXEC mode, follow these steps to configure a DVMRP tunnel:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>

**Step 2**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| access-list access-list-number {deny | permit} source [source-wildcard] | Create a standard access list, repeating the command as many times as necessary.  
  - For access-list-number, the range is 1 to 99.  
  - The deny keyword denies access if the conditions are matched. The permit keyword permits access if the conditions are matched.  
  - For source, enter the number of the network or host from which the packet is being sent.  
  - (Optional) For source-wildcard, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore. |
|                          | Recall that the access list is always terminated by an implicit deny statement for everything. |

**Step 3**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface tunnel number</td>
<td>Enter interface configuration mode, and specify a tunnel interface.</td>
</tr>
</tbody>
</table>

**Step 4**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>tunnel source ip-address</td>
<td>Specify the source address of the tunnel interface. Enter the IP address of the interface on the multilayer switch.</td>
</tr>
</tbody>
</table>

**Step 5**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>tunnel destination ip-address</td>
<td>Specify the destination address of the tunnel interface. Enter the IP address of the mrouted router.</td>
</tr>
</tbody>
</table>

**Step 6**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>tunnel mode dvmrp</td>
<td>Configure the encapsulation mode for the tunnel to DVMRP.</td>
</tr>
</tbody>
</table>

**Step 7**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip address address mask</td>
<td>Assign an IP address to the interface.</td>
</tr>
<tr>
<td>or</td>
<td>or</td>
</tr>
<tr>
<td>ip unnumbered type number</td>
<td>Configure the interface as unnumbered.</td>
</tr>
</tbody>
</table>

**Step 8**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip pim [dense-mode</td>
<td>sparse-mode]</td>
</tr>
</tbody>
</table>

**Step 9**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip dvmrp accept-filter</td>
<td>Configure an acceptance filter for incoming DVMRP reports.</td>
</tr>
</tbody>
</table>
| access-list-number [distance] | By default, all destination reports are accepted with a distance of 0. Reports from all neighbors are accepted.  
  - For access-list-number, specify the access list number created in Step 2. Any sources that match the access list are stored in the DVMRP routing table with distance.  
  - (Optional) For distance, enter the administrative distance to the destination. By default, the administrative distance for DVMRP routes is 0 and take precedence over unicast routing table routes. If you have two paths to a source, one through unicast routing (using PIM as the multicast routing protocol) and another using DVMRP, and if you want to use the PIM path, increase the administrative distance for DVMRP routes. The range is 1 to 255.  
  - For neighbor-list access-list-number, enter the number of the neighbor list created in Step 2. DVMRP reports are accepted only by those neighbors on the list. |
| neighbor-list access-list-number |                                           | |

**Step 10**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Configuring Basic DVMRP Interoperability Features

Configuring Basic DVMRP Interoperability Features

To disable the filter, use the `no ip dvmrp accept-filter access-list-number [distance] neighbor-list access-list-number` interface configuration command.

This example shows how to configure a DVMRP tunnel. In this configuration, the IP address of the tunnel on the Cisco multilayer switch is assigned `unnumbered`, which causes the tunnel to appear to have the same IP address as Gigabit Ethernet interface 0/1. The tunnel endpoint source address is 172.16.2.1, and the tunnel endpoint address of the remote DVMRP router to which the tunnel is connected is 192.168.1.10. Any packets sent through the tunnel are encapsulated in an outer IP header. The Cisco multilayer switch is configured to accept incoming DVMRP reports with a distance of 100 from 198.92.37.0 through 198.92.37.255.

```
Switch(config)# ip multicast-routing
Switch(config)# interface tunnel 0
Switch(config-if)# ip unnumbered gigabitethernet 0/1
Switch(config-if)# ip pim dense-mode
Switch(config-if)# tunnel source gigabitethernet 0/1
Switch(config-if)# tunnel destination 192.168.1.10
Switch(config-if)# tunnel mode dvmrp
Switch(config-if)# ip dvmrp accept-filter 1 100
Switch(config-if)# interface gigabitethernet 0/1
Switch(config-if)# ip address 172.16.2.1 255.255.255.0
Switch(config-if)# ip pim dense-mode
Switch(config)# exit
Switch(config)# access-list 1 permit 198.92.37.0 0.0.0.255
```

Advertising Network 0.0.0.0 to DVMRP Neighbors

If your multilayer switch is a neighbor of an mrouted version 3.6 device, you can configure the Cisco IOS software to advertise network 0.0.0.0 (the default route) to the DVMRP neighbor. The DVMRP default route computes the RPF information for any multicast sources that do not match a more specific route.

Do not advertise the DVMRP default into the MBONE.

Beginning in privileged EXEC mode, follow these steps to advertise network 0.0.0.0 to DVMRP neighbors on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>interface interface-id</code></td>
<td>Enter interface configuration mode, and specify the interface that is connected to the DVMRP router.</td>
</tr>
</tbody>
</table>
To prevent the default route advertisement, use the `no ip dvmrp default-information {originate | only}` interface configuration command.

### Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 3    | `ip dvmrp default-information {originate | only}` | Advertise network 0.0.0.0 to DVMRP neighbors. Use this command only when the multilayer switch is a neighbor of mrouted version 3.6 machines. The keywords have these meanings:  
  - `originate`—Specifies that other routes more specific than 0.0.0.0 can also be advertised.  
  - `only`—Specifies that no DVMRP routes other than 0.0.0.0 are advertised. |
| 4    | `end`                          | Return to privileged EXEC mode.                                          |
| 5    | `show running-config`          | Verify your entries.                                                     |
| 6    | `copy running-config startup-config` | (Optional) Save your entries in the configuration file.                   |

**Responding to mrinfo Requests**

The Cisco IOS software answers mrinfo requests sent by mrouted systems and Cisco routers and multilayer switches. The software returns information about neighbors through DVMRP tunnels and all the routed interfaces. This information includes the metric (always set to 1), the configured TTL threshold, the status of the interface, and various flags. You can also use the `mrinfo` privileged EXEC command to query the router or switch itself, as in this example:

```
Switch# mrinfo
171.69.214.27 (mm1-7kd.cisco.com) [version cisco 11.1] [flags: PMS]:
171.69.214.27 -> 171.69.214.26 (mm1-r7kb.cisco.com) [1/0/pim/querier]
171.69.214.27 -> 171.69.214.25 (mm1-45a.cisco.com) [1/0/pim/querier]
171.69.214.33 -> 171.69.214.34 (mm1-45c.cisco.com) [1/0/pim]
171.69.214.137 -> 0.0.0.0 [1/0/pim/querier/down/leaf]
171.69.214.203 -> 0.0.0.0 [1/0/pim/querier/down/leaf]
171.69.214.18 -> 171.69.214.20 (mm1-45e.cisco.com) [1/0/pim]
171.69.214.18 -> 171.69.214.19 (mm1-45c.cisco.com) [1/0/pim]
171.69.214.18 -> 171.69.214.17 (mm1-45a.cisco.com) [1/0/pim]
```


Configuring Advanced DVMRP Interoperability Features

Cisco routers and multilayer switches run PIM to forward multicast packets to receivers and receive multicast packets from senders. It is also possible to propagate DVMRP routes into and through a PIM cloud. PIM uses this information; however, Cisco routers and multilayer switches do not implement DVMRP to forward multicast packets.

These sections describe how to perform advanced optional configuration tasks on your multilayer switch to interoperate with DVMRP devices:

- Enabling DVMRP Unicast Routing, page 33-50
- Rejecting a DVMRP Nonpruning Neighbor, page 33-51
- Controlling Route Exchanges, page 33-53

For information on basic DVMRP features, see the “Configuring Basic DVMRP Interoperability Features” section on page 33-43.

Enabling DVMRP Unicast Routing

Because multicast routing and unicast routing require separate topologies, PIM must follow the multicast topology to build loopless distribution trees. Using DVMRP unicast routing, Cisco routers, multilayer switches, and mrouted-based machines exchange DVMRP unicast routes, to which PIM can then reverse-path forward.

Cisco devices do not perform DVMRP multicast routing among each other, but they can exchange DVMRP routes. The DVMRP routes provide a multicast topology that might differ from the unicast topology. This allows PIM to run over the multicast topology, thereby allowing sparse-mode PIM over the MBONE topology.

When DVMRP unicast routing is enabled, the router or switch caches routes learned in DVMRP report messages in a DVMRP routing table. When PIM is running, these routes might be preferred over routes in the unicast routing table, allowing PIM to run on the MBONE topology when it is different from the unicast topology.

DVMRP unicast routing can run on all interfaces. For DVMRP tunnels, it uses DVMRP multicast routing. This feature does not enable DVMRP multicast routing among Cisco routers and multilayer switches. However, if there is a DVMRP-capable multicast router, the Cisco device can do PIM/DVMRP multicast routing.

Beginning in privileged EXEC mode, follow these steps to enable DVMRP unicast routing:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface that is connected to the DVMRP router.</td>
</tr>
<tr>
<td>Step 3 ip dvmrp unicast-routing</td>
<td>Enable DVMRP unicast routing (to send and receive DVMRP routes). This feature is disabled by default.</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable this feature, use the no ip dvmrp unicast-routing interface configuration command.
Rejecting a DVMRP Nonpruning Neighbor

By default, Cisco devices accept all DVMRP neighbors as peers, regardless of their DVMRP capability. However, some non-Cisco devices run old versions of DVMRP that cannot prune, so they continuously receive forwarded packets, wasting bandwidth. Figure 33-13 shows this scenario.

Figure 33-13 Leaf Nonpruning DVMRP Neighbor

You can prevent the multilayer switch from peering (communicating) with a DVMRP neighbor if that neighbor does not support DVMRP pruning or grafting. To do so, configure the multilayer switch (which is a neighbor to the leaf, nonpruning DVMRP machine) with the `ip dvmrp reject-non-pruners` interface configuration command on the interface connected to the nonpruning machine as shown in Figure 33-14. In this case, when the multilayer switch receives DVMRP probe or report message without the prune-capable flag set, the switch logs a syslog message and discards the message.
Chapter 33  Configuring IP Multicast Routing

Figure 33-14 Router Rejects Nonpruning DVMRP Neighbor

Note that the `ip dvmrp reject-non-pruners` interface configuration command prevents peering with neighbors only. If there are any nonpruning routers multiple hops away (downstream toward potential receivers) that are not rejected, a nonpruning DVMRP network might still exist.

Beginning in privileged EXEC mode, follow these steps to prevent peering with nonpruning DVMRP neighbors:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface connected to the nonpruning DVMRP neighbor.</td>
</tr>
<tr>
<td>3</td>
<td>ip dvmrp reject-non-pruners</td>
<td>Prevent peering with nonpruning DVMRP neighbors.</td>
</tr>
<tr>
<td>4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>5</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To disable this function, use the `no ip dvmrp reject-non-pruners` interface configuration command.
Controlling Route Exchanges

These sections describe how to tune the Cisco device advertisements of DVMRP routes:

- Limiting the Number of DVMRP Routes Advertised, page 33-53
- Changing the DVMRP Route Threshold, page 33-54
- Configuring a DVMRP Summary Address, page 33-54
- Disabling DVMRP Autosummarization, page 33-56
- Adding a Metric Offset to the DVMRP Route, page 33-56

Limiting the Number of DVMRP Routes Advertised

By default, only 7000 DVMRP routes are advertised over an interface enabled to run DVMRP (that is, a DVMRP tunnel, an interface where a DVMRP neighbor has been discovered, or an interface configured to run the `ip dvmrp unicast-routing` interface configuration command).

Beginning in privileged EXEC mode, follow these steps to change the DVMRP route limit:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip dvmrp route-limit count</td>
<td>Change the number of DVMRP routes advertised over an interface enabled for DVMRP.</td>
</tr>
<tr>
<td></td>
<td>This command prevents misconfigured <code>ip dvmrp metric</code> interface configuration commands from causing massive route injection into the MBONE.</td>
</tr>
<tr>
<td></td>
<td>By default, 7000 routes are advertised. The range is 0 to 4294967295.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To configure no route limit, use the `no ip dvmrp route-limit` global configuration command.
Changing the DVMRP Route Threshold

By default, 10,000 DVMRP routes can be received per interface within a 1-minute interval. When that rate is exceeded, a syslog message is issued, warning that there might be a route surge occurring. The warning is typically used to quickly detect when devices have been misconfigured to inject a large number of routes into the MBONE.

Beginning in privileged EXEC mode, follow these steps to change the threshold number of routes that trigger the warning:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>ip dvmrp routehog-notification route-count</td>
<td>Configure the number of routes that trigger a syslog message. The default is 10,000 routes. The range is 1 to 4294967295.</td>
</tr>
<tr>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default route count, use the **no ip dvmrp routehog-notification** global configuration command.

Use the **show ip igmp interface** privileged EXEC command to display a running count of routes. When the count is exceeded, ***ALERT*** is appended to the line.

Configuring a DVMRP Summary Address

By default, a Cisco device advertises in DVMRP route-report messages only connected unicast routes (that is, only routes to subnets that are directly connected to the router) from its unicast routing table. These routes undergo normal DVMRP classful route summarization. This process depends on whether the route being advertised is in the same classful network as the interface over which it is being advertised.

Figure 33-15 shows an example of the default behavior. This example shows that the DVMRP report sent by the Cisco router contains the three original routes received from the DVMRP router that have been poison-reversed by adding 32 to the DVMRP metric. Listed after these routes are two routes that are advertisements for the two directly connected networks (176.32.10.0/24 and 176.32.15.0/24) that were taken from the unicast routing table. Because the DVMRP tunnel shares the same IP address as Fast Ethernet 0/1 and falls into the same Class B network as the two directly connected subnets, classful summarization of these routes was not performed. As a result, the DVMRP router is able to poison-reverse only these two routes to the directly connected subnets and is able to only RPF properly for multicast traffic sent by sources on these two Ethernet segments. Any other multicast source in the network behind the Cisco router that is not on these two Ethernet segments does not properly RPF-check on the DVMRP router and is discarded.

You can force the Cisco router to advertise the summary address (specified by the address and mask pair in the **ip dvmrp summary-address address mask** interface configuration command) in place of any route that falls in this address range. The summary address is sent in a DVMRP route report if the unicast routing table contains at least one route in this range; otherwise, the summary address is not advertised. In Figure 33-15, you configure the **ip dvmrp summary-address** command on the Cisco router tunnel interface. As a result, the Cisco router sends only a single summarized Class B advertisement for network 176.32.0.0.16 from the unicast routing table.
Beginning in privileged EXEC mode, follow these step to customize the summarization of DVMRP routes if the default classful autosummarization does not suit your needs:

**Note** At least one more-specific route must be present in the unicast routing table before a configured summary address is advertised.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip dvmrp summary-address address mask [metric value]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To remove the summary address, use the no ip dvmrp summary-address address mask [metric value] interface configuration command.
Disabling DVMRP Autosummarization

By default, the Cisco IOS software automatically performs some level of DVMRP summarization. Disable this function if you want to advertise all routes, not just a summary. In some special cases, you can use the neighboring DVMRP router with all subnet information to better control the flow of multicast traffic in the DVMRP network. One such case might occur if the PIM network is connected to the DVMRP cloud at several points and more specific (unsummarized) routes are being injected into the DVMRP network to advertise better paths to individual subnets inside the PIM cloud.

If you configure the `ip dvmrp summary-address` interface configuration command and did not configure `no ip dvmrp auto-summary`, you get both custom and autosummaries.

Beginning in privileged EXEC mode, follow these steps to disable DVMRP autosummarization:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>no ip dvmrp auto-summary</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To re-enable auto summarization, use the `ip dvmrp auto-summary` interface configuration command.

Adding a Metric Offset to the DVMRP Route

By default, the multilayer switch increments by 1 the metric (hop count) of a DVMRP route advertised in incoming DVMRP reports. You can change the metric if you want to favor or not favor a certain route.

For example, a route is learned by multilayer switch A, and the same route is learned by multilayer switch B with a higher metric. If you want to use the path through switch B because it is a faster path, you can apply a metric offset to the route learned by switch A to make it larger than the metric learned by switch B, and you can choose the path through switch B.
Beginning in privileged EXEC mode, follow these steps to change the default metric:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to be</td>
</tr>
<tr>
<td></td>
<td></td>
<td>configured.</td>
</tr>
<tr>
<td>Step 3</td>
<td>ip dvmrp metric-offset [in</td>
<td>out] increment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The keywords have these meanings:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) in—Specifies that the increment value is added to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>incoming DVMRP reports and is reported in mrinfo replies.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) out— Specifies that the increment value is added to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>outgoing DVMRP reports for routes from the DVMRP routing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>table.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If neither in nor out is specified, in is the default.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For increment, specify the value that is added to the metric of a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DVMRP router advertised in a report message. The range is 1 to 31.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the ip dvmrp metric-offset command is not configured on an</td>
</tr>
<tr>
<td></td>
<td></td>
<td>interface, the default increment value for incoming routes is 1, and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the default for outgoing routes is 0.</td>
</tr>
<tr>
<td></td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default value, use the no ip dvmrp metric-offset interface configuration command.

**Monitoring and Maintaining IP Multicast Routing**

These sections describe how to monitor and maintain IP multicast routing:

- Clearing Caches, Tables, and Databases, page 33-58
- Displaying System and Network Statistics, page 33-58
- Monitoring IP Multicast Routing, page 33-59
Clearing Caches, Tables, and Databases

You can remove all contents of a particular cache, table, or database. Clearing a cache, table, or database might be necessary when the contents of the particular structure are or suspected to be invalid.

You can use any of the privileged EXEC commands in Table 33-3 to clear IP multicast caches, tables, and databases:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip cgmp</td>
<td>Clear all group entries the Catalyst switches have cached.</td>
</tr>
<tr>
<td>clear ip dvmrp route [*</td>
<td>route]</td>
</tr>
<tr>
<td>clear ip igmp group [group-name</td>
<td>group-address</td>
</tr>
<tr>
<td>clear ip mroute [*</td>
<td>group [source]]</td>
</tr>
<tr>
<td>clear ip pim auto-rp rp-address</td>
<td>Clear the Auto-RP cache.</td>
</tr>
<tr>
<td>clear ip sdr [group-address</td>
<td>“session-name”]</td>
</tr>
</tbody>
</table>

Displaying System and Network Statistics

You can display specific statistics such as the contents of IP routing tables, caches, and databases. You can display information to determine resource utilization and solve network problems. You can also display information about node reachability and discover the routing path your device’s packets are taking through the network.

You can use any of the privileged EXEC commands in Table 33-4 to display various routing statistics:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ping [group-name</td>
<td>group-address]</td>
</tr>
<tr>
<td>show ip dvmrp route [ip-address]</td>
<td>Display the entries in the DVMRP routing table.</td>
</tr>
<tr>
<td>show ip igmp groups [group-name</td>
<td>group-address</td>
</tr>
<tr>
<td>show ip igmp interface [type number]</td>
<td>Display multicast-related information about an interface.</td>
</tr>
<tr>
<td>show ip mcache [group [source]]</td>
<td>Display the contents of the IP fast-switching cache.</td>
</tr>
<tr>
<td>show ip mpacket [source-address</td>
<td>name] [group-address</td>
</tr>
<tr>
<td>show ip mroute [group-name</td>
<td>group-address] [source] [summary] [count] [active kbps]</td>
</tr>
</tbody>
</table>
You can use the privileged EXEC commands in Table 33-5 to monitor IP multicast routers, packets, and paths:

### Table 33-5 Commands for Monitoring IP Multicast Routing

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>mrinfo [hostname</td>
<td>Query a multicast router or multilayer switch about which neighboring</td>
</tr>
<tr>
<td>address]</td>
<td>devices are peering with it.</td>
</tr>
<tr>
<td>[source-address]</td>
<td></td>
</tr>
<tr>
<td>interface]</td>
<td></td>
</tr>
<tr>
<td>mstat source [destination] [group]</td>
<td>Display IP multicast packet rate and loss information.</td>
</tr>
<tr>
<td>mtrace source [destination] [group]</td>
<td>Trace the path from a source to a destination branch for a multicast</td>
</tr>
<tr>
<td></td>
<td>distribution tree for a given group.</td>
</tr>
</tbody>
</table>
Chapter 33    Configuring IP Multicast Routing

Monitoring and Maintaining IP Multicast Routing
Configuring MSDP

This chapter describes how to configure the Multicast Source Discovery Protocol (MSDP) on your Catalyst 3550 multilayer switch. The MSDP connects multiple Protocol-Independent Multicast sparse-mode (PIM-SM) domains.

MSDP is not fully supported in this IOS release because of a lack of support for Multicast Border Gateway Protocol (MBGP), which works closely with MSDP. However, it is possible to create default peers that MSDP can operate with if MBGP is not running.

To use this feature, you must have the enhanced multilayer software (EMI) image installed on your switch.

For complete syntax and usage information for the commands used in this chapter, refer to the Cisco IOS IP and IP Routing Command Reference for Release 12.1.

This chapter consists of these sections:

- Understanding MSDP, page 34-1
- Configuring MSDP, page 34-4
- Monitoring and Maintaining MSDP, page 34-19

Understanding MSDP

MSDP allows multicast sources for a group to be known to all rendezvous points (RPs) in different domains. Each PIM-SM domain uses its own RPs and does not depend on RPs in other domains. An RP runs MSDP over the Transmission Control Protocol (TCP) to discover multicast sources in other domains.

An RP in a PIM-SM domain has an MSDP peering relationship with MSDP-enabled devices in another domain. The peering relationship occurs over a TCP connection, primarily exchanging a list of sources sending to multicast groups. The TCP connections between RPs are achieved by the underlying routing system. The receiving RP uses the source lists to establish a source path.
The purpose of this topology is to have domains discover multicast sources in other domains. If the multicast sources are of interest to a domain that has receivers, multicast data is delivered over the normal, source-tree building mechanism in PIM-SM. MSDP is also used to announce sources sending to a group. These announcements must originate at the domain RP.

MSDP depends heavily on the Border Gateway Protocol (BGP) or MBGP for interdomain operation. We recommend that you run MSDP in RPs in your domain that are RPs for sources sending to global groups to be announced to the Internet.

**MSDP Operation**

Figure 34-1 shows MSDP operating between two MSDP peers. PIM uses MSDP as the standard mechanism to register a source with the RP of a domain. When MSDP is configured, this sequence occurs.

When a source sends its first multicast packet, the first-hop router (designated router or RP) directly connected to the source sends a PIM register message to the RP. The RP uses the register message to register the active source and to forward the multicast packet down the shared tree in the local domain. With MSDP configured, the RP also forwards a source-active (SA) message to all MSDP peers. The SA message identifies the source, the group the source is sending to, and the address of the RP or the originator ID (the IP address of the interface used as the RP address), if configured.

Each MSDP peer receives and forwards the SA message away from the originating RP to achieve peer-RPF flooding. The MSDP device examines the BGP or MBGP routing table to determine which peer is the next hop toward the originating RP of the SA message. Such a peer is called an RPF peer (reverse-path forwarding peer). The MSDP device forwards the message to all MSDP peers other than the RPF peer. For information on how to configure an MSDP peer when BGP and MBGP are not supported, see the “Configuring a Default MSDP Peer” section on page 34-4.

If the MSDP peer receives the same SA message from a non-RPF peer toward the originating RP, it drops the message. Otherwise, it forwards the message to all its MSDP peers.

When the RP for a domain receives the SA message from an MSDP peer, it determines if it has any join requests for the group the SA message describes. If the (*,G) entry exists with a nonempty outgoing interface list, the domain is interested in the group, and the RP triggers an (S,G) join toward the source. After the (S,G) join reaches the source’s DR, a branch of the source tree has been built from the source to the RP in the remote domain. Multicast traffic can now flow from the source across the source tree to the RP and then down the shared tree in the remote domain to the receiver.
**MSDP Benefits**

MSDP has these benefits:

- It breaks up the shared multicast distribution tree. You can make the shared tree local to your domain. Your local members join the local tree, and join messages for the shared tree never need to leave your domain.

- PIM sparse-mode domains can rely only on their own RPs, decreasing reliance on RPs in another domain. This increases security because you can prevent your sources from being known outside your domain.

- Domains with only receivers can receive data without globally advertising group membership.

- Global source multicast routing table state is not required, saving memory.
Configuring MSDP

These sections describe how to configure MSDP:

- Default MSDP Configuration, page 34-4
- Configuring a Default MSDP Peer, page 34-4 (required)
- Caching Source-Active State, page 34-6 (optional)
- Requesting Source Information from an MSDP Peer, page 34-8 (optional)
- Controlling Source Information that Your Switch Originates, page 34-8 (optional)
- Controlling Source Information that Your Switch Forwards, page 34-12 (optional)
- Controlling Source Information that Your Switch Receives, page 34-14 (optional)
- Configuring an MSDP Mesh Group, page 34-16 (optional)
- Shutting Down an MSDP Peer, page 34-16 (optional)
- Including a Bordering PIM Dense-Mode Region in MSDP, page 34-17 (optional)
- Configuring an Originating Address other than the RP Address, page 34-18 (optional)

Default MSDP Configuration

MSDP is not enabled, and no default MSDP peer exists.

Configuring a Default MSDP Peer

In this IOS release, because BGP and MBGP are not supported, you cannot configure an MSDP peer on the local multilayer switch by using the `ip msdp peer` global configuration command. Instead, you define a default MSDP peer (by using the `ip msdp default-peer` global configuration command) from which to accept all SA messages for the multilayer switch. The default MSDP peer must be a previously configured MSDP peer. Configure a default MSDP peer when the multilayer switch is not BGP- or MBGP-peering with an MSDP peer. If a single MSDP peer is configured, the multilayer switch always accepts all SA messages from that peer.

Figure 34-2 shows a network in which default MSDP peers might be used. In Figure 34-2, a customer who owns Multilayer Switch B is connected to the Internet through two Internet service providers (ISPs), one owning Router A and the other owning Router C. They are not running BGP or MBGP between them. To learn about sources in the ISP’s domain or in other domains, multilayer Switch B at the customer site identifies Router A as its default MSDP peer. Multilayer Switch B advertises SA messages to both Router A and Router C but accepts SA messages only from Router A or only Router C. If Router A is first in the configuration file, it is used if it is running. If Router A is not running, only then does multilayer Switch B accept SA messages from Router C. This is the default behavior without a prefix list.

If you specify a prefix list, the peer is a default peer only for the prefixes in the list. You can have multiple active default peers when you have a prefix list associated with each. When you do not have any prefix lists, you can configure multiple default peers, but only the first one is the active default peer as long as the router has connectivity to this peer and the peer is alive. If the first configured peer fails or the connectivity to this peer fails, the second configured peer becomes the active default, and so on.

The ISP probably uses a prefix list to define which prefixes it accepts from the customer’s router.
Beginning in privileged EXEC mode, follow these steps to specify a default MSDP peer:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>configure terminal</strong> Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>**ip msdp default-peer ip-address</td>
</tr>
<tr>
<td></td>
<td>- For *ip-address</td>
</tr>
<tr>
<td></td>
<td>- (Optional) For <em>prefix-list list</em>, enter the list name that specifies the peer to be the default peer only for the listed prefixes. You can have multiple active default peers when you have a prefix list associated with each. When you enter multiple <em>ip msdp default-peer</em> commands with the <em>prefix-list list</em> keyword, you use all the default peers at the same time for different RP prefixes. This syntax is typically used in a service provider cloud that connects stub site clouds. When you enter multiple <em>ip msdp default-peer</em> commands without the <em>prefix-list list</em> keyword, a single active peer accepts all SA messages. If that peer fails, the next configured default peer accepts all SA messages. This syntax is typically used at a stub site.</td>
</tr>
</tbody>
</table>
Configuring MSDP

To remove the default peer, use the `no ip msdp default-peer` global configuration command.

This example shows a partial configuration of Router A and Router C in Figure 34-2. Each of these ISPs have more than one customer (like the customer in Figure 34-2) who use default peering (no BGP or MBGP). In that case, they might have similar configurations. That is, they accept SAs only from a default peer if the SA is permitted by the corresponding prefix list.

**Router A**

```
Router(config)# ip msdp default-peer 10.1.1.1
Router(config)# ip msdp default-peer 10.1.1.1 prefix-list site-a
```

**Router C**

```
Router(config)# ip msdp default-peer 10.1.1.1 prefix-list site-a
Router(config)# ip prefix-list site-b permit 10.0.0.0/8
```

**Caching Source-Active State**

By default, the multilayer switch does not cache source/group pairs from received SA messages. When the switch forwards the MSDP SA information, it does not store it in memory. Therefore, if a member joins a group soon after a SA message is received by the local RP, that member needs to wait until the next SA message to hear about the source. This delay is known as join latency.

If you want to sacrifice some memory in exchange for reducing the latency of the source information, you can configure the switch to cache SA messages.
Beginning in privileged EXEC mode, follow these steps to enable the caching of source/group pairs:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 ip msdp cache-sa-state [list access-list-number]</td>
<td>Enable the caching of source/group pairs (create an SA state). Those pairs that pass the access list are cached. For list access-list-number, the range is 100 to 199.</td>
</tr>
<tr>
<td>Step 3 access-list access-list-number {deny</td>
<td>permit} protocol source source-wildcard destination destination-wildcard</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6 copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

An alternative to this command is the ip msdp sa-request global configuration command, which causes the multilayer switch to send an SA request message to the MSDP peer when a new member for a group becomes active. For more information, see the next section.

To return to the default setting (no SA state is created), use the no ip msdp cache-sa-state global configuration command.

This example shows how to enable the cache state for all sources in 171.69.0.0/16 sending to groups 224.2.0.0/16:

```
Switch(config)# ip msdp cache-sa-state 100
Switch(config)# access-list 100 permit ip 171.69.0.0 0.0.255.255 224.2.0.0 0.0.255.255
```
Requesting Source Information from an MSDP Peer

Local RPs can send SA requests and get immediate responses for all active sources for a given group. By default, the multilayer switch does not send any SA request messages to its MSDP peers when a new member joins a group and wants to receive multicast traffic. The new member waits to receive the next periodic SA message.

If you want a new member of a group to learn the active multicast sources in a connected PIM sparse-mode domain that are sending to a group, configure the switch to send SA request messages to the specified MSDP peer when a new member joins a group. The peer replies with the information in its SA cache. If the peer does not have a cache configured, this command has no result. Configuring this feature reduces join latency but sacrifices memory.

Beginning in privileged EXEC mode, follow these steps to configure the switch to send SA request messages to the MSDP peer when a new member joins a group and wants to receive multicast traffic:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1   configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2   ip msdp sa-request {ip-address</td>
<td>name}</td>
</tr>
<tr>
<td>Step 3   end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4   show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 5   copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the no ip msdp sa-request {ip-address | name} global configuration command.

This example shows how to configure the switch to send SA request messages to the MSDP peer at 171.69.1.1:

```
Switch(config)# ip msdp sa-request 171.69.1.1
```

Controlling Source Information that Your Switch Originates

You can control the multicast source information that originates with your switch:

- Sources you advertise (based on your sources)
- Receivers of source information (based on knowing the requestor)

For more information, see the “Redistributing Sources” section on page 34-9 and the “Filtering Source-Active Request Messages” section on page 34-11.
Redistributing Sources

SA messages are originated on RPs to which sources have registered. By default, any source that registers with an RP is advertised. The *A* flag is set in the RP when a source is registered, which means the source is advertised in an SA unless it is filtered.

Beginning in privileged EXEC mode, follow these steps to further restrict which registered sources are advertised:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| **Step 2** | `ip msdp redistribute [list access-list-name] [asn aspath-access-list-number] [route-map map]` | Configure which (S,G) entries from the multicast routing table are advertised in SA messages. By default, only sources within the local domain are advertised.  
  - (Optional) For `list access-list-name`, enter the name or number of an IP standard or extended access list. The range is 1 to 99 for standard access lists and 100 to 199 for extended lists. The access list controls which local sources are advertised and to which groups they send.  
  - (Optional) For `asn aspath-access-list-number`, enter the IP standard or extended access list number in the range 1 to 199. This access list number must also be configured in the `ip as-path access-list` command.  
  - (Optional) For `route-map map`, enter the IP standard or extended access list number in the range 1 to 199. This access list number must also be configured in the `ip as-path access-list` command. |

The access list or autonomous system path access list determines which (S,G) pairs are advertised.
Configuring MSDP

To remove the filter, use the **no ip msdp redistribute** global configuration command.

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list access-list-number {deny</td>
<td>Create an IP standard access list, repeating the command as many times as necessary. or permit} source [source-wildcard] or access-list access-list-number {deny</td>
<td>Create an IP extended access list, repeating the command as many times as necessary. permit} protocol source source-wildcard destination destination-wildcard • For access-list-number, the range is 1 to 99 for standard access lists and 100 to 199 for extended lists. Enter the same number created in Step 2. • The deny keyword denies access if the conditions are matched. The permit keyword permits access if the conditions are matched. • For protocol, enter <strong>ip</strong> as the protocol name. • For source, enter the number of the network or host from which the packet is being sent. • For source-wildcard, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore. • For destination, enter the number of the network or host to which the packet is being sent. • For destination-wildcard, enter the wildcard bits in dotted decimal notation to be applied to the destination. Place ones in the bit positions that you want to ignore. Recall that the access list is always terminated by an implicit deny statement for everything.</td>
</tr>
</tbody>
</table>

Step 4	end	Return to privileged EXEC mode.
Step 5	show running-config	Verify your entries.
Step 6	copy running-config startup-config	(Optional) Save your entries in the configuration file.

To remove the filter, use the **no ip msdp redistribute** global configuration command.
Filtering Source-Active Request Messages

By default, only multilayer switches that are caching SA information can respond to SA requests. By default, such a switch honors all SA request messages from its MSDP peers and supplies the IP addresses of the active sources.

However, you can configure the switch to ignore all SA requests from an MSDP peer. You can also honor only those SA request messages from a peer for groups described by a standard access list. If the groups in the access list pass, SA request messages are accepted. All other such messages from the peer for other groups are ignored.

Beginning in privileged EXEC mode, follow these steps to configure one of these options:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>

| Step 2         | ip msdp filter-sa-request ip-address | Filter all SA request messages from the specified MSDP peer. |
|                | name                              | or Filter SA request messages from the specified MSDP peer for groups that pass the standard access list. The access list describes a multicast group address. The range for the access-list-number is 1 to 99. |

Step 3	access-list access-list-number deny permit source [source-wildcard]	Create an IP standard access list, repeating the command as many times as necessary.
	• For access-list-number, the range is 1 to 99.	
	• The deny keyword denies access if the conditions are matched. The permit keyword permits access if the conditions are matched.	
	• For source, enter the number of the network or host from which the packet is being sent.	
	• (Optional) For source-wildcard, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.	
	Recall that the access list is always terminated by an implicit deny statement for everything.	

Step 4	end	Return to privileged EXEC mode.
Step 5	show running-config	Verify your entries.
Step 6	copy running-config startup-config	(Optional) Save your entries in the configuration file.

To return to the default setting, use the **no ip msdp filter-sa-request** {ip-address | name} global configuration command.

This example shows how to configure the switch to filter SA request messages from the MSDP peer at 171.69.2.2. SA request messages from sources on network 192.4.22.0 pass access list 1 and are accepted; all others are ignored.

```
Switch(config)# ip msdp filter sa-request 171.69.2.2 list 1
Switch(config)# access-list 1 permit 192.4.22.0 0.0.0.255
```
Controlling Source Information that Your Switch Forwards

By default, the multilayer switch forwards all SA messages it receives to all its MSDP peers. However, you can prevent outgoing messages from being forwarded to a peer by using a filter or by setting a time-to-live (TTL) value. These methods are described in the next sections.

Using a Filter

By creating a filter, you can perform one of these actions:
- Filter all source/group pairs
- Specify an IP extended access list to pass only certain source/group pairs
- Filter based on match criteria in a route map

Beginning in privileged EXEC mode, follow these steps to apply a filter:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>ip msdp sa-filter out ip-address</td>
</tr>
<tr>
<td>or</td>
<td>name</td>
</tr>
<tr>
<td></td>
<td>ip msdp sa-filter out {ip-address</td>
</tr>
<tr>
<td></td>
<td>list access-list-number</td>
</tr>
<tr>
<td>or</td>
<td>ip msdp sa-filter out {ip-address</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
</tbody>
</table>
Chapter 34      Configuring MSDP

Configuring MSDP

To remove the filter, use the `no ip msdp sa-filter out {ip-address | name} [list access-list-number] [route-map map-tag]` global configuration command.

This example shows how to allow only (S,G) pairs that pass access list 100 to be forwarded in an SA message to the peer named `switch.cisco.com`:

```
Switch(config)# ip msdp peer switch.cisco.com connect-source gigabitethernet0/1
Switch(config)# ip msdp sa-filter out switch.cisco.com list 100
Switch(config)# access-list 100 permit ip 171.69.0.0 0.0.255.255 224.20 0 0.0.255.255
```

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>`access-list access-list-number {deny</td>
<td>permit} protocol source source-wildcard destination destination-wildcard`</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>access-list-number</code>, enter the number specified in Step 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The <code>deny</code> keyword denies access if the conditions are matched. The <code>permit</code> keyword permits access if the conditions are matched.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>protocol</code>, enter <code>ip</code> as the protocol name.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>source</code>, enter the number of the network or host from which the packet is being sent.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>source-wildcard</code>, enter the wildcard bits in dotted decimal notation to be applied to the source. Place ones in the bit positions that you want to ignore.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>destination</code>, enter the number of the network or host to which the packet is being sent.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For <code>destination-wildcard</code>, enter the wildcard bits in dotted decimal notation to be applied to the destination. Place ones in the bit positions that you want to ignore.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recall that the access list is always terminated by an implicit deny statement for everything.</td>
</tr>
</tbody>
</table>

Step 4	`end`	Return to privileged EXEC mode.
Step 5	`show running-config`	Verify your entries.
Step 6	`copy running-config startup-config`	(Optional) Save your entries in the configuration file.
Using TTL to Limit the Multicast Data Sent in SA Messages

You can use a TTL value to control what data is encapsulated in the first SA message for every source. Only multicast packets with an IP-header TTL greater than or equal to the \texttt{ttl} argument are sent to the specified MSDP peer. For example, you can limit internal traffic to a TTL of 8. If you want other groups to go to external locations, you must send those packets with a TTL greater than 8.

Beginning in privileged EXEC mode, follow these steps to establish a TTL threshold:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip msdp ttl-threshold {ip-address</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default setting, use the \texttt{no ip msdp ttl-threshold \{ip-address | name\}} global configuration command.

Controlling Source Information that Your Switch Receives

By default, the multilayer switch receives all SA messages that its MSDP Reverse-Path Forwarding peers send to it. However, you can control the source information that you receive from MSDP peers by filtering incoming SA messages. In other words, you can configure the switch to not accept them.

You can perform one of these actions:

• Filter all incoming SA messages from an MSDP peer
• Specify an IP extended access list to pass certain source/group pairs
• Filter based on match criteria in a route map
Beginning in privileged EXEC mode, follow these steps to apply a filter:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>ip msdp sa-filter in ip-address</td>
<td>Filter all SA messages from the specified MSDP peer.</td>
</tr>
<tr>
<td></td>
<td>name [list access-list-number]</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td>ip msdp sa-filter in {ip-address</td>
<td>From the specified peer, pass only those SA messages that pass the IP</td>
</tr>
<tr>
<td></td>
<td>name} list access-list-number</td>
<td>extended access list. The range for the extended access-list-number</td>
</tr>
<tr>
<td></td>
<td></td>
<td>is 100 to 199.</td>
</tr>
<tr>
<td>or</td>
<td>ip msdp sa-filter in {ip-address</td>
<td>If both the list and the route-map keywords are used, all conditions</td>
</tr>
<tr>
<td></td>
<td>name} route-map map-tag</td>
<td>must be true to pass any (S,G) pair in incoming SA messages.</td>
</tr>
<tr>
<td>Step 3</td>
<td>access-list access-list-number [deny</td>
<td>(Optional) Create an IP extended access list, repeating the command as</td>
</tr>
<tr>
<td></td>
<td>permit] protocol source source-wildcard</td>
<td>many times as necessary.</td>
</tr>
<tr>
<td></td>
<td>destination destination-wildcard</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For access-list-number, enter the number specified in Step 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The deny keyword denies access if the conditions are matched. The</td>
</tr>
<tr>
<td></td>
<td></td>
<td>permit keyword permits access if the conditions are matched.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For protocol, enter ip as the protocol name.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For source, enter the number of the network or host from which the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>packet is being sent.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For source-wildcard, enter the wildcard bits in dotted decimal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>notation to be applied to the source. Place ones in the bit positions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>that you want to ignore.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For destination, enter the number of the network or host to which the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>packet is being sent.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For destination-wildcard, enter the wildcard bits in dotted decimal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>notation to be applied to the destination. Place ones in the bit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>positions that you want to ignore.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recall that the access list is always terminated by an implicit deny</td>
</tr>
<tr>
<td></td>
<td></td>
<td>statement for everything.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
<td>Verify your entries.</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To remove the filter, use the no ip msdp sa-filter in {ip-address | name} [list access-list-number] [route-map map-tag] global configuration command.

This example shows how to filter all SA messages from the peer named switch.cisco.com:

```
Switch(config)# ip msdp peer switch.cisco.com connect-source gigabitethernet0/1
Switch(config)# ip msdp sa-filter in switch.cisco.com
```
Configuring an MSDP Mesh Group

An MSDP mesh group is a group of MSDP speakers that have fully meshed MSDP connectivity among one another. Any SA messages received from a peer in a mesh group are not forwarded to other peers in the same mesh group. Thus, you reduce SA message flooding and simplify peer-RPF flooding. Use the `ip msdp mesh-group` global configuration command when there are multiple RPs within a domain. It is especially used to send SA messages across a domain. You can configure multiple mesh groups (with different names) in a single multilayer switch.

Beginning in privileged EXEC mode, follow these steps to create a mesh group:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
</tbody>
</table>
| Step 2  | `ip msdp mesh-group name {ip-address | name}` | Configure an MSDP mesh group, and specify the MSDP peer belonging to that mesh group. By default, the MSDP peers do not belong to a mesh group.  
  - For `name`, enter the name of the mesh group.  
  - For `ip-address | name`, enter the IP address or name of the MSDP peer to be a member of the mesh group. |
| Step 3  | `end` | Return to privileged EXEC mode. |
| Step 4  | `show running-config` | Verify your entries. |
| Step 5  | `copy running-config startup-config` | (Optional) Save your entries in the configuration file. |
| Step 6  | `show running-config` | Repeat this procedure on each MSDP peer in the group. |

To remove an MSDP peer from a mesh group, use the `no ip msdp mesh-group name {ip-address | name}` global configuration command.

Shutting Down an MSDP Peer

If you want to configure many MSDP commands for the same peer and you do not want the peer to become active, you can shut down the peer, configure it, and later bring it up. When a peer is shut down, the TCP connection is terminated and is not restarted. You can also shut down an MSDP session without losing configuration information for the peer.
Beginning in privileged EXEC mode, follow these steps to shut down a peer:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
</tbody>
</table>
| Step 2| ip msdp shutdown {peer-name | peer address}              | Administratively shut down the specified MSDP peer without losing configuration information.  
For peer-name | peer address, enter the IP address or name of the MSDP peer to shut down. |
| Step 3| end                                  | Return to privileged EXEC mode.                                          |
| Step 4| show running-config                  | Verify your entries.                                                    |
| Step 5| copy running-config startup-config   | (Optional) Save your entries in the configuration file.                  |

To bring the peer back up, use the no ip msdp shutdown {peer-name | peer address} global configuration command. The TCP connection is reestablished.

**Including a Bordering PIM Dense-Mode Region in MSDP**

You can configure MSDP on a multilayer switch that borders a PIM sparse-mode region with a dense-mode region. By default, active sources in the dense-mode region do not participate in MSDP.

---

**Note**

We do not recommend using the ip msdp border sa-address global configuration command. It is better to configure the border router in the sparse-mode domain to proxy-register sources in the dense-mode domain to the RP of the sparse-mode domain and have the sparse-mode domain use standard MSDP procedures to advertise these sources.

---

Beginning in privileged EXEC mode, follow these steps to configure the border router to send SA messages for sources active in the dense-mode region to the MSDP peers:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 2| ip msdp border sa-address type number| Configure the switch on the border between a dense-mode and sparse-mode region to send SA messages about active sources in the dense-mode region.  
For type number, specify the interface type and number from which the IP address is derived and used as the RP address in SA messages.  
The IP address of the interface is used as the Originator-ID, which is the RP field in the SA message. |
| Step 3| ip msdp redistribute [list access-list-name] [asn aspath-access-list-number] [route-map map] | Configure which (S,G) entries from the multicast routing table are advertised in SA messages.  
For more information, see the “Redistributing Sources” section on page 34-9. |
| Step 4| end                                  | Return to privileged EXEC mode.                                          |
Chapter 34: Configuring MSDP

Configuring MSDP

Note that the `ip msdp originator-id` global configuration command also identifies an interface type and number to be used as the RP address. If both the `ip msdp border sa-address` and the `ip msdp originator-id` global configuration commands are configured, the address derived from the `ip msdp originator-id` command determines the RP address.

To return to the default setting (active sources in the dense-mode region do not participate in MSDP), use the `no ip msdp border sa-address type number` global configuration command.

### Configuring an Originating Address other than the RP Address

You can allow an MSDP speaker that originates an SA message to use the IP address of the interface as the RP address in the SA message by changing the Originator ID. You might change the Originator ID in one of these cases:

- If you configure a logical RP on multiple multilayer switches in an MSDP mesh group.
- If you have a multilayer switch that borders a PIM sparse-mode domain and a dense-mode domain. If a switch borders a dense-mode domain for a site, and sparse-mode is being used externally, you might want dense-mode sources to be known to the outside world. Because this switch is not an RP, it would not have an RP address to use in an SA message. Therefore, this command provides the RP address by specifying the address of the interface.

Beginning in privileged EXEC mode, follow these steps to allow an MSDP speaker that originates an SA message to use the IP address on the interface as the RP address in the SA message:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code> Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>ip msdp originator-id type number</code> Configures the RP address in SA messages to be the address of the originating device interface. For <code>type number</code>, specify the interface type and number on the local switch.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>show running-config</code> Verify your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>copy running-config startup-config</code> (Optional) Save your entries in the configuration file.</td>
</tr>
</tbody>
</table>

If both the `ip msdp border sa-address` and the `ip msdp originator-id` global configuration commands are configured, the address derived from the `ip msdp originator-id` command determines the address of the RP.

To prevent the RP address from being derived in this way, use the `no ip msdp originator-id type number` global configuration command.
Monitoring and Maintaining MSDP

To monitor MSDP SA messages, peers, state, or peer status, use one or more of the privileged EXEC commands in Table 34-1:

**Table 34-1 Commands for Monitoring and Maintaining MSDP**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>debug ip msdp</strong> <em>peer-address</em> <em>name</em> <em>detail</em> <em>routes</em></td>
<td>Debugs an MSDP activity.</td>
</tr>
<tr>
<td><strong>debug ip msdp resets</strong></td>
<td>Debugs MSDP peer reset reasons.</td>
</tr>
<tr>
<td><strong>show ip msdp count</strong> <em>autonomous-system-number</em>**</td>
<td>Displays the number of sources and groups originated in SA messages from each autonomous system. The <em>ip msdp cache-sa-state</em> command must be configured for this command to produce any output.</td>
</tr>
<tr>
<td><strong>show ip msdp peer</strong> <em>peer-address</em> <em>name</em>**</td>
<td>Displays detailed information about an MSDP peer.</td>
</tr>
<tr>
<td><strong>show ip msdp sa-cache</strong> <em>group-address</em> <em>source-address</em> <em>group-name</em> <em>source-name</em> <em>autonomous-system-number</em>**</td>
<td>Displays (S,G) state learned from MSDP peers.</td>
</tr>
<tr>
<td><strong>show ip msdp summary</strong></td>
<td>Displays MSDP peer status and SA message counts.</td>
</tr>
</tbody>
</table>

To clear MSDP connections, statistics, or SA cache entries, use the privileged EXEC commands in Table 34-2:

**Table 34-2 Commands for Clearing MSDP Connections, Statistics, or SA Cache Entries**

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>clear ip msdp peer</strong> <em>peer-address</em> <em>name</em>**</td>
<td>Clears the TCP connection to the specified MSDP peer, resetting all MSDP message counters.</td>
</tr>
<tr>
<td><strong>clear ip msdp statistics</strong> <em>peer-address</em> <em>name</em>**</td>
<td>Clears statistics counters for one or all the MSDP peers without resetting the sessions.</td>
</tr>
<tr>
<td><strong>clear ip msdp sa-cache</strong> <em>group-address</em> <em>name</em>**</td>
<td>Clears the SA cache entries for all entries, all sources for a specific group, or all entries for a specific source/group pair.</td>
</tr>
</tbody>
</table>
Configuring Fallback Bridging

This chapter describes how to configure fallback bridging (VLAN bridging) on your Catalyst 3550 switch. With fallback bridging, you can forward non-IP packets that the switch does not route between VLAN bridge domains and routed ports.

To use this feature, you must have the enhanced multilayer software (EMI) image installed on your switch.

This chapter consists of these sections:

- Understanding Fallback Bridging, page 35-1
- Configuring Fallback Bridging, page 35-3
- Monitoring and Maintaining Fallback Bridging, page 35-12

Understanding Fallback Bridging

With fallback bridging, the switch bridges together two or more VLANs or routed ports, essentially connecting multiple VLANs within one bridge domain. Fallback bridging forwards traffic that the switch does not route and forwards traffic belonging to a nonroutable protocol such as DECnet.

Fallback bridging does not allow the spanning trees from the VLANs being bridged to collapse; each VLAN has its own spanning-tree instance and a separate spanning tree, called the VLAN-bridge spanning tree, which runs on top of the bridge group to prevent loops.

A VLAN bridge domain is represented with switch virtual interface (SVI). A set of SVIs and routed ports (which do not have any VLANs associated with them) can be configured (grouped together) to form a bridge group. Recall that an SVI represents a VLAN of switch ports as one interface to the routing or bridging function in the system. You associate only one SVI with a VLAN, and you configure an SVI for a VLAN only when you want to route between VLANs, to fallback-bridge nonroutable protocols between VLANs, or to provide IP host connectivity to the switch. A routed port is a physical port that acts like a port on a router, but it is not connected to a router. A routed port is not associated with a particular VLAN, does not support VLAN subinterfaces, but behaves like a normal routed interface. For more information about SVIs and routed ports, see Chapter 10, “Configuring Interface Characteristics.”

A bridge group is an internal organization of network interfaces on a switch. Bridge groups cannot be used to identify traffic switched within the bridge group outside the switch on which they are defined. Bridge groups on the same switch function as distinct bridges; that is, bridged traffic and bridge protocol
data units (BPDUs) are not exchanged between different bridge groups on a switch. An interface can be a member of only one bridge group. Use a bridge group for each separately bridged (topologically distinct) network connected to the switch.

These are the reasons for placing network interfaces into a bridge group:

- To bridge all nonrouted traffic among the network interfaces making up the bridge group. If the packet destination address is in the bridge table, the packet is forwarded on a single interface in the bridge group. If the packet destination address is not in the bridge table, the packet is flooded on all forwarding interfaces in the bridge group. The switch places source addresses in the bridge table as it learns them during the bridging process.

- To participate in the spanning-tree algorithm by receiving, and in some cases sending, BPDUs on the LANs to which they are attached. A separate spanning-tree process runs for each configured bridge group. Each bridge group participates in a separate spanning-tree instance. A bridge group establishes a spanning-tree instance based on the BPDUs it receives on only its member interfaces.

Figure 35-1 shows a fallback bridging network example. The switch has two interfaces configured as SVIs with different assigned IP addresses and attached to two different VLANs. Another interface is configured as a routed port with its own IP address. If all three of these ports are assigned to the same bridge group, non-IP protocol frames can be forwarded among the end stations connected to the switch even though they are on different networks and in different VLANs. IP addresses do not need to be assigned to routed ports or SVIs for fallback bridging to work.

**Figure 35-1  Fallback Bridging Network Example**
Configuring Fallback Bridging

These sections describe how to configure fallback bridging on your switch:

- Default Fallback Bridging Configuration, page 35-3
- Fallback Bridging Configuration Guidelines, page 35-3
- Creating a Bridge Group, page 35-4
- Preventing the Forwarding of Dynamically Learned Stations, page 35-5
- Configuring the Bridge Table Aging Time, page 35-6
- Filtering Frames by a Specific MAC Address, page 35-6
- Adjusting Spanning-Tree Parameters, page 35-7

Default Fallback Bridging Configuration

Table 35-1 shows the default fallback bridging configuration.

Table 35-1 Default Fallback Bridging Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge groups</td>
<td>None are defined or assigned to an interface. No VLAN-bridge STP is defined.</td>
</tr>
<tr>
<td>Switch forwards frames for stations that it has dynamically learned</td>
<td>Enabled.</td>
</tr>
<tr>
<td>Bridge table aging time for dynamic entries</td>
<td>300 seconds.</td>
</tr>
<tr>
<td>MAC-layer frame filtering</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Spanning tree parameters:</td>
<td></td>
</tr>
<tr>
<td>• Switch priority</td>
<td>• 32768.</td>
</tr>
<tr>
<td>• Interface priority</td>
<td>• 128.</td>
</tr>
<tr>
<td>• Interface path cost</td>
<td>• 10 Mbps: 100.</td>
</tr>
<tr>
<td></td>
<td>100 Mbps: 19.</td>
</tr>
<tr>
<td></td>
<td>1000 Mbps: 4.</td>
</tr>
<tr>
<td>• Hello BPDU interval</td>
<td>• 2 seconds.</td>
</tr>
<tr>
<td>• Forward-delay interval</td>
<td>• 20 seconds.</td>
</tr>
<tr>
<td>• Maximum idle interval</td>
<td>• 30 seconds.</td>
</tr>
</tbody>
</table>

Fallback Bridging Configuration Guidelines

A maximum of 31 bridge groups can be configured on the switch.
An interface (an SVI or routed port) can be a member of only one bridge group.
Use a bridge group for each separately bridged (topologically distinct) network connected to the switch.
To configure fallback bridging for a set of SVIs or routed ports, these interfaces must be assigned to bridge groups. All interfaces in the same group belong to the same bridge domain. Each SVI or routed port can be assigned to only one bridge group. A maximum of 31 bridge groups can be configured on the switch.

Note
The protected port feature is not compatible with fallback bridging. When fallback bridging is enabled, it is possible for packets to be forwarded from one protected port on a switch to another protected port on the same switch if the ports are in different VLANs.

Beginning in privileged EXEC mode, follow these steps to create a bridge group and assign an interface to it:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>bridge bridge-group protocol vlan-bridge</td>
</tr>
</tbody>
</table>
| Step 3           | interface interface-id                                                  | Enter interface configuration mode, and specify the interface on which you want to assign the bridge group. The specified interface must be one of these:  
                  |                                                                         | • A routed port: a physical port that you have configured as a Layer 3 port by entering the no switchport interface configuration command.  
                  |                                                                         | • An SVI: a VLAN interface that you created by using the interface vlan vlan-id global configuration command. Note You can assign an IP address to the routed port or to the SVI, but it is not required. | |
| Step 4           | bridge-group bridge-group                                               | Assign the interface to the bridge group created in Step 2. By default, the interface is not assigned to any bridge group. An interface can be assigned to only one bridge group. |
| Step 5           | end                                                                      | Return to privileged EXEC mode.                                     |
| Step 6           | show running-config                                                     | Verify your entries.                                                |
| Step 7           | copy running-config startup-config                                      | (Optional) Save your entries in the configuration file.             |

To remove a bridge group, use the no bridge bridge-group global configuration command. To remove an interface from a bridge group and to remove the bridge group, use the no bridge-group bridge-group interface configuration command.
This example shows how to create bridge group 10, to specify that the VLAN-bridge STP runs in the bridge group, to define an interface as a routed port, and to assign the interface to the bridge group:

```
Switch(config)# bridge 10 protocol vlan-bridge
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# no switchport
Switch(config-if)# no shutdown
Switch(config-if)# bridge-group 10
```

This example shows how to create bridge group 10 and to specify that the VLAN-bridge STP runs in the bridge group. It defines an interface as an SVI and assigns this interface to VLAN 2 and to the bridge group:

```
Switch(config)# bridge 10 protocol vlan-bridge
Switch(config)# vlan 2
Switch(config-vlan)# exit
Switch(config)# interface vlan2
Switch(config-if)# exit
Switch(config)# interface gigabitethernet0/2
Switch(config-if)# switchport mode access
Switch(config-if)# switchport access vlan 2
Switch(config-if)# no switchport
Switch(config-if)# no shutdown
Switch(config-if)# bridge-group 10
```

## Preventing the Forwarding of Dynamically Learned Stations

By default, the switch forwards any frames for stations that it has dynamically learned. By disabling this activity, the switch only forwards frames whose addresses have been statically configured into the forwarding cache.

Beginning in privileged EXEC mode, follow these steps to prevent the switch from forwarding frames for stations that it has dynamically learned:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>no bridge bridge-group acquire</td>
<td>Enable the switch to stop forwarding any frames for stations that it has dynamically learned through the discovery process and to limit frame forwarding to statically configured stations. The switch filters all frames except those whose destined-to addresses have been statically configured into the forwarding cache. To configure a static address, use the bridge bridge-group address mac-address {forward</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>4</td>
<td>show running-config</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td>5</td>
<td>copy running-config startup-config</td>
<td>(Optional) Save your entry in the configuration file.</td>
</tr>
</tbody>
</table>

To cause the switch to forward frames to stations that it has dynamically learned, use the bridge bridge-group acquire global configuration command.
This example shows how to prevent the switch from forwarding frames for stations that it has dynamically learned in bridge group 10:

Switch(config)# no bridge 10 acquire

Configuring the Bridge Table Aging Time

A switch forwards, floods, or drops packets based on the bridge table. The bridge table maintains both static and dynamic entries. Static entries are entered by you or learned by the switch. Dynamic entries are entered by the bridge learning process. A dynamic entry is automatically removed after a specified length of time, known as aging time, from the time the entry was created or last updated.

If you are likely to move hosts on a switched network, decrease the aging-time to enable the switch to quickly adapt to the change. If hosts on a switched network do not continuously send packets, increase the aging time to keep the dynamic entries for a longer time and thus reduce the possibility of flooding when the hosts send again.

Beginning in privileged EXEC mode, follow these steps to configure the aging time:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>bridge bridge-group aging-time seconds</td>
</tr>
<tr>
<td></td>
<td>• For bridge-group, specify the bridge group number. The range is 1 to 255.</td>
</tr>
<tr>
<td></td>
<td>• For seconds, enter a number from 0 to 1000000. The default is 300 seconds.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return to the default aging-time interval, use the no bridge bridge-group aging-time global configuration command.

This example shows how to change the bridge table aging time to 200 seconds for bridge group 10:

Switch(config)# bridge 10 aging-time 200

Filtering Frames by a Specific MAC Address

A switch examines frames and sends them through the internetwork according to the destination address; a switch does not forward a frame back to its originating network segment. You can use the software to configure specific administrative filters that filter frames based on information other than the paths to their destinations.

You can filter frames with a particular MAC-layer station destination address. You can configure any number of addresses in the system without a performance penalty.
Beginning in privileged EXEC mode, follow these steps to filter by the MAC-layer address:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>bridge bridge-group address mac-address {forward</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
<tr>
<td>Step 4</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 5</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To disable the frame forwarding ability, use the no bridge bridge-group address mac-address global configuration command.

This example shows how to forward a frame with MAC address 0800.cb00.45e9 through an interface in bridge group 1:

```
Switch(config)# bridge 1 address 0800.cb00.45e9 forward gigabitethernet0/1
```

**Adjusting Spanning-Tree Parameters**

You might need to adjust certain spanning-tree parameters if the default values are not suitable. You configure parameters affecting the entire spanning tree by using variations of the bridge global configuration command. You configure interface-specific parameters by using variations of the bridge-group interface configuration command.

You can adjust spanning-tree parameters by performing any of the tasks in these sections:

- Changing the Switch Priority, page 35-8
- Changing the Interface Priority, page 35-8
- Assigning a Path Cost, page 35-9
- Adjusting BPDU Intervals, page 35-10
- Disabling the Spanning Tree on an Interface, page 35-12

**Note**

Only network administrators with a good understanding of how switches and STP function should make adjustments to spanning-tree parameters. Poorly planned adjustments can have a negative impact on performance. A good source on switching is the IEEE 802.1D specification; for more information, refer to the “References and Recommended Reading” appendix in the *Cisco IOS Configuration Fundamentals Command Reference*. 
Changing the Switch Priority

You can globally configure the priority of an individual switch when two switches tie for position as the root switch, or you can configure the likelihood that a switch will be selected as the root switch. This priority is determined by default; however, you can change it.

Beginning in privileged EXEC mode, follow these steps to change the switch priority:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1  configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2  bridge bridge-group priority number</td>
<td>Change the priority of the switch.</td>
</tr>
<tr>
<td></td>
<td>• For bridge-group, specify the bridge group number. The range is 1 to 255.</td>
</tr>
<tr>
<td></td>
<td>• For number, enter a number from 0 to 65535. The default is 32768. The lower the number, the more likely the switch will be chosen as the root.</td>
</tr>
<tr>
<td>Step 3  end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4  show running-config</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td>Step 5  copy running-config startup-config</td>
<td>(Optional) Save your entry in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the no bridge bridge-group priority global configuration command. To change the priority on an interface, use the bridge-group priority interface configuration command (described in the next section).

This example shows how to set the switch priority to 100 for bridge group 10:

```
Switch(config)# bridge 10 priority 100
```

Changing the Interface Priority

You can change the priority for an interface. When two switches tie for position as the root switch, you configure an interface priority to break the tie. The switch with the lowest interface value is elected.

Beginning in privileged EXEC mode, follow these steps to change the interface priority:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1  configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2  interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to set the priority.</td>
</tr>
<tr>
<td>Step 3  bridge-group bridge-group priority number</td>
<td>Change the priority of an interface.</td>
</tr>
<tr>
<td></td>
<td>• For bridge-group, specify the bridge group number. The range is 1 to 255.</td>
</tr>
<tr>
<td></td>
<td>• For number, enter a number from 0 to 255. The lower the number, the more likely that the interface on the switch will be chosen as the root. The default is 128.</td>
</tr>
<tr>
<td>Step 4  end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
### Configuring Fallback Bridging

No **no** form of this command exists. To return to the default setting, use the **no bridge-group bridge-group priority** interface configuration command.

This example shows how to change the priority of an interface to 20 in bridge group 10:

Switch(config)\# interface gigabitethernet0/1
Switch(config-if)\# bridge-group 10 priority 20

### Assigning a Path Cost

Each interface has a path cost associated with it. By convention, the path cost is 1000/data rate of the attached LAN, in Mbps.

Beginning in privileged EXEC mode, follow these steps to assign a path cost:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> interface interface-id</td>
<td>Enter interface configuration mode, and specify the interface to set the path cost.</td>
</tr>
<tr>
<td><strong>Step 3</strong> bridge-group bridge-group path-cost cost</td>
<td>Assign the path cost of an interface.</td>
</tr>
<tr>
<td></td>
<td>• For bridge-group, specify the bridge group number. The range is 1 to 255.</td>
</tr>
<tr>
<td></td>
<td>• For cost, enter a number from 1 to 65536. The higher the value, the higher the cost.</td>
</tr>
<tr>
<td></td>
<td>- For 10 Mbps, the default path cost is 100.</td>
</tr>
<tr>
<td></td>
<td>- For 100 Mbps, the default path cost is 19.</td>
</tr>
<tr>
<td></td>
<td>- For 1000 Mbps, the default path cost is 4.</td>
</tr>
<tr>
<td><strong>Step 4</strong> end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 5</strong> show running-config</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td><strong>Step 6</strong> copy running-config startup-config</td>
<td>(Optional) Save your entry in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default path cost, use the **no bridge-group bridge-group path-cost** interface configuration command.

This example shows how to change the path cost on an interface to 20 in bridge group 10:

Switch(config)\# interface gigabitethernet0/1
Switch(config-if)\# bridge-group 10 path-cost 20
Adjusting BPDU Intervals

You can adjust BPDU intervals as described in these sections:
- Adjusting the Interval between Hello BPDUs, page 35-10
- Changing the Forward-Delay Interval, page 35-10
- Changing the Maximum-Idle Interval, page 35-11

Note
Each switch in a spanning tree adopts the interval between hello BPDUs, the forward delay interval, and the maximum idle interval parameters of the root switch, regardless of what its individual configuration might be.

Adjusting the Interval between Hello BPDUs

Beginning in privileged EXEC mode, follow these step to adjust the interval between hello BPDUs:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 bridge bridge-group hello-time seconds</td>
<td>Specify the interval between hello BPDUs.</td>
</tr>
<tr>
<td></td>
<td>• For bridge-group, specify the bridge group number. The range is 1 to 255.</td>
</tr>
<tr>
<td></td>
<td>• For seconds, enter a number from 1 to 10. The default is 2 seconds.</td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 show running-config</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td>Step 5 copy running-config startup-config</td>
<td>(Optional) Save your entry in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the no bridge bridge-group hello-time global configuration command.

This example shows how to change the hello interval to 5 seconds in bridge group 10:

Switch(config)# bridge 10 hello-time 5

Changing the Forward-Delay Interval

The forward-delay interval is the amount of time spent listening for topology change information after an interface has been activated for switching and before forwarding actually begins.

Beginning in privileged EXEC mode, follow these steps to change the forward-delay interval:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2 bridge bridge-group forward-time seconds</td>
<td>Specify the forward-delay interval.</td>
</tr>
<tr>
<td></td>
<td>• For bridge-group, specify the bridge group number. The range is 1 to 255.</td>
</tr>
<tr>
<td></td>
<td>• For seconds, enter a number from 10 to 200. The default is 20 seconds.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the no bridge bridge-group forward-time global configuration command.

This example shows how to change the forward-delay interval to 10 seconds in bridge group 10:

Switch(config)# bridge 10 forward-time 10
### Configuring Fallback Bridging

To return to the default setting, use the `no bridge bridge-group forward-time` global configuration command.

This example shows how to change the forward-delay interval to 10 seconds in bridge group 10:

```
Switch(config)# bridge 10 forward-time 10
```

### Changing the Maximum-Idle Interval

If a switch does not receive BPDUs from the root switch within a specified interval, it recomputes the spanning-tree topology.

Beginning in privileged EXEC mode, follow these steps to change the maximum-idle interval (maximum aging time):

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> bridge bridge-group max-age seconds</td>
<td>Specify the interval that the switch waits to hear BPDUs from the root switch.</td>
</tr>
<tr>
<td></td>
<td>- For <code>bridge-group</code>, specify the bridge group number. The range is 1 to 255.</td>
</tr>
<tr>
<td></td>
<td>- For <code>seconds</code>, enter a number from 10 to 200. The default is 30 seconds.</td>
</tr>
<tr>
<td><strong>Step 3</strong> end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong> show running-config</td>
<td>Verify your entry.</td>
</tr>
<tr>
<td><strong>Step 5</strong> copy running-config startup-config</td>
<td>(Optional) Save your entry in the configuration file.</td>
</tr>
</tbody>
</table>

To return to the default setting, use the `no bridge bridge-group max-age` global configuration command.

This example shows how to change the maximum-idle interval to 30 seconds in bridge group 10:

```
Switch(config)# bridge 10 max-age 30
```
Disabling the Spanning Tree on an Interface

When a loop-free path exists between any two switched subnetworks, you can prevent BPDUs generated in one switching subnetwork from impacting devices in the other switching subnetwork, yet still permit switching throughout the network as a whole. For example, when switched LAN subnetworks are separated by a WAN, BPDUs can be prevented from traveling across the WAN link.

Beginning in privileged EXEC mode, follow these steps to disable spanning tree on an interface:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 3</td>
<td>bridge-group bridge-group spanning-disabled</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
<tr>
<td>Step 5</td>
<td>show running-config</td>
</tr>
<tr>
<td>Step 6</td>
<td>copy running-config startup-config</td>
</tr>
</tbody>
</table>

To re-enable spanning tree on the interface, use the `no bridge-group bridge-group spanning-disabled` interface configuration command.

This example shows how to disable spanning tree on an interface in bridge group 10:

```
Switch(config)# interface gigabitethernet0/1
Switch(config-if)# bridge group 10 spanning-disabled
```

Monitoring and Maintaining Fallback Bridging

To monitor and maintain fallback bridging, use one or more of the privileged EXEC commands in Table 35-2:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear bridge bridge-group</td>
<td>Removes any learned entries from the forwarding database and clears the transmit and receive counts for any statically configured entries.</td>
</tr>
<tr>
<td>show bridge [bridge-group]</td>
<td>Displays details about the bridge group.</td>
</tr>
<tr>
<td>show bridge [bridge-group] [interface-id] [address] [group] [verbose]</td>
<td>Displays classes of entries in the bridge forwarding database.</td>
</tr>
</tbody>
</table>

For information about the fields in these displays, refer to the `Cisco IOS Bridging and IBM Networking Command Reference for Release 12.1`. |
Troubleshooting

This chapter describes how to identify and resolve Catalyst 3550 software problems related to the IOS software. Depending on the nature of the problem, you can use the command-line interface (CLI) or the Cluster Management Suite (CMS) to identify and solve problems.

For complete syntax and usage information for the commands used in this chapter, refer to the command reference for this release and the Cisco IOS Command Summary for Release 12.1.

This chapter consists of these sections:

- Using Recovery Procedures, page 36-1
- Preventing Autonegotiation Mismatches, page 36-10
- GBIC Module Security and Identification, page 36-10
- Diagnosing Connectivity Problems, page 36-11
- Using Debug Commands, page 36-16
- Using the show forward Command, page 36-19
- Using the crashinfo File, page 36-20

If after applying ACLs, you are experiencing packet performance problems or receiving messages about TCAM capacity, see the “Displaying ACL Resource Usage and Configuration Problems” section on page 27-43.

Using Recovery Procedures

These recovery procedures require that you have physical access to the switch:

- Recovering from Corrupted Software, page 36-2
- Recovering from a Lost or Forgotten Password, page 36-2
- Recovering from a Command Switch Failure, page 36-6
- Recovering from Lost Member Connectivity, page 36-10
Recovering from Corrupted Software

Switch software can be corrupted during an upgrade, by downloading the wrong file to the switch, and by deleting the image file. In all of these cases, the switch does not pass the power-on self-test (POST), and there is no connectivity.

This procedure uses the XMODEM protocol to recover from a corrupt or wrong image file. There are many software packages that support the XMODEM protocol, and this procedure is largely dependent on the emulation software you are using.

Follow these steps to recover from corrupted software:

Step 1 Connect a PC with terminal-emulation software supporting the XMODEM protocol to the switch console port.

Step 2 Set the line speed on the emulation software to 9600 baud.

Step 3 Unplug the switch power cord.

Step 4 Press the Mode button, and at the same time, reconnect the power cord to the switch.

You can release the Mode button a second or two after the LED above port 1X turns off. Several lines of information about the software appear along with instructions:

The system has been interrupted prior to initializing the flash file system. The following commands will initialize the flash file system, and finish loading the operating system software:

```
flash_init
load_helper
boot
```

Step 5 Initialize the Flash file system:

```
switch# flash_init
```

Step 6 If you had set the console port speed to anything other than 9600, it has been reset to that particular speed. Change the emulation software line speed to match that of the switch console port.

Step 7 Load any helper files:

```
switch# load_helper
```

Step 8 Start the file transfer by using the XMODEM protocol.

```
switch# copy xmodem: flash:image_filename.bin
```

Step 9 After the XMODEM request appears, use the appropriate command on the terminal-emulation software to start the transfer and to copy the software image into Flash memory.

Recovering from a Lost or Forgotten Password

The default configuration for Catalyst 3550 switches allows an end user with physical access to the switch to recover from a lost password by interrupting the boot process during power-on and by entering a new password.
On Catalyst 3550 Fast Ethernet switches, a system administrator can disable some of the functionality of this feature by allowing an end user to reset a password only by agreeing to return to the default configuration. If you are an end user trying to reset a password on a Catalyst 3550 Fast Ethernet switch and password recover has been disabled, a status message shows this during the recovery process.

Follow the steps in this procedure if you have forgotten or lost the switch password.

**Step 1** Connect a terminal or PC with terminal-emulation software to the switch console port.

**Step 2** Set the line speed on the emulation software to 9600 baud.

**Step 3** Unplug the switch power cord.

**Step 4** Press the Mode button, and at the same time, reconnect the power cord to the switch.

You can release the Mode button a second or two after the LED above port 1X turns off. Several lines of information about the software appear with instructions, informing you if the password recovery procedure has been disabled or not.

- If you see a message that begins with this:
  
  The system has been interrupted prior to initializing the flash file system. The following commands will initialize the flash file system

  proceed to the “Password Recovery with Password Recovery Enabled” section on page 36-3, and follow the steps.

- If you see a message that begins with this:
  
  The password-recovery mechanism has been triggered, but is currently disabled.

  proceed to the “Procedure with Password Recovery Disabled” section on page 36-5, and follow the steps.

---

**Password Recovery with Password Recovery Enabled**

If the password-recovery mechanism is enabled, this message appears:

The system has been interrupted prior to initializing the flash file system. The following commands will initialize the flash file system, and finish loading the operating system software:

    flash_init
    load_helper
    boot

Follow these steps when the password-recovery is enabled:

**Step 1** Initialize the Flash file system:

    switch# flash_init

**Step 2** If you had set the console port speed to anything other than 9600, it has been reset to that particular speed. Change the emulation software line speed to match that of the switch console port.

**Step 3** Load any helper files:

    switch# load_helper
**Step 4** Display the contents of Flash memory:

```
switch# dir flash:
```

The switch file system is displayed:

```
Directory of flash:
13 drwx 192 Mar 01 1993 22:30:48 c3550-i5q3l2-mz-121-0.0.53
11 -rwx 5825 Mar 01 1993 22:31:59 config.text
17 -rwx 27 Mar 01 1993 22:30:57 env_vars
 5 -rwx 90 Mar 01 1993 22:30:57 system_env_vars
18 -rwx 720 Mar 01 1993 02:21:30 vlan.dat
```

16128000 bytes total (10003456 bytes free)

**Step 5** Rename the configuration file to config.text.old.

This file contains the password definition.

```
switch# rename flash:config.text flash:config.text.old
```

**Step 6** Boot the system:

```
switch# boot
```

You are prompted to start the setup program. Enter N at the prompt:

Continue with the configuration dialog? [yes/no]: N

**Step 7** At the switch prompt, enter privileged EXEC mode:

```
Switch> enable
```

**Step 8** Rename the configuration file to its original name:

```
Switch# rename flash:config.text.old flash:config.text
```

**Step 9** Copy the configuration file into memory:

```
Switch# copy flash:config.text system:running-config
```

Press Return in response to the confirmation prompts.

The configuration file is now reloaded, and you can change the password.

**Step 10** Enter global configuration mode:

```
Switch# configure terminal
```

**Step 11** Change the password:

```
Switch (config)# enable secret password
```

The secret password can be from 1 to 25 alphanumeric characters, can start with a number, is case sensitive, and allows spaces but ignores leading spaces.

**Step 12** Return to privileged EXEC mode:

```
Switch (config)# exit
Switch#
```

**Step 13** Write the running configuration to the startup configuration file:

```
Switch# copy running-config startup-config
```
The new password is now in the startup configuration.

Note

This procedure is likely to leave your switch virtual interface in a shutdown state. You can see which interface is in this state by entering the `show running-config` privileged EXEC command. To re-enable the interface, enter the `interface vlan vlan-id` global configuration command, and specify the VLAN ID of the shutdown interface. With the switch in interface configuration mode, enter the `no shutdown` command.

Procedure with Password Recovery Disabled

If the password-recovery mechanism is disabled, this message appears:

The password-recovery mechanism has been triggered, but is currently disabled. Access to the boot loader prompt through the password-recovery mechanism is disallowed at this point. However, if you agree to let the system be reset back to the default system configuration, access to the boot loader prompt can still be allowed.

Would you like to reset the system back to the default configuration (y/n)?

Caution

Returning the switch to the default configuration results in the loss of all existing configurations. We recommend that you contact your system administrator to verify if there are backup switch and VLAN configuration files.

- If you enter n (no), the normal boot process continues as if the Mode button had not been pressed; you cannot access the boot loader prompt, and you cannot enter a new password. You see the message:
  
  Press Enter to continue........

- If you enter y (yes), the configuration file in Flash memory and the VLAN database file are deleted. When the default configuration loads, you can reset the password.

Follow these steps when the password-recovery mechanism is disabled:

Step 1

Elect to continue with password recovery and lose the existing configuration:

Would you like to reset the system back to the default configuration (y/n)? Y

Step 2

Load any helper files:

Switch# load_helper

Step 3

Display the contents of Flash memory:

switch# dir flash:

The switch file system is displayed:

Directory of flash:

```
 13 drwx 192 Mar 01 1993 22:30:48 c3550-i5q3l2-mz-121-0.0.53
 17 -rwx 27 Mar 01 1993 22:30:57 env_vars
 5 -rwx 90 Mar 01 1993 22:30:57 system_env_vars
```
Step 4  Boot the system:

Switch# boot

You are prompted to start the setup program. To continue with password recovery, enter N at the prompt:

Continue with the configuration dialog? [yes/no]: N

Step 5  At the switch prompt, enter privileged EXEC mode:

Switch> enable

Step 6  Enter global configuration mode:

Switch# configure terminal

Step 7  Change the password:

Switch (config)# enable secret password

The secret password can be from 1 to 25 alphanumeric characters, can start with a number, is case sensitive, and allows spaces but ignores leading spaces.

Step 8  Return to privileged EXEC mode:

Switch (config)# exit
Switch#

Step 9  Write the running configuration to the startup configuration file:

Switch# copy running-config startup-config

The new password is now in the startup configuration.

Note  This procedure is likely to leave your switch virtual interface in a shutdown state. You can see which interface is in this state by entering the show running-config privileged EXEC command. To re-enable the interface, enter the interface vlan vlan-id global configuration command, and specify the VLAN ID of the shutdown interface. With the switch in interface configuration mode, enter the no shutdown command.

Step 10 You must now reconfigure the switch. If the system administrator has the backup switch and VLAN configuration files available, you should use those.

Recovering from a Command Switch Failure

This section describes how to recover from a failed command switch. You can configure a redundant command switch group by using the Hot Standby Router Protocol (HSRP). For more information, see Chapter 6, “Clustering Switches” and Chapter 31, “Configuring HSRP.”

Note  HSRP is the preferred method for supplying redundancy to a cluster.
If you have not configured a standby command switch, and your command switch loses power or fails in some other way, management contact with the member switches is lost, and you must install a new command switch. However, connectivity between switches that are still connected is not affected, and the member switches forward packets as usual. You can manage the members as standalone switches through the console port or, if they have IP addresses, through the other management interfaces.

You can prepare for a command switch failure by assigning an IP address to a member switch or another switch that is command-capable, making a note of the command-switch password, and cabling your cluster to have redundant connectivity between the member switches and the replacement command switch. This section describes two solutions for replacing a failed command switch:

- Replacing a failed command switch with a cluster member
- Replacing a failed command switch with another switch

For information on command-capable switches, refer to the release notes.

Replacing a Failed Command Switch with a Cluster Member

To replace a failed command switch with a command-capable member in the same cluster, follow these steps:

**Step 1** Disconnect the command switch from the member switches, and physically remove it from the cluster.

**Step 2** Insert the member switch in place of the failed command switch, and duplicate its connections to the cluster members.

**Step 3** Start a CLI session on the new command switch.

You can access the CLI by using the console port or, if an IP address has been assigned to the switch, by using Telnet. For details about using the console port, refer to the switch hardware installation guide.

**Step 4** At the switch prompt, enter privileged EXEC mode:

```
Switch> enable
Switch#
```

**Step 5** Enter the password of the failed command switch.

**Step 6** Enter global configuration mode.

```
Switch# configure terminal
```

Enter configuration commands, one per line. End with CNTL/Z.

**Step 7** Remove the member switch from the cluster.

```
Switch(config)# no cluster commander-address
```

**Step 8** Return to privileged EXEC mode.

```
Switch(config)# end
Switch#
```

**Step 9** Use the setup program to configure the switch IP information. This program prompts you for IP address information and passwords. From privileged EXEC mode, enter `setup`, and press Return.

```
Switch# setup

--- System Configuration Dialog ---
Continue with configuration dialog? [yes/no]: y
```

At any point you may enter a question mark '?' for help.
Use ctrl-c to abort configuration dialog at any prompt.
Default settings are in square brackets '[]'.
Basic management setup configures only enough connectivity for management of the system, extended setup will ask you to configure each interface on the system.

Would you like to enter basic management setup? [yes/no]:

**Step 10** Enter Y at the first prompt.

The prompts in the setup program vary depending on the member switch you selected to be the command switch:

Continue with configuration dialog? [yes/no]: y

or

Configuring global parameters:

If this prompt does not appear, enter enable, and press Return. Enter setup, and press Return to start the setup program.

**Step 11** Respond to the questions in the setup program.

When prompted for the host name, recall that on a command switch, the host name is limited to 28 characters; on a member switch to 31 characters. Do not use -n, where n is a number, as the last characters in a host name for any switch.

When prompted for the Telnet (virtual terminal) password, recall that it can be from 1 to 25 alphanumeric characters, is case sensitive, allows spaces, but ignores leading spaces.

**Step 12** When prompted for the enable secret and enable passwords, enter the passwords of the failed command switch again.

**Step 13** When prompted, make sure to enable the switch as the cluster command switch, and press Return.

**Step 14** When prompted, assign a name to the cluster, and press Return.

The cluster name can be 1 to 31 alphanumeric characters, dashes, or underscores.

**Step 15** After the initial configuration appears, verify that the addresses are correct.

**Step 16** If the displayed information is correct, enter Y, and press Return.

If this information is not correct, enter N, press Return, and begin again at Step 9.

**Step 17** Start your browser, and enter the IP address of the new command switch.

**Step 18** From the Cluster menu, select Add to Cluster to display a list of candidate switches to add to the cluster.

---

**Replacing a Failed Command Switch with Another Switch**

To replace a failed command switch with a switch that is command-capable but not part of the cluster, follow these steps:

**Step 1** Insert the new switch in place of the failed command switch, and duplicate its connections to the cluster members.

**Step 2** Start a CLI session on the new command switch.

You can access the CLI by using the console port or, if an IP address has been assigned to the switch, by using Telnet. For details about using the console port, refer to the switch hardware installation guide.
Step 3  At the switch prompt, enter privileged EXEC mode:

```
Switch> enable
Switch#
```

Step 4  Enter the password of the failed command switch.

Step 5  Use the setup program to configure the switch IP information.

This program prompts you for IP address information and passwords. From privileged EXEC mode, enter setup, and press Return.

```
Switch# setup
--- System Configuration Dialog ---
Continue with configuration dialog? [yes/no]: y

At any point you may enter a question mark '?' for help. Use ctrl-c to abort configuration dialog at any prompt.
Default settings are in square brackets '[]'.

Basic management setup configures only enough connectivity for management of the system, extended setup will ask you to configure each interface on the system

Would you like to enter basic management setup? [yes/no]:
```

Step 6  Enter Y at the first prompt.

The prompts in the setup program vary depending on the switch you selected to be the command switch:

```
Continue with configuration dialog? [yes/no]: y
```

Step 7  Respond to the questions in the setup program.

When prompted for the host name, recall that on a command switch, the host name is limited to 28 characters. Do not use -n, where n is a number, as the last characters in a host name for any switch.

When prompted for the Telnet (virtual terminal) password, recall that it can be from 1 to 25 alphanumeric characters, is case sensitive, allows spaces, but ignores leading spaces.

Step 8  When prompted for the enable secret and enable passwords, enter the passwords of the failed command switch again.

Step 9  When prompted, make sure to enable the switch as the cluster command switch, and press Return.

Step 10 When prompted, assign a name to the cluster, and press Return.

The cluster name can be 1 to 31 alphanumeric characters, dashes, or underscores.

Step 11 When the initial configuration displays, verify that the addresses are correct.

Step 12 If the displayed information is correct, enter Y, and press Return.

If this information is not correct, enter N, press Return, and begin again at Step 9.

Step 13 Start your browser, and enter the IP address of the new command switch.

Step 14 From the Cluster menu, select Add to Cluster to display a list of candidate switches to add to the cluster.
Recovering from Lost Member Connectivity

Some configurations can prevent the command switch from maintaining contact with member switches. If you are unable to maintain management contact with a member, and the member switch is forwarding packets normally, check for these conflicts:

- A member switch (Catalyst 3550, Catalyst 3500 XL, Catalyst 2950, Catalyst 2955, Catalyst 2900 XL, Catalyst 2820, and Catalyst 1900 switch) cannot connect to the command switch through a port that is defined as a network port.
- Catalyst 3500 XL, Catalyst 2900 XL, Catalyst 2820, and Catalyst 1900 member switches must connect to the command switch through a port that belongs to the same management VLAN.
- A member switch (Catalyst 3550, Catalyst 2950, Catalyst 3500 XL, Catalyst 2900 XL, Catalyst 2820, and Catalyst 1900 switch) connected to the command switch through a secured port can lose connectivity if the port is disabled because of a security violation.

Preventing Autonegotiation Mismatches

The IEEE 802.3AB autonegotiation protocol manages the switch settings for speed (10 Mbps, 100 Mbps, and 1000 Mbps excluding GBIC ports) and duplex (half or full). There are situations when this protocol can incorrectly align these settings, reducing performance. A mismatch occurs under these circumstances:

- A manually-set speed or duplex parameter is different from the manually set speed or duplex parameter on the connected port.
- A port is set to autonegotiate, and the connected port is set to full duplex with no autonegotiation.

To maximize switch performance and ensure a link, follow one of these guidelines when changing the settings for duplex and speed:

- Let both ports autonegotiate both speed and duplex.
- Manually set the speed and duplex parameters for the ports on both ends of the connection.

Note

If a remote device does not autonegotiate, configure the duplex settings on the two ports to match. The speed parameter can adjust itself even if the connected port does not autonegotiate.

GBIC Module Security and Identification

Cisco-approved Course Wave Division Multiplexer (CWDM) Gigabit Interface Converter (GBIC) modules have a serial EEPROM that contains the module serial number, the vendor name and ID, a unique security code, and cyclic redundancy check (CRC). When a CWDM GBIC module is inserted in the switch, the switch software reads the EEPROM to check the serial number, vendor name and vendor ID, and recompute the security code and CRC. If the serial number, the vendor name or vendor ID, the security code, or CRC is invalid, the switch places the interface in an error-disabled state.

Note

If you are using a non-Cisco approved CWDM GBIC module, remove the GBIC or SFP module from the switch, and replace it with a Cisco-approved module.
After inserting a Cisco-approved GBIC module, use the `errdisable recovery cause gbic-invalid` global configuration command to verify the port status, and enter a time interval for recovering from the error-disabled state. After the elapsed interval, the switch brings the interface out of the error-disabled state and retries the operation. For more information about the `errdisable recovery` command, refer to the command reference for this release.

**Diagnosing Connectivity Problems**

This section describes how to troubleshoot connectivity problems:

- Using Ping, page 36-11
- Using IP Traceroute, page 36-12
- Using Layer 2 Traceroute, page 36-14

**Using Ping**

This section consists of this information:

- Understanding Ping, page 36-11
- Executing Ping, page 36-11

**Understanding Ping**

The switch supports IP ping, which you can use to test connectivity to remote hosts. Ping sends an echo request packet to an address and waits for a reply. Ping returns one of these responses:

- Normal response—The normal response (hostname is alive) occurs in 1 to 10 seconds, depending on network traffic.
- Destination does not respond—If the host does not respond, a `no-answer` message is returned.
- Unknown host—If the host does not exist, an `unknown host` message is returned.
- Destination unreachable—If the default gateway cannot reach the specified network, a `destination-unreachable` message is returned.
- Network or host unreachable—If there is no entry in the route table for the host or network, a `network or host unreachable` message is returned.

**Executing Ping**

If you attempt to ping a host in a different IP subnetwork, you must define a static route to the network or have IP routing configured to route between those subnets. For more information, see Chapter 30, “Configuring IP Unicast Routing.”

IP routing is disabled by default on all switches. If you need to enable or configure IP routing, see Chapter 30, “Configuring IP Unicast Routing.”
Beginning in privileged EXEC mode, use this command to ping another device on the network from the switch:

```
Command Purpose
ping [ip] {host | address} Ping a remote host through IP or by supplying the host name or
 network address.
```

**Note**

Though other protocol keywords are available with the `ping` command, they are not supported in this release.

This example shows how to ping an IP host:

```
Switch# ping 172.20.52.3
```

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echoes to 172.20.52.3, timeout is 2 seconds:

```
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms
```

Switch#

Table 36-1 describes the possible ping character output.

**Table 36-1 Ping Output Display Characters**

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Each exclamation point means receipt of a reply.</td>
</tr>
<tr>
<td>.</td>
<td>Each period means the network server timed out while waiting for a reply.</td>
</tr>
<tr>
<td>U</td>
<td>A destination unreachable error PDU was received.</td>
</tr>
<tr>
<td>C</td>
<td>A congestion experienced packet was received.</td>
</tr>
<tr>
<td>I</td>
<td>User interrupted test.</td>
</tr>
<tr>
<td>?</td>
<td>Unknown packet type.</td>
</tr>
<tr>
<td>&amp;</td>
<td>Packet lifetime exceeded.</td>
</tr>
</tbody>
</table>

To terminate a ping session, enter the escape sequence (Ctrl-^ X by default). You enter the default by simultaneously pressing and releasing the Ctrl, Shift, and 6 keys, and then pressing the X key.

**Using IP Traceroute**

This section consists of this information:

- Understanding IP Traceroute, page 36-13
- Executing IP Traceroute, page 36-13
Understanding IP Traceroute

You can use IP traceroute to identify the path that packets take through the network on a hop-by-hop basis. The command output displays all network layer (Layer 3) devices, such as routers, that the traffic passes through on the way to the destination.

Your switches can participate as the source or destination of the traceroute privileged EXEC command and might or might not appear as a hop in the traceroute command output. If the switch is the destination of the traceroute, it is displayed as the final destination in the traceroute output. Intermediate switches do not show up in the traceroute output if they are only bridging the packet from one port to another within the same VLAN. However, if the intermediate switch is a multilayer switch that is routing a particular packet, this switch shows up as a hop in the traceroute output.

The traceroute privileged EXEC command uses the Time To Live (TTL) field in the IP header to cause routers and servers to generate specific return messages. Traceroute starts by sending a User Datagram Protocol (UDP) datagram to the destination host with the TTL field set to 1. If a router finds a TTL value of 1 or 0, it drops the datagram and sends back an Internet Control Message Protocol (ICMP) time-to-live-exceeded message to the sender. Traceroute determines the address of the first hop by examining the source address field of the ICMP time-to-live-exceeded message.

To identify the next hop, traceroute sends a UDP packet with a TTL value of 2. The first router decrements the TTL field by 1 and sends the datagram to the next router. The second router sees a TTL value of 1, discards the datagram, and returns the time-to-live-exceeded message to the source. This process continues until the TTL is incremented to a value large enough for the datagram to reach the destination host (or until the maximum TTL is reached).

To determine when a datagram reaches its destination, traceroute sets the UDP destination port number in the datagram to a very large value that the destination host is unlikely to be using. When a host receives a datagram destined to itself containing a destination port number that is unused locally, it sends an ICMP port unreachable error to the source. Because all errors except port unreachable errors come from intermediate hops, the receipt of a port unreachable error means this message was sent by the destination.

Executing IP Traceroute

Beginning in privileged EXEC mode, follow this step to trace the path packets take through the network:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>traceroute ip host</td>
<td>Trace the path packets take through the network by using IP.</td>
</tr>
</tbody>
</table>

Note

Though other protocol keywords are available with the traceroute privileged EXEC command, they are not supported in this release.
This example shows how to perform a `traceroute` to an IP host:

```
Switch# traceroute ip 171.9.15.10
```

Type escape sequence to abort.
Tracing the route to 171.69.115.10

1 172.2.52.1 0 msec 0 msec 4 msec
2 172.2.1.203 12 msec 8 msec 0 msec
3 171.9.16.6 4 msec 0 msec 0 msec
4 171.9.4.5 0 msec 4 msec 0 msec
5 171.9.121.34 0 msec 4 msec 4 msec
6 171.9.15.9 120 msec 132 msec 128 msec
7 171.9.15.10 132 msec 128 msec 128 msec

Switch#
```

The display shows the hop count, IP address of the router, and the round-trip time in milliseconds for each of the three probes that are sent.

Table 36-2 Traceroute Output Display Characters

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>The probe timed out.</td>
</tr>
<tr>
<td>?</td>
<td>Unknown packet type.</td>
</tr>
<tr>
<td>A</td>
<td>Administratively unreachable. Usually, this output means that an access list is blocking traffic.</td>
</tr>
<tr>
<td>H</td>
<td>Host unreachable.</td>
</tr>
<tr>
<td>N</td>
<td>Network unreachable.</td>
</tr>
<tr>
<td>P</td>
<td>Protocol unreachable.</td>
</tr>
<tr>
<td>Q</td>
<td>Source quench.</td>
</tr>
<tr>
<td>U</td>
<td>Port unreachable.</td>
</tr>
</tbody>
</table>

To terminate a trace in progress, enter the escape sequence (**Ctrl-^ X** by default). You enter the default by simultaneously pressing and releasing the **Ctrl**, Shift, and 6 keys, and then pressing the X key.

Using Layer 2 Traceroute

This section describes this information:

- Understanding Layer 2 Traceroute, page 36-15
- Switches Supporting Layer 2 Traceroute, page 36-15
- Usage Guidelines, page 36-15
- Displaying the Physical Path, page 36-16
Understanding Layer 2 Traceroute

The Layer 2 traceroute feature allows the switch to identify the physical path that a packet takes from a source device to a destination device. Layer 2 traceroute supports only unicast source and destination MAC addresses. It determines the path by using the MAC address tables of the switches in the path. When the switch detects a device in the path that does not support Layer 2 traceroute, the switch continues to send Layer 2 trace queries and lets them time out.

The switch can only identify the path from the source device to the destination device. It cannot identify the path that a packet takes from source host to the source device or from the destination device to the destination host.

Switches Supporting Layer 2 Traceroute

The Layer 2 traceroute feature is available on these switches:

- Catalyst 2950 and Catalyst 2955 switches running Release 12.1(12c)EA1 or later
- Catalyst 3550 switches running Release 12.1(12c)EA1 or later
- Catalyst 4000 switches running Catalyst software Release 6.2 or later for the supervisor engine
- Catalyst 5000 switches running Catalyst software Release 6.1 or later for the supervisor engine
- Catalyst 6000 switches running Catalyst software Release 6.1 or later for the supervisor engine

Usage Guidelines

These are the Layer 2 traceroute usage guidelines:

- Cisco Discovery Protocol (CDP) must be enabled on all the devices in the network. For Layer 2 traceroute to functional properly, do not disable CDP.

 For a list of switches that support Layer 2 traceroute, see the “Switches Supporting Layer 2 Traceroute” section on page 36-15. If any devices in the physical path are transparent to CDP, the switch cannot identify the path through these devices.

 \[\text{Note} \]

 For more information about enabling CDP, see Chapter 21, “Configuring CDP.”

- A switch is reachable from another switch when you can test connectivity by using the ping privileged EXEC command. All switches in the physical path must be reachable from each other.

- The maximum number of hops identified in the path is ten.

- You can enter the traceroute mac or the traceroute mac ip privileged EXEC command on a switch that is not in the physical path from the source device to the destination device. All switches in the path must be reachable from this switch.

- The traceroute mac command output shows the Layer 2 path only when the specified source and destination MAC addresses belong to the same VLAN. If you specify source and destination MAC addresses that belong to different VLANs, the Layer 2 path is not identified, and an error message appears.

- If you specify a multicast source or destination MAC address, the path is not identified, and an error message appears.
If the source or destination MAC address belongs to multiple VLANs, you must specify the VLAN to which both the source and destination MAC addresses belong. If the VLAN is not specified, the path is not identified, and an error message appears.

The `traceroute mac ip` command output shows the Layer 2 path when the specified source and destination IP addresses belong to the same subnet. When you specify the IP addresses, the switch uses Address Resolution Protocol (ARP) to associate the IP addresses with the corresponding MAC addresses and the VLAN IDs.

- If an ARP entry exists for the specified IP address, the switch uses the associated MAC address and identifies the physical path.
- If an ARP entry does not exist, the switch sends an ARP query and tries to resolve the IP address. If the IP address is not resolved, the path is not identified, and an error message appears.

When multiple devices are attached to one port through hubs (for example, multiple CDP neighbors are detected on a port), the Layer 2 traceroute feature is not supported. When more than one CDP neighbor is detected on a port, the Layer 2 path is not identified, and an error message appears.

This feature is not supported in Token Ring VLANs.

Displaying the Physical Path

You can display physical path that a packet takes from a source device to a destination device by using one of these privileged EXEC commands:

- `traceroute mac [interface interface-id] [source-mac-address] [interface interface-id] [destination-mac-address] [vlan vlan-id] [detail]`
- `traceroute mac ip [source-ip-address | source-hostname] [destination-ip-address | destination-hostname] [detail]`

For more information, refer to the command reference for this release.

Using Debug Commands

This section explains how you use the `debug` commands to diagnose and resolve internetworking problems. It contains this information:

- Enabling Debugging on a Specific Feature, page 36-17
- Enabling All-System Diagnostics, page 36-17
- Redirecting Debug and Error Message Output, page 36-18
- Using the `debug autoqos` Command, page 36-18

⚠️ Caution

Because debugging output is assigned high priority in the CPU process, it can render the system unusable. For this reason, use `debug` commands only to troubleshoot specific problems or during troubleshooting sessions with Cisco technical support staff. It is best to use `debug` commands during periods of lower network traffic and fewer users. Debugging during these periods decreases the likelihood that increased `debug` command processing overhead will affect system use.
For complete syntax and usage information for specific `debug` commands, refer to the command reference for this release.

Enabling Debugging on a Specific Feature

All `debug` commands are entered in privileged EXEC mode, and most `debug` commands take no arguments. For example, beginning in privileged EXEC mode, enter this command to enable the debugging for Switched Port Analyzer (SPAN):

```
Switch# debug span-session
```

The switch continues to generate output until you enter the `no` form of the command.

If you enable a `debug` command and no output appears, consider these possibilities:

- The switch might not be properly configured to generate the type of traffic you want to monitor. Use the `show running-config` command to check its configuration.
- Even if the switch is properly configured, it might not generate the type of traffic you want to monitor during the particular period that debugging is enabled. Depending on the feature you are debugging, you can use commands such as the TCP/IP `ping` command to generate network traffic.

To disable debugging of SPAN, enter this command in privileged EXEC mode:

```
Switch# no debug span-session
```

Alternately, in privileged EXEC mode, you can enter the `undebug` form of the command:

```
Switch# undebug span-session
```

To display the state of each debugging option, enter this command in privileged EXEC mode:

```
Switch# show debugging
```

Enabling All-System Diagnostics

Beginning in privileged EXEC mode, enter this command to enable all-system diagnostics:

```
Switch# debug all
```

Because debugging output takes priority over other network traffic, and because the `debug all` privileged EXEC command generates more output than any other `debug` command, it can severely diminish switch performance or even render it unusable. In virtually all cases, it is best to use more specific `debug` commands.

The `no debug all` privileged EXEC command disables all diagnostic output. Using the `no debug all` command is a convenient way to ensure that you have not accidentally left any `debug` commands enabled.
Redirecting Debug and Error Message Output

By default, the network server sends the output from `debug` commands and system error messages to the console. If you use this default, you can use a virtual terminal connection to monitor debug output instead of connecting to the console port.

Possible destinations include the console, virtual terminals, internal buffer, and UNIX hosts running a syslog server. The syslog format is compatible with 4.3 Berkeley Standard Distribution (BSD) UNIX and its derivatives.

Note

Be aware that the debugging destination you use affects system overhead. Logging messages to the console produces very high overhead, whereas logging messages to a virtual terminal produces less overhead. Logging messages to a syslog server produces even less, and logging to an internal buffer produces the least overhead of any method.

For more information about system message logging, see Chapter 25, “Configuring System Message Logging.”

Using the `debug autoqos` Command

You can use the `debug autoqos` privileged EXEC command to display quality of service (QoS) commands that are automatically generated when automatic-QoS (auto-QoS) is enabled.

Beginning in privileged EXEC mode, follow these steps to display the QoS commands and enable auto-QoS for voice over IP (VoIP) within a QoS domain:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>debug autoqos</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface interface-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>**auto qos voip {cisco-phone</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Using the show forward Command

The output from the `show forward` privileged EXEC command has some useful information about the disposition of a packet entering an interface. Depending upon the parameters entered about the packet, the output shows lookup table results, maps and masks used to calculate forwarding destinations, bitmaps, and egress information.

For more syntax and usage information for the `show forward` command, refer to the command reference for this release.

This is an example of the output from the `show forward` privileged EXEC command for Fast Ethernet port 8, where VLAN ID, source and destination MAC addresses, and source and destination IP addresses were specified.

```
Switch# show forward fastethernet 0/8 vlan 8 0000.1111.2222 0022.3355.9800 ip 8.8.8.10 4.4.4.33 255
signature:00000007, comparison ind:10, control info:2000941A control map:00000000
vlan:8, vland entry:000C0012 00000000 00000000 04620000
vlan:8, vland entry:000C0012 00000000 00000000 04620000

lookup key                  bk adata    rawoff secoff sec
qos  940808080A04040421 8000000000000FF0000 0 00000000 006304 004064  4
acl  940808080A04040421 8000000000000FF0000 1 00000082 045408 002016  1
learn 1b7008000011112222 801008002233559800 0 80010003 002176 002176  0
forw  1b7008000011112222 801008002233559800 1 40020000 043328 010560  5

bridgeDestMap: 00000000 00000000 0002FFFF FFFFFFC7
vlanMask: 00000000 00000000 00000000 00000000
portMask: 00000000 00000000 00000000 00000000
sourceMask: 00000000 00000000 00000000 00000000
globalMask: 00000000 00000000 00000000 00000000
globalMask: 00000000 00000000 0002FFFF FFFFFFC3
forwMap: 00000000 00000000 00000000 00000000

frame notifies:
```
Using the crashinfo File

The crashinfo file saves information that helps Cisco technical support representatives to debug problems that caused the IOS image to fail (crash). The switch writes the crash information to the console at the time of the failure, and the file is created the next time you boot the IOS image after the failure (instead of while the system is failing).

The information in the file includes the IOS image name and version that failed, a dump of the processor registers, and a stack trace. You can give this information to the Cisco technical support representative by using the `show tech-support` privileged EXEC command.

All crashinfo files are kept in this directory on the Flash file system:

```
flash:/crashinfo/crashinfo_n
```

where `n` is a sequence number.

Each new crashinfo file that is created uses a sequence number that is larger than any previously-existing sequence number, so the file with the largest sequence number describes the most recent failure. Version numbers are used instead of a timestamp because the switches do not include a real-time clock. You cannot change the name of the file that the system will use when it creates the file. However, after the file is created, you can use the `rename` privileged EXEC command to rename it, but the contents of the renamed file will not be displayed by the `show stacks` or the `show tech-support` privileged EXEC command. You can delete crashinfo files by using the `delete` privileged EXEC command.

You can display the most recent crashinfo file (that is, the file with the highest sequence number at the end of its filename) by entering the `show stacks` or the `show tech-support` privileged EXEC command. You also can access the file by using any command that can copy or display files, such as the `more` or the `copy` privileged EXEC command.
Supported MIBs

This appendix lists the Catalyst 3550 supported management information base (MIBs) for this release. It contains these sections:

- MIB List, page A-1
- Using FTP to Access the MIB Files, page A-3

MIB List

- BRIDGE-MIB (RFC1493)
- CISCO-BULK-FILE-MIB
- CISCO-CDP-MIB
- CISCO-CLUSTER-MIB
- CISCO_CONFIG_COPY_MIB
- CISCO-CONFIG-MAN-MIB
- CISCO-ENTITY-MIB
- CISCO_ENVMON_MIB
- CISCO-FLASH-MIB
- CISCO-FTP-CLIENT-MIB
- CISCO-HSRP-MIB
- CISCO-HSRP-EXT-MIB
- CISCO-IGMP-FILTER-MIB
- CISCO-IPMROUTE-MIB
- CISCO-IMAGE-MIB
- CISCO-L2L3-INTERFACE-MIB
- CISCO-MAC-NOTIFICATION-MIB
- CISCO-MEMORY-POOL-MIB
- CISCO-PAGP-MIB
- CISCO-PORT-QOS-MIB
- CISCO-PORT-SECURITY-MIB
- CISCO-PROCESS-MIB
- CISCO-RTTMON-MIB (subsystems supported: sub_rtt_rmon and sub_rtt_rmonlib)
- CISCO-STACK-MIB (only a subset of the available MIB objects are implemented; not all objects are supported)
- CISCO_STACKMAKER_MIB
- CISCO-SYSLOG-MIB
- CISCO-STP-EXTENSIONS-MIB
- CISCO-TCP-MIB
- CISCO-VLAN-IFINDEX-RELATIONSHIP-MIB
- CISCO-VLAN-IFTABLE-RELATIONSHIP-MIB
- CISCO-VLAN-MEMBERSHIP-MIB
- CISCO-VTP-MIB
- ENTITY-MIB
- IF-MIB
- IGMP-MIB
- IPMROUTE-MIB
- OSPF-MIB (RFC 1253)
- OLD-CISCO-CHASSIS-MIB
- OLD-CISCO-SYSTEM-MIB
- OLD-CISCO-TS-MIB
- PIM-MIB
- RFC1213-MIB
- RMON1-MIB (only RMON etherStats, etherHistory, alarms, and events are supported)
- RMON2-MIB
- SNMPv2-MIB
- TCP-MIB
- UDP-MIB

Note

You can also check this URL for a list of MIBs supported by the Catalyst 3550 switch:

You can access other information about MIBs and Cisco products on the Cisco web site:
Using FTP to Access the MIB Files

You can obtain each MIB file by using this procedure:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Use FTP to access the server ftp.cisco.com.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Log in with the username anonymous.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Enter your e-mail username when prompted for the password.</td>
</tr>
<tr>
<td>Step 4</td>
<td>At the ftp> prompt, change directories to /pub/mibs/v1 and the /pub/mibs/v2.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Use the get MIB_filename command to obtain a copy of the MIB file.</td>
</tr>
</tbody>
</table>
Using FTP to Access the MIB Files
Working with the IOS File System, Configuration Files, and Software Images

This appendix describes how to manipulate the Flash file system, how to copy configuration files, and how to archive (upload and download) software images.

For complete syntax and usage information for the commands used in this chapter, refer to the Catalyst 3550 Multilayer Switch Command Reference for this release and the Cisco IOS Configuration Fundamentals Command Reference for Release 12.1.

This appendix consists of these sections:
- Working with the Flash File System, page B-1
- Working with Configuration Files, page B-8
- Working with Software Images, page B-19

Working with the Flash File System

The Flash file system on your switch provides several commands to help you manage software image and configuration files.

The Flash file system is a single Flash device on which you can store files. This Flash device is called flash:.

This section contains this information:
- Displaying Available File Systems, page B-2
- Setting the Default File System, page B-3
- Displaying Information about Files on a File System, page B-3
- Creating and Removing Directories, page B-4
- Copying Files, page B-4
- Deleting Files, page B-5
- Creating, Displaying, and Extracting tar Files, page B-6
- Displaying the Contents of a File, page B-8
Displaying Available File Systems

To display the available file systems on your switch, use the **show file systems** privileged EXEC command as shown in this example:

```
Switch# show file systems
File Systems:
+-----------------+-----+---------+-----+----------+----------------+
<table>
<thead>
<tr>
<th>Size(b)</th>
<th>Free(b)</th>
<th>Type</th>
<th>Flags</th>
<th>Prefixes</th>
</tr>
</thead>
<tbody>
<tr>
<td>16128000</td>
<td>11118592</td>
<td>flash</td>
<td>rw</td>
<td>zflash:</td>
</tr>
<tr>
<td>16128000</td>
<td>11118592</td>
<td>unknown</td>
<td>rw</td>
<td></td>
</tr>
<tr>
<td>32768</td>
<td>26363</td>
<td>nvram</td>
<td>rw</td>
<td>nvram:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>network</td>
<td>rw</td>
<td>tftp:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opaque</td>
<td>rw</td>
<td>null:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opaque</td>
<td>rw</td>
<td>system:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>opaque</td>
<td>ro</td>
<td>xmodem:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>network</td>
<td>rw</td>
<td>rcp:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>network</td>
<td>rw</td>
<td>ftp:</td>
</tr>
</tbody>
</table>
```

Table B-1: show file systems Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size(b)</td>
<td>Amount of memory in the file system in bytes.</td>
</tr>
<tr>
<td>Free(b)</td>
<td>Amount of free memory in the file system in bytes.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of file system.</td>
</tr>
<tr>
<td></td>
<td>flash—The file system is for a Flash memory device.</td>
</tr>
<tr>
<td></td>
<td>nvram—The file system is for a nonvolatile RAM (NVRAM) device.</td>
</tr>
<tr>
<td></td>
<td>opaque—The file system is a locally generated pseudo file system (for example, the system) or a download interface, such as brimux.</td>
</tr>
<tr>
<td></td>
<td>unknown—The file system is an unknown type.</td>
</tr>
<tr>
<td>Flags</td>
<td>Permission for file system.</td>
</tr>
<tr>
<td></td>
<td>ro—read-only.</td>
</tr>
<tr>
<td></td>
<td>rw—read/write.</td>
</tr>
<tr>
<td></td>
<td>wo—write-only.</td>
</tr>
<tr>
<td>Prefixes</td>
<td>Alias for file system.</td>
</tr>
<tr>
<td></td>
<td>flash:—Flash file system.</td>
</tr>
<tr>
<td></td>
<td>nvram:—NVRAM.</td>
</tr>
<tr>
<td></td>
<td>null:—Null destination for copies. You can copy a remote file to null to determine its size.</td>
</tr>
<tr>
<td></td>
<td>rcp:—Remote Copy Protocol (RCP) network server.</td>
</tr>
<tr>
<td></td>
<td>system:—Contains the system memory, including the running configuration.</td>
</tr>
<tr>
<td></td>
<td>tftp:—Trivial File Transfer Protocol (TFTP) network server.</td>
</tr>
<tr>
<td></td>
<td>xmodem:—Obtain the file from a network machine by using the XMODEM protocol.</td>
</tr>
<tr>
<td></td>
<td>ymodem:—Obtain the file from a network machine by using the YMODEM protocol.</td>
</tr>
<tr>
<td></td>
<td>zflash:—Read-only file decompression file system, which mirrors the contents of the Flash file system.</td>
</tr>
</tbody>
</table>
Setting the Default File System

You can specify the file system or directory that the system uses as the default file system by using the `cd filesystem: privileged EXEC command. You can set the default file system to omit the `filesystem:` argument from related commands. For example, for all privileged EXEC commands that have the optional `filesystem:` argument, the system uses the file system specified by the `cd` command.

By default, the default file system is `flash:`.

You can display the current default file system as specified by the `cd` command by using the `pwd` privileged EXEC command.

Displaying Information about Files on a File System

You can view a list of the contents of a file system before manipulating its contents. For example, before copying a new configuration file to Flash memory, you might want to verify that the file system does not already contain a configuration file with the same name. Similarly, before copying a Flash configuration file to another location, you might want to verify its filename for use in another command.

To display information about files on a file system, use one of the privileged EXEC commands in Table B-2:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dir [all] [filesystem:][filename]</code></td>
<td>Display a list of files on a file system.</td>
</tr>
<tr>
<td><code>show file systems</code></td>
<td>Display more information about each of the files on a file system.</td>
</tr>
<tr>
<td><code>show file information file-url</code></td>
<td>Display information about a specific file.</td>
</tr>
<tr>
<td><code>show file descriptors</code></td>
<td>Display a list of open file descriptors. File descriptors are the internal representations of open files. You can use this command to see if another user has a file open.</td>
</tr>
</tbody>
</table>

Changing Directories and Displaying the Working Directory

Beginning in privileged EXEC mode, follow these steps to change directories and display the working directory.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>dir filesystem:</code></td>
<td>Display the directories on the specified file system. For <code>filesystem:</code>; use <code>flash:</code> for the system board Flash device.</td>
</tr>
<tr>
<td>2</td>
<td><code>cd new_configs</code></td>
<td>Change to the directory of interest. The command example shows how to change to the directory named <code>new_configs</code>.</td>
</tr>
<tr>
<td>3</td>
<td><code>pwd</code></td>
<td>Display the working directory.</td>
</tr>
</tbody>
</table>
Creating and Removing Directories

Beginning in privileged EXEC mode, follow these steps to create and remove a directory:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| | dir filesystem: | Display the directories on the specified file system.
| | | For filesystem:, use flash: for the system board Flash device. |

| Step 2 | mkdir old_configs | Create a new directory.
| | | The command example shows how to create the directory named old_configs.
| | | Directory names are case sensitive.
| | | Directory names are limited to 45 characters between the slashes (/); the name cannot contain control characters, spaces, deletes, slashes, quotes, semicolons, or colons. |

| Step 3 | dir filesystem: | Verify your entry. |

To delete a directory with all its files and subdirectories, use the `delete /force /recursive filesystem:/file-url` privileged EXEC command.

Use the `/recursive` keyword to delete the named directory and all subdirectories and the files contained in it. Use the `/force` keyword to suppress the prompting that confirms a deletion of each file in the directory. You are prompted only once at the beginning of this deletion process. Use the `/force` and `/recursive` keywords for deleting old software images that were installed by using the `archive download-sw` command but are no longer needed.

For `filesystem`, use `flash:` for the system board Flash device. For `file-url`, enter the name of the directory to be deleted. All the files in the directory and the directory are removed.

⚠️ Caution

When files and directories are deleted, their contents cannot be recovered.

Copying Files

To copy a file from a source to a destination, use the `copy [erase] source-url destination-url` privileged EXEC command. For the source and destination URLs, you can use running-config and startup-config keyword shortcuts. For example, the `copy running-config startup-config` command saves the currently running configuration file to the NVRAM section of Flash memory to be used as the configuration during system initialization.

You can also copy to and from special file systems (`xmodem:`, `ymodem:`) as the source or destination for the file from a network machine that uses the XMODEM or YMODEM protocol.

Network file system URLs include `ftp:`, `rcp:`, and `tftp:` and have these syntaxes:

- File Transfer Protocol (FTP)—`ftp:[//username [:password]@location]/directory]/filename`
- Remote Copy Protocol (RCP)—`rcp:[//username@location]/directory]/filename`
- Trivial File Transfer Protocol (TFTP)—`tftp:[//location]/directory]/filename`

Local writable file systems include `flash:`.
Some invalid combinations of source and destination exist. Specifically, you cannot copy these combinations:

- From a running configuration to a running configuration
- From a startup configuration to a startup configuration
- From a device to the same device (for example, the `copy flash: flash:` command is invalid)

For specific examples of using the `copy` command with configuration files, see the “Working with Configuration Files” section on page B-8.

To copy software images either by downloading a new version or uploading the existing one, use the `archive download-sw` or the `archive upload-sw` privileged EXEC command. For more information, see the “Working with Software Images” section on page B-19.

Deleting Files

When you no longer need a file on a Flash memory device, you can permanently delete it. To delete a file or directory from a specified Flash device, use the `delete [/force] [/recursive] [filesystem:]file-url` privileged EXEC command.

Use the `/recursive` keyword for deleting a directory and all subdirectories and the files contained in it. Use the `/force` keyword to suppress the prompting that confirms a deletion of each file in the directory. You are prompted only once at the beginning of this deletion process. Use the `/force` and `/recursive` keywords for deleting old software images that were installed by using the `archive download-sw` command but are no longer needed.

If you omit the `filesystem:` option, the switch uses the default device specified by the `cd` command. For `file-url`, you specify the path (directory) and the name of the file to be deleted.

If you attempt to delete the file specified by the CONFIG_FILE or BOOT environment variable, the system prompts you to confirm the deletion. If you attempt to delete the last valid system image specified in the BOOT environment variable, the system prompts you to confirm the deletion.

<table>
<thead>
<tr>
<th>Caution</th>
</tr>
</thead>
<tbody>
<tr>
<td>When files are deleted, their contents cannot be recovered.</td>
</tr>
</tbody>
</table>

This example shows how to delete the file `myconfig` from the default Flash memory device:

```
Switch# delete myconfig
```
Creating, Displaying, and Extracting tar Files

You can create a tar file and write files into it, list the files in a tar file, and extract the files from a tar file as described in the next sections.

Creating a tar File

To create a tar file and write files into it, use this privileged EXEC command:

```
archive tar /create destination-url flash:/file-url
```

For **destination-url**, specify the destination URL alias for the local or network file system and the name of the tar file to create. These options are supported:

- For the local Flash file system, the syntax is `flash:`
- For the File Transfer Protocol (FTP), the syntax is `ftp://[username[:password]@location]/directory]/tar-filename.tar`
- For the Remote Copy Protocol (RCP), the syntax is `rcp://[username@location]/directory]/tar-filename.tar`
- For the Trivial File Transfer Protocol (TFTP), the syntax is `tftp://[location]/directory]/tar-filename.tar`

The *tar-filename.tar* is the tar file to be created.

For **flash:/file-url**, specify the location on the local Flash file system from which the new tar file is created. You can also specify an optional list of files or directories within the source directory to write to the new tar file. If none are specified, all files and directories at this level are written to the newly created tar file.

This example shows how to create a tar file. This command writes the contents of the *new-configs* directory on the local Flash device to a file named *saved.tar* on the TFTP server at 172.20.10.30:

```
Switch# archive tar /create tftp:172.20.10.30/saved.tar flash:/new-configs
```

Displaying the Contents of a tar File

To display the contents of a tar file on the screen, use this privileged EXEC command:

```
archive tar /table source-url
```

For **source-url**, specify the source URL alias for the local or network file system. These options are supported:

- For the local Flash file system, the syntax is `flash:`
- For the File Transfer Protocol (FTP), the syntax is `ftp://[username[:password]@location]/directory]/tar-filename.tar`
- For the Remote Copy Protocol (RCP), the syntax is `rcp://[username@location]/directory]/tar-filename.tar`
- For the Trivial File Transfer Protocol (TFTP), the syntax is `tftp://[location]/directory]/tar-filename.tar`

The *tar-filename.tar* is the tar file to display.
You can also limit the display of the files by specifying an optional list of files or directories after the tar file; then only these files are displayed. If none are specified, all files and directories are displayed.

This example shows how to display the contents of the \texttt{c3550-i5q3l2-mz.121-6.EA1.tar} file that is in Flash memory:

\begin{verbatim}
Switch# archive tar /table flash:c3550-i5q3l2-mz.121-6.EA1.tar info (219 bytes)
c3550-i5q3l2-mz.121-6.EA1/ (directory)
c3550-i5q3l2-mz.121-6.EA1/html/ (directory)
c3550-i5q3l2-mz.121-6.EA1/html/foo.html (0 bytes)
c3550-i5q3l2-mz.121-6.EA1/c3550-i5q3l2-mz.121-6.EA1.bin (610856 bytes)
c3550-i5q3l2-mz.121-6.EA1/info (219 bytes)
info.ver (219 bytes)
\end{verbatim}

This example shows how to display only the \texttt{c3550-i5q3l2-mz.121-6.EA1/html} directory and its contents:

\begin{verbatim}
Switch# archive tar /table flash:c3550-tv0-m.tar c3550-i5q3l2-mz.121-6.EA1/html
c3550-i5q3l2-mz.121-6.EA1/html/ (directory)
c3550-i5q3l2-mz.121-6.EA1/html/foo.html (0 bytes)
\end{verbatim}

\section*{Extracting a tar File}

To extract a tar file into a directory on the Flash file system, use this privileged EXEC command:

\begin{verbatim}
archive tar /xtract source-url flash:file-url
\end{verbatim}

For \texttt{source-url}, specify the source URL alias for the local or network file system. These options are supported:

- For the local Flash file system, the syntax is \texttt{flash:}
- For the File Transfer Protocol (FTP), the syntax is \texttt{ftp://[username[:password]@location]/directory/tar-filename.tar}
- For the Remote Copy Protocol (RCP), the syntax is \texttt{rcp://[username@location]/directory/tar-filename.tar}
- For the Trivial File Transfer Protocol (TFTP), the syntax is \texttt{tftp://location/directory/tar-filename.tar}

The \texttt{tar-filename.tar} is the tar file from which to extract files.

For \texttt{flash:file-url}, specify the location on the local Flash file system into which the tar file is extracted. You can also specify an optional list of files or directories within the tar file for extraction. If none are specified, all files and directories are extracted.

This example shows how to extract the contents of a tar file located on the TFTP server at 172.20.10.30. This command extracts just the \texttt{new-configs} directory into the root directory on the local Flash file system. The remaining files in the \texttt{saved.tar} file are ignored.

\begin{verbatim}
Switch# archive tar /xtract tftp://172.20.10.30/saved.tar flash:/new-configs
\end{verbatim}
Displaying the Contents of a File

To display the contents of any readable file, including a file on a remote file system, use the `more` command:

```
more [ascii | binary | ebcidic] file-url
```

This example shows how to display the contents of a configuration file on a TFTP server:

```
Switch# more tftp://serverA/hampton(savedconfig

! Saved configuration on server
!
version 11.3
service timestamps log datetime localtime
service linenumber
service udp-small-servers
service pt-vty-logging
!
```

<output truncated>

Working with Configuration Files

This section describes how to create, load, and maintain configuration files. Configuration files contain commands entered to customize the function of the Cisco IOS software. To better benefit from these instructions, your switch must contain a minimal configuration for interacting with the system software. You can create a basic configuration file by using the `setup` command. For more information, see Chapter 4, “Assigning the Switch IP Address and Default Gateway.”

You can copy (download) configuration files from a TFTP, FTP, or RCP server to the running configuration or startup configuration of the switch. You might want to perform this for one of these reasons:

- To restore a backed-up configuration file.
- To use the configuration file for another switch. For example, you might add another switch to your network and want it to have a configuration similar to the original switch. By copying the file to the new switch, you can change the relevant parts rather than recreating the whole file.
- To load the same configuration commands on all the switches in your network so that all the switches have similar configurations.

You can copy (upload) configuration files from the switch to a file server by using TFTP, FTP, or RCP. You might perform this task to back up a current configuration file to a server before changing its contents so that you can later restore the original configuration file from the server.

The protocol you use depends on which type of server you are using. The FTP and RCP transport mechanisms provide faster performance and more reliable delivery of data than TFTP. These improvements are possible because FTP and RCP are built on and use the Transmission Control Protocol/Internet Protocol (TCP/IP) stack, which is connection-oriented.

This section includes this information:

- Guidelines for Creating and Using Configuration Files, page B-9
- Configuration File Types and Location, page B-9
- Creating a Configuration File By Using a Text Editor, page B-10
- Copying Configuration Files By Using TFTP, page B-10
Guidelines for Creating and Using Configuration Files

Creating configuration files can aid in your switch configuration. Configuration files can contain some or all of the commands needed to configure one or more switches. For example, you might want to download the same configuration file to several switches that have the same hardware configuration.

Use these guidelines when creating a configuration file:

- We recommend that you connect through the console port when using configuration files to configure the switch. If you configure the switch from a Telnet session, IP addresses are not changed, and ports and modules are not disabled.
- If no passwords have been set on the switch, you must set them on each switch by entering the `enable secret secret-password` global configuration command. Enter a blank line for this command. The password is saved in the configuration file as clear text.
- If passwords already exist, you cannot enter the `enable secret secret-password` global configuration command in the file because the password verification will fail. If you enter a password in the configuration file, the switch mistakenly attempts to execute the passwords as commands as it executes the file.

Note

The `copy {ftp: | rcp: | tftp:} system:running-config` privileged EXEC command loads the configuration files on the switch as if you were entering the commands at the command line. The switch does not erase the existing running configuration before adding the commands. If a command in the copied configuration file replaces a command in the existing configuration file, the existing command is erased. For example, if the copied configuration file contains a different IP address in a particular command than the existing configuration, the IP address in the copied configuration is used. However, some commands in the existing configuration might not be replaced or negated. In this case, the resulting configuration file is a mixture of the existing configuration file and the copied configuration file, with the copied configuration file having precedence.

To restore a configuration file to an exact copy of a file stored on a server, copy the configuration file directly to the startup configuration (by using the `copy {ftp: | rcp: | tftp:} nvram:startup-config` privileged EXEC command), and reload the switch.

Configuration File Types and Location

Startup configuration files are used during system startup to configure the software. Running configuration files contain the current configuration of the software. The two configuration files can be different. For example, you might want to change the configuration for a short time period rather than permanently. In this case, you would change the running configuration but not save the configuration by using the `copy running-config startup-config` privileged EXEC command.

The running configuration is saved in DRAM; the startup configuration is stored in the NVRAM section of Flash memory.
Creating a Configuration File By Using a Text Editor

When creating a configuration file, you must list commands logically so that the system can respond appropriately. This is one method of creating a configuration file:

Step 1 Copy an existing configuration from a switch to a server.

For more information, see the “Downloading the Configuration File By Using TFTP” section on page B-11, the “Downloading a Configuration File By Using FTP” section on page B-13, or the “Downloading a Configuration File By Using RCP” section on page B-17.

Step 2 Open the configuration file in a text editor, such as vi or emacs on UNIX or Notepad on a PC.

Step 3 Extract the portion of the configuration file with the desired commands, and save it in a new file.

Step 4 Copy the configuration file to the appropriate server location. For example, copy the file to the TFTP directory on the workstation (usually /tftpboot on a UNIX workstation).

Step 5 Make sure the permissions on the file are set to world-read.

Copying Configuration Files By Using TFTP

You can configure the switch by using configuration files you create, download from another switch, or download from a TFTP server. You can copy (upload) configuration files to a TFTP server for storage.

This section includes this information:

- Preparing to Download or Upload a Configuration File By Using TFTP, page B-10
- Downloading the Configuration File By Using TFTP, page B-11
- Uploading the Configuration File By Using TFTP, page B-12

Preparing to Download or Upload a Configuration File By Using TFTP

Before you begin downloading or uploading a configuration file by using TFTP, do these tasks:

- Ensure that the workstation acting as the TFTP server is properly configured. On a Sun workstation, make sure that the /etc/inetd.conf file contains this line:

 tftp dgram udp wait root /usr/etc/in.tftpd in.tftpd -p -s /tftpboot

 Make sure that the /etc/services file contains this line:

 tftp 69/udp

 Note You must restart the inetd daemon after modifying the /etc/inetd.conf and /etc/services files. To restart the daemon, either stop the inetd process and restart it, or enter a fastboot command (on the SunOS 4.x) or a reboot command (on Solaris 2.x or SunOS 5.x). For more information on the TFTP daemon, refer to the documentation for your workstation.

- Ensure that the switch has a route to the TFTP server. The switch and the TFTP server must be in the same subnetwork if you do not have a router to route traffic between subnets. Check connectivity to the TFTP server by using the ping command.
• Ensure that the configuration file to be downloaded is in the correct directory on the TFTP server (usually /tftpboot on a UNIX workstation).
• For download operations, ensure that the permissions on the file are set correctly. The permission on the file should be world-read.
• Before uploading the configuration file, you might need to create an empty file on the TFTP server. To create an empty file, enter the `touch filename` command, where `filename` is the name of the file you will use when uploading it to the server.
• During upload operations, if you are overwriting an existing file (including an empty file, if you had to create one) on the server, ensure that the permissions on the file are set correctly. Permissions on the file should be world-write.

Downloading the Configuration File By Using TFTP

To configure the switch by using a configuration file downloaded from a TFTP server, follow these steps:

Step 1
Copy the configuration file to the appropriate TFTP directory on the workstation.

Step 2
Verify that the TFTP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using TFTP” section on page B-10.

Step 3
Log into the switch through the console port or a Telnet session.

Step 4
Download the configuration file from the TFTP server to configure the switch.

Specify the IP address or host name of the TFTP server and the name of the file to download.

Use one of these privileged EXEC commands:

- `copy tftp://[location]/directory/filename system:running-config`
- `copy tftp://[location]/directory/filename nvram:startup-config`

The configuration file downloads, and the commands are executed as the file is parsed line-by-line.

This example shows how to configure the software from the file `tokyo-config` at IP address 172.16.2.155:

```
Switch# copy tftp://172.16.2.155/tokyo-config system:running-config
Configure using tokyo-config from 172.16.2.155? [confirm] y
Booting tokyo-config from 172.16.2.155:!!! [OK - 874/16000 bytes]
```
Uploading the Configuration File By Using TFTP

To upload a configuration file from a switch to a TFTP server for storage, follow these steps:

Step 1 Verify that the TFTP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using TFTP” section on page B-10.

Step 2 Log into the switch through the console port or a Telnet session.

Step 3 Upload the switch configuration to the TFTP server. Specify the IP address or host name of the TFTP server and the destination filename.

Use one of these privileged EXEC commands:

- `copy system:running-config tftp://[location]/[directory]/[filename]`
- `copy nvram:startup-config tftp://[location]/[directory]/[filename]`

The file is uploaded to the TFTP server.

This example shows how to upload a configuration file from a switch to a TFTP server:

```
Switch# copy system:running-config tftp://172.16.2.155/tokyo-config
Write file tokyo-config on host 172.16.2.155? [confirm] y
#
Writing tokyo-config!!! [OK]
```

Copying Configuration Files By Using FTP

You can copy configuration files to or from an FTP server.

The FTP protocol requires a client to send a remote username and password on each FTP request to a server. When you copy a configuration file from the switch to a server by using FTP, the Cisco IOS software sends the first valid username in this list:

- The username specified in the `copy` command if a username is specified.
- The username set by the `ip ftp username` global configuration command if the command is configured.
- Anonymous.

The switch sends the first valid password in this list:

- The password specified in the `copy` command if a password is specified.
- The password set by the `ip ftp password` global configuration command if the command is configured.
- The switch forms a password named `username@switchname.domain`. The variable `username` is the username associated with the current session, `switchname` is the configured host name, and `domain` is the domain of the switch.

The username and password must be associated with an account on the FTP server. If you are writing to the server, the FTP server must be properly configured to accept your FTP write request.

Use the `ip ftp username` and `ip ftp password` commands to specify a username and password for all copies. Include the username in the `copy` command if you want to specify only a username for that copy operation.
If the server has a directory structure, the configuration file is written to or copied from the directory associated with the username on the server. For example, if the configuration file resides in the home directory of a user on the server, specify that user's name as the remote username.

For more information, refer to the documentation for your FTP server.

This section includes this information:

- Preparing to Download or Upload a Configuration File By Using FTP, page B-13
- Downloading a Configuration File By Using FTP, page B-13
- Uploading a Configuration File By Using FTP, page B-15

Preparing to Download or Upload a Configuration File By Using FTP

Before you begin downloading or uploading a configuration file by using FTP, do these tasks:

- Ensure that the switch has a route to the FTP server. The switch and the FTP server must be in the same subnetwork if you do not have a router to route traffic between subnets. Check connectivity to the FTP server by using the `ping` command.
- If you are accessing the switch through the console or a Telnet session and you do not have a valid username, make sure that the current FTP username is the one that you want to use for the FTP download. You can enter the `show users` privileged EXEC command to view the valid username. If you do not want to use this username, create a new FTP username by using the `ip ftp username username` global configuration command during all copy operations. The new username is stored in NVRAM. If you are accessing the switch through a Telnet session and you have a valid username, this username is used, and you do not need to set the FTP username. Include the username in the `copy` command if you want to specify a username for only that copy operation.
- When you upload a configuration file to the FTP server, it must be properly configured to accept the write request from the user on the switch.

For more information, refer to the documentation for your FTP server.

Downloading a Configuration File By Using FTP

Beginning in privileged EXEC mode, follow these steps to download a configuration file by using FTP:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Verify that the FTP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using FTP” section on page B-13.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>configure terminal</code> Enter global configuration mode on the switch.</td>
</tr>
<tr>
<td></td>
<td>This step is required only if you override the default remote username or password (see Steps 4, 5, and 6).</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>ip ftp username username</code> (Optional) Change the default remote username.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>ip ftp password password</code> (Optional) Change the default password.</td>
</tr>
</tbody>
</table>
Step 6 end

Return to privileged EXEC mode.

Step 7

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>

This example shows how to copy a configuration file named host1-confg from the netadmin1 directory on the remote server with an IP address of 172.16.101.101 and to load and run those commands on the switch:

```
Switch# copy ftp://netadmin1:mypass@172.16.101.101/host1-confg system:running-config
Configure using host1-confg from 172.16.101.101? [confirm]
Connected to 172.16.101.101
Loading 1112 byte file host1-confg:![OK]
Switch#
%SYS-5-CONFIG: Configured from host1-config by ftp from 172.16.101.101
```

This example shows how to specify a remote username of netadmin1. The software copies the configuration file host2-confg from the netadmin1 directory on the remote server with an IP address of 172.16.101.101 to the switch startup configuration.

```
Switch# configure terminal
Switch(config)# ip ftp username netadmin1
Switch(config)# ip ftp password mypass
Switch(config)# end
Switch# copy ftp: nvram:startup-config
Address of remote host [255.255.255.255]? 172.16.101.101
Name of configuration file[rtr2-confg]? host2-confg
Configure using host2-confg from 172.16.101.101? [confirm]
Connected to 172.16.101.101
Loading 1112 byte file host2-confg:![OK]
[OK]
Switch#
%SYS-5-CONFIG_NV:Non-volatile store configured from host2-config by ftp from 172.16.101.101
```
Uploading a Configuration File By Using FTP

Beginning in privileged EXEC mode, follow these steps to upload a configuration file by using FTP:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Verify that the FTP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using FTP” section on page B-13.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Enter global configuration mode. This step is required only if you override the default remote username or password (see Steps 4, 5, and 6).</td>
</tr>
<tr>
<td>Step 4</td>
<td>Change the default remote username.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Change the default password.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Using FTP, store the switch running or startup configuration file to the specified location.</td>
</tr>
</tbody>
</table>

This example shows how to copy the running configuration file named `switch2-config` to the `netadmin1` directory on the remote host with an IP address of 172.16.101.101:

```
Switch# copy system:running-config ftp://netadmin1:mypass@172.16.101.101/switch2-config
Write file switch2-config on host 172.16.101.101?[confirm]
Building configuration...[OK]
Connected to 172.16.101.101
Switch#
```

This example shows how to store a startup configuration file on a server by using FTP to copy the file:

```
Switch# configure terminal
Switch(config)# ip ftp username netadmin2
Switch(config)# ip ftp password mypass
Switch(config)# end
Switch# copy nvram:startup-config ftp:
Remote host[?] 172.16.101.101
Name of configuration file to write [switch2-config]?
Write file switch2-config on host 172.16.101.101?[confirm]
![OK]
```
Copying Configuration Files By Using RCP

The Remote Copy Protocol (RCP) provides another method of downloading, uploading, and copying configuration files between remote hosts and the switch. Unlike TFTP, which uses User Datagram Protocol (UDP), a connectionless protocol, RCP uses TCP, which is connection-oriented.

To use RCP to copy files, the server from or to which you will be copying files must support RCP. The RCP copy commands rely on the rsh server (or daemon) on the remote system. To copy files by using RCP, you do not need to create a server for file distribution as you do with TFTP. You only need to have access to a server that supports the remote shell (rsh). (Most UNIX systems support rsh.) Because you are copying a file from one place to another, you must have read permission on the source file and write permission on the destination file. If the destination file does not exist, RCP creates it for you.

The RCP requires a client to send a remote username with each RCP request to a server. When you copy a configuration file from the switch to a server, the Cisco IOS software sends the first valid username in this list:

- The username specified in the `copy` command if a username is specified.
- The username set by the `ip rcmd remote-username username` global configuration command if the command is configured.
- The remote username associated with the current TTY (terminal) process. For example, if the user is connected to the router through Telnet and was authenticated through the `username` command, the switch software sends the Telnet username as the remote username.
- The switch host name.

For a successful RCP copy request, you must define an account on the network server for the remote username. If the server has a directory structure, the configuration file is written to or copied from the directory associated with the remote username on the server. For example, if the configuration file is in the home directory of a user on the server, specify that user's name as the remote username.

This section includes this information:

- Preparing to Download or Upload a Configuration File By Using RCP, page B-16
- Downloading a Configuration File By Using RCP, page B-17
- Uploading a Configuration File By Using RCP, page B-18

Preparing to Download or Upload a Configuration File By Using RCP

Before you begin downloading or uploading a configuration file by using RCP, do these tasks:

- Ensure that the workstation acting as the RCP server supports the remote shell (rsh).
- Ensure that the switch has a route to the RCP server. The switch and the server must be in the same subnet if you do not have a router to route traffic between subnets. Check connectivity to the RCP server by using the `ping` command.
- If you are accessing the switch through the console or a Telnet session and you do not have a valid username, make sure that the current RCP username is the one that you want to use for the RCP download. You can enter the `show users` privileged EXEC command to view the valid username. If you do not want to use this username, create a new RCP username by using the `ip rcmd remote-username username` global configuration command to be used during all copy operations. The new username is stored in NVRAM. If you are accessing the switch through a Telnet session and you have a valid username, this username is used, and you do not need to set the RCP username. Include the username in the `copy` command if you want to specify a username for only that copy operation.
When you upload a file to the RCP server, it must be properly configured to accept the RCP write request from the user on the switch. For UNIX systems, you must add an entry to the .rhosts file for the remote user on the RCP server. For example, suppose that the switch contains these configuration lines:

```
hostname Switch1
ip rcmd remote-username User0
```

If the switch IP address translates to `Switch1.company.com`, the .rhosts file for User0 on the RCP server should contain this line:

```
Switch1.company.com Switch1
```

For more information, refer to the documentation for your RCP server.

Downloading a Configuration File By Using RCP

Beginning in privileged EXEC mode, follow these steps to download a configuration file by using RCP:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Verify that the RCP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using RCP” section on page B-16.</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td>3</td>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode. This step is required only if you override the default remote username (see Steps 4 and 5).</td>
</tr>
<tr>
<td>4</td>
<td><code>ip rcmd remote-username username</code></td>
<td>(Optional) Specify the remote username.</td>
</tr>
<tr>
<td>5</td>
<td><code>end</code></td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>6</td>
<td><code>copy rcp://username@location/directory/filename</code> system:running-config</td>
<td>Using RCP, copy the configuration file from a network server to the running configuration or to the startup configuration file.</td>
</tr>
</tbody>
</table>

This example shows how to copy a configuration file named `host1-config` from the `netadmin1` directory on the remote server with an IP address of 172.16.101.101 and load and run those commands on the switch:

```
Switch# copy rcp://netadmin1@172.16.101.101/host1-config system:running-config
Configure using host1-config from 172.16.101.101? [confirm]
Connected to 172.16.101.101
Loading 1112 byte file host1-config:![OK]
Switch#
%SYS-5-CONFIG: Configured from host1-config by rcp from 172.16.101.101
```
This example shows how to specify a remote username of netadmin1. Then it copies the configuration file host2-config from the netadmin1 directory on the remote server with an IP address of 172.16.101.101 to the startup configuration:

```plaintext
Switch# configure terminal
Switch(config)# ip rcmd remote-username netadmin1
Switch(config)# end
Switch# copy rcp: nvram:startup-config
Address of remote host [255.255.255.255]? 172.16.101.101
Name of configuration file[rr2-config]? host2-config
Configure using host2-config from 172.16.101.101?[confirm]
Connected to 172.16.101.101
Loading 1112 byte file host2-config:![OK]
[OK]
Switch#
%SYS-5-CONFIG_NV:Non-volatile store configured from host2-config by rcp from 172.16.101.101
```

Uploading a Configuration File By Using RCP

Beginning in privileged EXEC mode, follow these steps to upload a configuration file by using RCP:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Verify that the RCP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using RCP” section on page B-16.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td>Step 3 configure terminal</td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>This step is required only if you override the default remote username (see Steps 4 and 5).</td>
</tr>
<tr>
<td>Step 4 ip rcmd remote-username username</td>
<td>(Optional) Specify the remote username.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 copy system:running-config</td>
<td>Using RCP, copy the configuration file from a switch running or startup configuration file to a network server.</td>
</tr>
</tbody>
</table>

```
[rcp://username@location/directory/filename] or
[rcp://username@location/directory/filename]
```

This example shows how to copy the running configuration file named switch2-config to the netadmin1 directory on the remote host with an IP address of 172.16.101.101:

```plaintext
Switch# copy system:running-config rcp://netadmin1@172.16.101.101/switch2-config
Write file switch-conf on host 172.16.101.101?[confirm]
Connected to 172.16.101.101
Building configuration...[OK]
Switch#
```
This example shows how to store a startup configuration file on a server:

```
Switch# configure terminal
Switch(config)# ip rcmd remote-username netadmin2
Switch(config)# end
Switch# copy nvram:startup-config rcp:
Remote host[?] 172.16.101.101
Name of configuration file to write [switch2-config]?
Write file switch2-config on host 172.16.101.101?[confirm]
! [OK]
```

Clearing Configuration Information

You can clear the configuration information from the startup configuration. If you reboot the switch with no startup configuration, the switch enters the setup program so that you can reconfigure the switch with all new settings.

Clearing the Startup Configuration File

To clear the contents of your startup configuration, use the `erase nvram:` or the `erase startup-config` privileged EXEC command.

⚠️ **Caution**

You cannot restore the startup configuration file after it has been deleted.

Deleting a Stored Configuration File

To delete a saved configuration from Flash memory, use the `delete flash:filename` privileged EXEC command. Depending on the setting of the `file prompt` global configuration command, you might be prompted for confirmation before you delete a file. By default, the switch prompts for confirmation on destructive file operations. For more information about the `file prompt` command, refer to the Cisco IOS Command Reference for Release 12.1.

⚠️ **Caution**

You cannot restore a file after it has been deleted.

Working with Software Images

This section describes how to archive (download and upload) software image files, which contain the system software, IOS code, and the web management HTML files.

You download a switch image file from a TFTP, FTP, or RCP server to upgrade the switch software. You can replace the current image with the new one or keep the current image in Flash memory after a download.

You upload a switch image file to a TFTP, FTP, or RCP server for backup purposes. You can use this uploaded image for future downloads to the same switch or another of the same type.

The protocol you use depends on which type of server you are using. The FTP and RCP transport mechanisms provide faster performance and more reliable delivery of data than TFTP. These improvements are possible because FTP and RCP are built on and use the Transmission Control Protocol/Internet Protocol (TCP/IP) stack, which is connection-oriented.
This section includes this information:

- **Image Location on the Switch**, page B-20
- **tar File Format of Images on a Server or Cisco.com**, page B-20
- **Copying Image Files By Using TFTP**, page B-21
- **Copying Image Files By Using FTP**, page B-24
- **Copying Image Files By Using RCP**, page B-29

Note

For a list of software images and the supported upgrade paths, refer to the release notes that shipped with your switch.

Image Location on the Switch

The IOS image is stored as a .bin file in a directory that shows the version number. A subdirectory contains the HTML files needed for web management. The image is stored on the system board Flash memory (flash:).

You can use the `show version` privileged EXEC command to see the software version that is currently running on your switch. In the display, check the line that begins with **System image file is...**. It shows the directory name in Flash memory where the image is stored.

You can also use the `dir filesystem` privileged EXEC command to see the directory names of other software images you might have stored in Flash memory.

tar File Format of Images on a Server or Cisco.com

Software images located on a server or downloaded from Cisco.com are provided in a tar file format, which contains these files:

- **info file**

 The info file is always at the beginning of the tar file and contains information about the files within it.

- **IOS image**

- **Web management files needed by the HTTP server on the switch**

- **info.ver file**

 The info.ver file is always at the end of the tar file and contains the same information as the info file. Because it is the last file in the tar file, its existence means that all files in the image have been downloaded.

This example shows the information contained in the info and info.ver files:

```plaintext
version_suffix: i5q3l2-121-6.EA1
version_directory: c3550-i5q3l2-mz.121-6.EA1.bin
image_name: c3550-i5q3l2-mz.121-6.EA1.bin
ios_image_file_size: 3049472
total_image_file_size: 4551168
image_feature: LAYER_3|MIN_DRAM_MEG=64
image_family: C3550
info_end:
```
Appendix B Working with the IOS File System, Configuration Files, and Software Images

Working with Software Images

Copying Image Files By Using TFTP

You can download a switch image from a TFTP server or upload the image from the switch to a TFTP server.

You download a switch image file from a server to upgrade the switch software. You can overwrite the current image with the new one or keep the current image after a download.

You upload a switch image file to a server for backup purposes; this uploaded image can be used for future downloads to the same or another switch of the same type.

This section includes this information:

- **Preparing to Download or Upload an Image File By Using TFTP**, page B-21
- **Downloading an Image File By Using TFTP**, page B-22
- **Uploading an Image File By Using TFTP**, page B-24

Preparing to Download or Upload an Image File By Using TFTP

Before you begin downloading or uploading an image file by using TFTP, do these tasks:

- Ensure that the workstation acting as the TFTP server is properly configured. On a Sun workstation, make sure that the /etc/inetd.conf file contains this line:

  ```
tftp dgram udp wait root /usr/etc/in.tftpd in.tftpd -p -s /tftpboot
  ```

- Make sure that the /etc/services file contains this line:

  ```
tftp 69/udp
  ```

 Note You must restart the inetd daemon after modifying the /etc/inetd.conf and /etc/services files. To restart the daemon, either stop the inetd process and restart it, or enter a `fastboot` command (on the SunOS 4.x) or a `reboot` command (on Solaris 2.x or SunOS 5.x). For more information on the TFTP daemon, refer to the documentation for your workstation.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>version_suffix</td>
<td>Specifies the IOS image version string suffix</td>
</tr>
<tr>
<td>version_directory</td>
<td>Specifies the directory where the IOS image and the HTML subdirectory are installed</td>
</tr>
<tr>
<td>image_name</td>
<td>Specifies the name of the IOS image within the tar file</td>
</tr>
<tr>
<td>ios_image_file_size</td>
<td>Specifies the IOS image size in the tar file, which is an approximate measure of how much Flash space is required to hold just the IOS image</td>
</tr>
<tr>
<td>total_image_file_size</td>
<td>Specifies the size of all the images (the IOS image and the HTML files) in the tar file, which is an approximate measure of how much Flash space is required to hold them</td>
</tr>
<tr>
<td>image_feature</td>
<td>Describes the core functionality of the image</td>
</tr>
<tr>
<td>image_family</td>
<td>Describes the family of products on which the software can be installed</td>
</tr>
<tr>
<td>image_min_dram</td>
<td>Specifies the minimum amount of DRAM needed to run this image</td>
</tr>
</tbody>
</table>

Table B-3 info and info.ver File Description
Ensure that the switch has a route to the TFTP server. The switch and the TFTP server must be in the same subnetwork if you do not have a router to route traffic between subnets. Check connectivity to the TFTP server by using the `ping` command.

- Ensure that the image to be downloaded is in the correct directory on the TFTP server (usually `/tftpboot` on a UNIX workstation).

- For download operations, ensure that the permissions on the file are set correctly. The permission on the file should be world-read.

- Before uploading the image file, you might need to create an empty file on the TFTP server. To create an empty file, enter the `touch filename` command, where `filename` is the name of the file you will use when uploading the image to the server.

- During upload operations, if you are overwriting an existing file (including an empty file, if you had to create one) on the server, ensure that the permissions on the file are set correctly. Permissions on the file should be world-write.

Downloading an Image File By Using TFTP

You can download a new image file and replace the current image or keep the current image.

Beginning in privileged EXEC mode, follow Steps 1 through 3 to download a new image from a TFTP server and overwrite the existing image. To keep the current image, skip Step 3.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Copy the image to the appropriate TFTP directory on the workstation. Make sure the TFTP server is properly configured; see the “Preparing to Download or Upload an Image File By Using TFTP” section on page B-21.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
</tbody>
</table>
Appendix B Working with the IOS File System, Configuration Files, and Software Images

Working with Software Images

The download algorithm verifies that the image is appropriate for the switch model and that enough DRAM is present, or it aborts the process and reports an error. If you specify the /overwrite option, the download algorithm removes the existing image on the Flash device whether or not it is the same as the new one, downloads the new image, and then reloads the software.

Note

If the Flash device has sufficient space to hold two images and you want to overwrite one of these images with the same version, you must specify the /overwrite option.

If you specify the /leave-old-sw, the existing files are not removed. If there is not enough space to install the new image and keep the current running image, the download process stops, and an error message is displayed.

The algorithm installs the downloaded image on the system board Flash device (flash:). The image is placed into a new directory named with the software version string, and the BOOT environment variable is updated to point to the newly installed image.

If you kept the old image during the download process (you specified the /leave-old-sw keyword), you can remove it by entering the delete /force /recursive filesystem:/file-url privileged EXEC command. For filesystem, use flash: for the system board Flash device. For file-url, enter the directory name of the old image. All the files in the directory and the directory are removed.

Caution

For the download and upload algorithms to operate properly, do not rename image names.

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>archive download-sw /overwrite /reload tftp:[][//location]/directory/image-name.tar</code></td>
<td>Download the image file from the TFTP server to the switch, and overwrite the current image.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The /overwrite option overwrites the software image in Flash with the downloaded image.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The /reload option reloads the system after downloading the image unless the configuration has been changed and not been saved.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For //location, specify the IP address of the TFTP server.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For /directory/image-name.tar, specify the directory (optional) and the image to download. Directory and image names are case sensitive.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>archive download-sw /leave-old-sw /reload tftp:[][//location]/directory/image-name.tar</code></td>
<td>Download the image file from the TFTP server to the switch, and keep the current image.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The /leave-old-sw option keeps the old software version after a download.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The /reload option reloads the system after downloading the image unless the configuration has been changed and not been saved.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For //location, specify the IP address of the TFTP server.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• For /directory/image-name.tar, specify the directory (optional) and the image to download. Directory and image names are case sensitive.</td>
</tr>
</tbody>
</table>
Uploading an Image File By Using TFTP

You can upload an image from the switch to a TFTP server. You can later download this image to the switch or to another switch of the same type.

The upload feature is available only if the HTML pages associated with the Cluster Management Suite (CMS) have been installed with the existing image.

Beginning in privileged EXEC mode, follow these steps to upload an image to a TFTP server:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Make sure the TFTP server is properly configured; see the “Preparing to Download or Upload an Image File By Using TFTP” section on page B-21.</td>
</tr>
<tr>
<td>Step 1</td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Upload the currently running switch image to the TFTP server.</td>
</tr>
<tr>
<td><code>archive upload-sw tftp://[//location]//directory/image-name.tar</code></td>
<td>• For //location, specify the IP address of the TFTP server.</td>
</tr>
<tr>
<td></td>
<td>• For //directory/image-name.tar, specify the directory (optional) and the name of the software image to be uploaded. Directory and image names are case sensitive. The image-name.tar is the name of the software image to be stored on the server.</td>
</tr>
</tbody>
</table>

The `archive upload-sw` privileged EXEC command builds an image file on the server by uploading these files in order: info, the IOS image, the HTML files, and info.ver. After these files are uploaded, the upload algorithm creates the tar file format.

Caution

For the download and upload algorithms to operate properly, do *not* rename image names.

Copying Image Files By Using FTP

You can download a switch image from an FTP server or upload the image from the switch to an FTP server.

You download a switch image file from a server to upgrade the switch software. You can overwrite the current image with the new one or keep the current image after a download.

You upload a switch image file to a server for backup purposes. You can use this uploaded image for future downloads to the switch or another switch of the same type.

This section includes this information:

- Preparing to Download or Upload an Image File By Using FTP, page B-25
- Downloading an Image File By Using FTP, page B-26
- Uploading an Image File By Using FTP, page B-28
Preparing to Download or Upload an Image File By Using FTP

You can copy images files to or from an FTP server.

The FTP protocol requires a client to send a remote username and password on each FTP request to a server. When you copy an image file from the switch to a server by using FTP, the Cisco IOS software sends the first valid username in this list:

- The username specified in the `archive download-sw` or `archive upload-sw` privileged EXEC command if a username is specified.
- The username set by the `ip ftp username username` global configuration command if the command is configured.
- Anonymous.

The switch sends the first valid password in this list:

- The password specified in the `archive download-sw` or `archive upload-sw` privileged EXEC command if a password is specified.
- The password set by the `ip ftp password password` global configuration command if the command is configured.
- The switch forms a password named `username@switchname.domain`. The variable `username` is the username associated with the current session, `switchname` is the configured host name, and `domain` is the domain of the switch.

The username and password must be associated with an account on the FTP server. If you are writing to the server, the FTP server must be properly configured to accept the FTP write request from you.

Use the `ip ftp username` and `ip ftp password` commands to specify a username and password for all copies. Include the username in the `archive download-sw` or `archive upload-sw` privileged EXEC command if you want to specify a username only for that operation.

If the server has a directory structure, the image file is written to or copied from the directory associated with the username on the server. For example, if the image file resides in the home directory of a user on the server, specify that user's name as the remote username.

Before you begin downloading or uploading an image file by using FTP, do these tasks:

- Ensure that the switch has a route to the FTP server. The switch and the FTP server must be in the same subnetwork if you do not have a router to route traffic between subnets. Check connectivity to the FTP server by using the `ping` command.

- If you are accessing the switch through the console or a Telnet session and you do not have a valid username, make sure that the current FTP username is the one that you want to use for the FTP download. You can enter the `show users` privileged EXEC command to view the valid username. If you do not want to use this username, create a new FTP username by using the `ip ftp username username` global configuration command. This new name will be used during all archive operations. The new username is stored in NVRAM. If you are accessing the switch through a Telnet session and you have a valid username, this username is used, and you do not need to set the FTP username. Include the username in the `archive download-sw` or `archive upload-sw` privileged EXEC command if you want to specify a username for that operation only.

- When you upload an image file to the FTP server, it must be properly configured to accept the write request from the user on the switch.

For more information, refer to the documentation for your FTP server.
Downloading an Image File By Using FTP

You can download a new image file and overwrite the current image or keep the current image. Beginning in privileged EXEC mode, follow Steps 1 through 7 to download a new image from an FTP server and overwrite the existing image. To keep the current image, skip Step 7.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Verify that the FTP server is properly configured by referring to the “Preparing to Download or Upload an Image File By Using FTP” section on page B-25.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>configure terminal</code> Enter global configuration mode. This step is required only if you override the default remote username or password (see Steps 4, 5, and 6).</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>ip ftp username username</code> (Optional) Change the default remote username.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>ip ftp password password</code> (Optional) Change the default password.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>end</code> Return to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Working with Software Images

Step 7

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>archive download-sw /overwrite /reload</code></td>
<td>Download the image file from the FTP server to the switch, and overwrite the current image.</td>
</tr>
<tr>
<td><code>ftp://[[Username[:password]@location]/directory] image-name.tar</code></td>
<td>• The <code>/overwrite</code> option overwrites the software image in Flash with the downloaded image.</td>
</tr>
<tr>
<td></td>
<td>• The <code>/reload</code> option reloads the system after downloading the image unless the configuration has been changed and not been saved.</td>
</tr>
<tr>
<td></td>
<td>• For <code>/overwrite</code>, specify the username and password; these must be associated with an account on the FTP server. More information, see “Preparing to Download or Upload an Image File By Using FTP” section on page B-25.</td>
</tr>
<tr>
<td></td>
<td>• For <code>/overwrite</code>, specify the username and password; these must be associated with an account on the FTP server. More information, see “Preparing to Download or Upload an Image File By Using FTP” section on page B-25.</td>
</tr>
<tr>
<td></td>
<td>• For <code>/overwrite</code>, specify the username and password; these must be associated with an account on the FTP server. More information, see “Preparing to Download or Upload an Image File By Using FTP” section on page B-25.</td>
</tr>
<tr>
<td></td>
<td>• For <code>/overwrite</code>, specify the username and password; these must be associated with an account on the FTP server. More information, see “Preparing to Download or Upload an Image File By Using FTP” section on page B-25.</td>
</tr>
<tr>
<td></td>
<td>• For <code>/overwrite</code>, specify the username and password; these must be associated with an account on the FTP server. More information, see “Preparing to Download or Upload an Image File By Using FTP” section on page B-25.</td>
</tr>
<tr>
<td></td>
<td>• For <code>/overwrite</code>, specify the username and password; these must be associated with an account on the FTP server. More information, see “Preparing to Download or Upload an Image File By Using FTP” section on page B-25.</td>
</tr>
<tr>
<td></td>
<td>• For <code>/overwrite</code>, specify the username and password; these must be associated with an account on the FTP server. More information, see “Preparing to Download or Upload an Image File By Using FTP” section on page B-25.</td>
</tr>
<tr>
<td></td>
<td>• For <code>/overwrite</code>, specify the username and password; these must be associated with an account on the FTP server. More information, see “Preparing to Download or Upload an Image File By Using FTP” section on page B-25.</td>
</tr>
<tr>
<td></td>
<td>• For <code>/overwrite</code>, specify the username and password; these must be associated with an account on the FTP server. More information, see “Preparing to Download or Upload an Image File By Using FTP” section on page B-25.</td>
</tr>
</tbody>
</table>

The download algorithm verifies that the image is appropriate for the switch model and that enough DRAM is present, or it aborts the process and reports an error. If you specify the `/overwrite` option, the download algorithm removes the existing image on the Flash device, whether or not it is the same as the new one, downloads the new image, and then reloads the software.

Note

If the Flash device has sufficient space to hold two images and you want to overwrite one of these images with the same version, you must specify the `/overwrite` option.

If you specify the `/leave-old-sw`, the existing files are not removed. If there is not enough space to install the new image and keep the running image, the download process stops, and an error message is displayed.
Appendix B Working with the IOS File System, Configuration Files, and Software Images

Working with Software Images

The algorithm installs the downloaded image onto the system board Flash device (flash:). The image is placed into a new directory named with the software version string, and the BOOT environment variable is updated to point to the newly installed image.

If you kept the old image during the download process (you specified the /leave-old-sw keyword), you can remove it by entering the delete /force /recursive filesystem:file-url privileged EXEC command. For filesystem, use flash: for the system board Flash device. For file-url, enter the directory name of the old software image. All the files in the directory and the directory are removed.

⚠️ Caution
For the download and upload algorithms to operate properly, do not rename image names.

Uploading an Image File By Using FTP

You can upload an image from the switch to an FTP server. You can later download this image to the same switch or to another switch of the same type.

The upload feature is available only if the HTML pages associated with the Cluster Management Suite (CMS) have been installed with the existing image.

Beginning in privileged EXEC mode, follow these steps to upload an image to an FTP server:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Verify that the FTP server is properly configured by referring to the “Preparing to Download or Upload a Configuration File By Using FTP” section on page B-13.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td>Step 3</td>
<td>configure terminal Enter global configuration mode. This step is required only if you override the default remote username or password (see Steps 4, 5, and 6).</td>
</tr>
<tr>
<td>Step 4</td>
<td>ip ftp username username (Optional) Change the default remote username.</td>
</tr>
<tr>
<td>Step 5</td>
<td>ip ftp password password (Optional) Change the default password.</td>
</tr>
<tr>
<td>Step 6</td>
<td>end Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>archive upload-sw ftp://[//username:password]@[location]//directory//image-name.tar Upload the currently running switch image to the FTP server. • For /username:password, specify the username and password. These must be associated with an account on the FTP server. For more information, see the “Preparing to Download or Upload an Image File By Using FTP” section on page B-25. • For @location, specify the IP address of the FTP server. • For //directory//image-name.tar, specify the directory (optional) and the name of the software image to be uploaded. Directory and image names are case sensitive. The image-name.tar is the name of the software image to be stored on the server.</td>
</tr>
</tbody>
</table>
The **archive upload-sw** command builds an image file on the server by uploading these files in order: info, the IOS image, the HTML files, and info.ver. After these files are uploaded, the upload algorithm creates the tar file format.

⚠️ **Caution**

For the download and upload algorithms to operate properly, *do not* rename image names.

Copying Image Files By Using RCP

You can download a switch image from an RCP server or upload the image from the switch to an RCP server.

You download a switch image file from a server to upgrade the switch software. You can overwrite the current image with the new one or keep the current image after a download.

You upload a switch image file to a server for backup purposes. You can use this uploaded image for future downloads to the same switch or another of the same type.

This section includes this information:

- Preparing to Download or Upload an Image File By Using RCP, page B-29
- Downloading an Image File By Using RCP, page B-30
- Uploading an Image File By Using RCP, page B-32

Preparing to Download or Upload an Image File By Using RCP

RCP provides another method of downloading and uploading image files between remote hosts and the switch. Unlike TFTP, which uses User Datagram Protocol (UDP), a connectionless protocol, RCP uses TCP, which is connection-oriented.

To use RCP to copy files, the server from or to which you will be copying files must support RCP. The RCP copy commands rely on the rsh server (or daemon) on the remote system. To copy files by using RCP, you do not need to create a server for file distribution as you do with TFTP. You only need to have access to a server that supports the remote shell (rsh). (Most UNIX systems support rsh.) Because you are copying a file from one place to another, you must have read permission on the source file and write permission on the destination file. If the destination file does not exist, RCP creates it for you.

RCP requires a client to send a remote username on each RCP request to a server. When you copy an image from the switch to a server by using RCP, the Cisco IOS software sends the first valid username in this list:

- The username specified in the **archive download-sw** or **archive upload-sw** privileged EXEC command if a username is specified.
- The username set by the **ip rcmd remote-username username** global configuration command if the command is entered.
- The remote username associated with the current TTY (terminal) process. For example, if the user is connected to the router through Telnet and was authenticated through the **username** command, the switch software sends the Telnet username as the remote username.
- The switch host name.
For the RCP copy request to execute successfully, an account must be defined on the network server for the remote username. If the server has a directory structure, the image file is written to or copied from the directory associated with the remote username on the server. For example, if the image file resides in the home directory of a user on the server, specify that user’s name as the remote username.

Before you begin downloading or uploading an image file by using RCP, do these tasks:

- Ensure that the workstation acting as the RCP server supports the remote shell (rsh).
- Ensure that the switch has a route to the RCP server. The switch and the server must be in the same subnetwork if you do not have a router to route traffic between subnets. Check connectivity to the RCP server by using the `ping` command.
- If you are accessing the switch through the console or a Telnet session and you do not have a valid username, make sure that the current RCP username is the one that you want to use for the RCP download. You can enter the `show users` privileged EXEC command to view the valid username. If you do not want to use this username, create a new RCP username by using the `ip rcmd remote-username username` global configuration command to be used during all archive operations. The new username is stored in NVRAM. If you are accessing the switch through a Telnet session and you have a valid username, this username is used, and there is no need to set the RCP username. Include the username in the `archive download-sw` or `archive upload-sw` privileged EXEC command if you want to specify a username only for that operation.
- When you upload an image to the RCP to the server, it must be properly configured to accept the RCP write request from the user on the switch. For UNIX systems, you must add an entry to the `.rhosts` file for the remote user on the RCP server. For example, suppose the switch contains these configuration lines:

```
hostname Switch1
ip rcmd remote-username User0
```

If the switch IP address translates to `Switch1.company.com`, the `.rhosts` file for User0 on the RCP server should contain this line:

```
Switch1.company.com Switch1
```

For more information, refer to the documentation for your RCP server.

Downloading an Image File By Using RCP

You can download a new image file and replace or keep the current image.

Beginning in privileged EXEC mode, follow Steps 1 through 6 to download a new image from an RCP server and overwrite the existing image. To keep the current image, skip Step 6.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Verify that the RCP server is properly configured by referring to the “Preparing to Download or Upload an Image File By Using RCP” section on page B-29.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enter global configuration mode. This step is required only if you override the default remote username (see Steps 4 and 5).</td>
</tr>
<tr>
<td>Step 4</td>
<td>(Optional) Specify the remote username.</td>
</tr>
</tbody>
</table>
The download algorithm verifies that the image is appropriate for the switch model and that enough DRAM is present, or it aborts the process and reports an error. If you specify the /overwrite option, the download algorithm removes the existing image on the Flash device whether or not it is the same as the new one, downloads the new image, and then reloads the software.

Note
If the Flash device has sufficient space to hold two images and you want to overwrite one of these images with the same version, you must specify the /overwrite option.
If you specify the `/leave-old-sw`, the existing files are not removed. If there is not enough room to install the new image an keep the running image, the download process stops, and an error message is displayed.

The algorithm installs the downloaded image onto the system board Flash device (flash:). The image is placed into a new directory named with the software version string, and the BOOT environment variable is updated to point to the newly installed image.

If you kept the old software during the download process (you specified the `/leave-old-sw` keyword), you can remove it by entering the delete /force /recursive filesystem:/file-url privileged EXEC command. For `filesystem`, use `flash:` for the system board Flash device. For `file-url`, enter the directory name of the old software image. All the files in the directory and the directory are removed.

Caution

For the download and upload algorithms to operate properly, do **not** rename image names.

Uploading an Image File By Using RCP

You can upload an image from the switch to an RCP server. You can later download this image to the same switch or to another switch of the same type.

The upload feature is available only if the HTML pages associated with the Cluster Management Suite (CMS) have been installed with the existing image.

Beginning in privileged EXEC mode, follow these steps to upload an image to an RCP server:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Verify that the RCP server is properly configured by referring to the “Preparing to Download or Upload an Image File By Using RCP” section on page B-29.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Log into the switch through the console port or a Telnet session.</td>
</tr>
<tr>
<td>Step 3 <code>configure terminal</code></td>
<td>Enter global configuration mode. This step is required only if you override the default remote username (see Steps 4 and 5).</td>
</tr>
<tr>
<td>Step 4 <code>ip rcmd remote-username username</code></td>
<td>(Optional) Specify the remote username.</td>
</tr>
</tbody>
</table>
Appendix B Working with the IOS File System, Configuration Files, and Software Images

Working with Software Images

The *archive upload-sw* privileged EXEC command builds an image file on the server by uploading these files in order: info, the IOS image, the HTML files, and info.ver. After these files are uploaded, the upload algorithm creates the tar file format.

Caution
For the download and upload algorithms to operate properly, do not rename image names.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5 end</td>
<td>Return to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 6 archive upload-sw rcp: [[//username@]location] [directory] image-name.tar</td>
<td>Upload the currently running switch image to the RCP server.</td>
</tr>
<tr>
<td></td>
<td>• For username, specify the username; for the RCP copy request to execute, an account must be defined on the network server for the remote username. For more information, see the “Preparing to Download or Upload an Image File By Using RCP” section on page B-29.</td>
</tr>
<tr>
<td></td>
<td>• For location, specify the IP address of the RCP server.</td>
</tr>
<tr>
<td></td>
<td>• For directory[/image-name.tar], specify the directory (optional) and the name of the software image to be uploaded. Directory and image names are case sensitive.</td>
</tr>
<tr>
<td></td>
<td>• The image-name.tar is the name of software image to be stored on the server.</td>
</tr>
</tbody>
</table>
Unsupported CLI Commands in Release 12.1(13)EA1

This appendix lists some of the command-line interface (CLI) commands that are displayed when you enter the question mark (?) at the Catalyst 3550 switch prompt but are not supported in this release, either because they are not tested, or because of Catalyst 3550 hardware limitations. This is not a complete list. The unsupported commands are listed by software feature and command mode.

Access Control Lists

Unsupported Privileged EXEC Commands

access-enable [host] [timeout minutes]
access-template [access-list-number | name] [dynamic-name] [source] [destination] [timeout minutes]
clear access-template [access-list-number | name] [dynamic-name] [source] [destination].

ARP Commands

Unsupported Global Configuration Commands

arp ip-address hardware-address smds
arp ip-address hardware-address srp-a
arp ip-address hardware-address srp-b

Unsupported Interface Configuration Commands

arp probe
ip probe proxy
FallBack Bridging

Unsupported Privileged EXEC Commands

clear bridge [bridge-group] multicast [router-ports | groups | counts] [group-address] [interface-unit] [counts]
clear vlan statistics
show bridge [bridge-group] circuit-group [circuit-group] [src-mac-address] [dst-mac-address]
show bridge [bridge-group] multicast [router-ports | groups] [group-address]
show bridge vlan
show interfaces crb
show interfaces {ethernet | fastethernet} [interface | slot/port] irb
show subscriber-policy range

Unsupported Global Configuration Commands

bridge bridge-group bitswap_l3_addresses
bridge bridge-group bridge ip
bridge bridge-group circuit-group circuit-group pause milliseconds
bridge bridge-group circuit-group circuit-group source-based
bridge cmf
bridge crb
bridge bridge-group domain domain-name
bridge irb
bridge bridge-group mac-address-table limit number
bridge bridge-group multicast-source
bridge bridge-group route protocol
bridge bridge-group subscriber policy policy
subscriber-policy policy [[no | default] packet [permit | deny]]

Unsupported Interface Configuration Commands

bridge-group bridge-group cbus-bridging
bridge-group bridge-group circuit-group circuit-number
bridge-group bridge-group input-address-list access-list-number
bridge-group bridge-group input-lat-service-deny group-list
bridge-group bridge-group input-lat-service-permit group-list
bridge-group bridge-group input-lsap-list access-list-number
bridge-group bridge-group input-pattern-list access-list-number
bridge-group bridge-group input-type-list access-list-number
bridge-group bridge-group lat-compression
bridge-group bridge-group output-address-list access-list-number
bridge-group bridge-group output-lat-service-deny group-list
bridge-group bridge-group output-lat-service-permit group-list
bridge-group bridge-group output-lsap-list access-list-number
bridge-group bridge-group output-pattern-list access-list-number
bridge-group bridge-group output-type-list access-list-number
bridge-group bridge-group sse
bridge-group bridge-group subscriber-loop-control
bridge-group bridge-group subscriber-trunk
bridge
bridge-group lat-service-filtering
frame-relay map bridge dcei broadcast
interface bvi bridge-group
x25 map bridge x.121-address broadcast [options-keywords]

HSRP

Unsupported Global Configuration Commands

interface Async
interface BVI
interface Dialer
interface Group-Async
interface Lex
interface Multilink
interface Virtual-Template
interface Virtual-Tokenring

Unsupported Interface Configuration Commands

mtu
standby mac-refresh seconds
standby use-bia
Interface Configuration Commands

switchport broadcast level
switchport multicast level
switchport unicast level

Note: These commands were replaced in IOS release 12.1(8)EA1 by the storm-control {broadcast | multicast | unicast} level level [.level] interface configuration command.

IP Multicast Routing

Unsupported Privileged EXEC Commands

clear ip rtp header-compression [type number]
The debug ip packet command displays packets received by the switch CPU. It does not display packets that are hardware-switched.
The debug ip mcache command affects packets received by the switch CPU. It does not display packets that are hardware-switched.
The debug ip mpacket [detail] [access-list-number [group-name-or-address] command affects only packets received by the switch CPU. Because most multicast packets are hardware-switched, use this command only when you know that the route will forward the packet to the CPU.
debug ip pim atm
show frame-relay ip rtp header-compression [interface type number]
The show ip mcache command displays entries in the cache for those packets that are sent to the switch CPU. Because most multicast packets are switched in hardware without CPU involvement, you can use this command, but multicast packet information is not displayed.
The show ip mpacket commands are supported but are only useful for packets received at the switch CPU. If the route is hardware-switched, the command has no effect because the CPU does not receive the packet and cannot display it.
show ip pim vc [group-address | name] [type number]
show ip rtp header-compression [type number] [detail]

Unsupported Global Configuration Commands

ip pim accept-rp {address | auto-rp} [group-access-list-number]
ip pim message-interval seconds
Unsupported Interface Configuration Commands

frame-relay ip rtp header-compression [active | passive]
frame-relay map ip ip-address dlci [broadcast] compress
frame-relay map ip ip-address dlci rtp header-compression [active | passive]
ip igmp helper-address ip-address
ip multicast helper-map {group-address | broadcast} {broadcast-address | multicast-address}
extended-access-list-number
ip multicast rate-limit {in | out} [video | whiteboard] [group-list access-list] [source-list access-list] kbps
ip multicast use-functional
ip pim minimum-vc-rate pps
ip pim multipoint-signalling
ip pim nbma-mode
ip pim vc-count number
ip rtp compression-connections number
ip rtp header-compression [passive]

IP Unicast Routing

Unsupported Privileged EXEC or User EXEC Commands

clear ip accounting [checkpoint]
clear ip bgp address flap-statistics
clear ip bgp prefix-list
show cef [drop | not-cef-switched]
show ip accounting [checkpoint] [output-packets | access-violations]
show ip bgp dampened-paths
show ip bgp flap-statistics
show ip bgp inconsistent-as
show ip bgp regexp regular expression
Unsupported Global Configuration Commands

- ip accounting-list ip-address wildcard
- ip accounting-transits count
- ip cef accounting [per-prefix] [non-recursive]
- ip cef traffic-statistics [load-interval seconds] [update-rate seconds]
- ip flow-aggregation
- ip flow-cache
- ip flow-export
- ip gratuitous-arps
- ip local
- ip reflexive-list
- router egp
- router-isis
- router iso-igrp
- router mobile
- router odr
- router static

Unsupported Interface Configuration Commands

- ip accounting
- ip load-sharing [per-packet]
- ip mtu bytes
- ip route-cache
- ip verify
- ip unnumbered type number

All ip security commands

Unsupported BGP Router Configuration Commands

Note: These BGP commands have not been tested for the Catalyst 3550 and are not supported for the switch in Cisco IOS release 12.1(12c)EA1. This is not a complete list.

- address-family vpnv4
- default-information originate
- neighbor advertise-map
- neighbor allows-in
Unsupported CLI Commands in Release 12.1(13)EA1

Unsupported VPN Configuration Commands

All

Note
The switch does support multi-VPN routing/forwarding (multi-VRF) commands shown in the command reference for this release.

Unsupported Route Map Commands

- match length
- route-map map-tag deny
- set automatic-tag
- set dampening half-life reuse suppress max-suppress-time
- set default interface
- set interface
- set ip default next-hop
- set ip destination ip-address mask
- set ip df
- set ip precedence value
- set ip qos-group
- set tag tag-value
- set ip tos

MSDP

Unsupported Privileged EXEC Commands

- show access-expression
- show exception
- show location
- show pm LINE
- show smf [interface-id]
- show subscriber-policy [policy-number]
show template [template-name]

Unsupported Global Configuration Commands

ip msdp default-peer ip-address | name [prefix-list list] (Because BGP/MBGP is not supported, use the ip msdp peer command instead of this command.)

RADIUS

Unsupported Global Configuration Commands

aaa nas port extended
radius-server attribute nas-port
radius-server configure
radius-server extended-portnames

SNMP

Unsupported Global Configuration Commands

snmp-server enable informs

Spanning Tree

Unsupported Global Configuration Commands

spanning-tree etherchannel guard misconfig

VLAN

Unsupported User EXEC Commands

ifindex
private-vlan
<table>
<thead>
<tr>
<th>Numerics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>144-bit Layer 3 TCAM</td>
<td>7-27, 30-68</td>
</tr>
<tr>
<td>802.1D</td>
<td>See STP</td>
</tr>
<tr>
<td>802.1Q</td>
<td></td>
</tr>
<tr>
<td>and trunk ports</td>
<td>10-3</td>
</tr>
<tr>
<td>configuration limitations</td>
<td>11-18</td>
</tr>
<tr>
<td>encapsulation</td>
<td></td>
</tr>
<tr>
<td>native VLAN for untagged traffic</td>
<td>11-22</td>
</tr>
<tr>
<td>trunk mode</td>
<td>3-9</td>
</tr>
<tr>
<td>tunneling</td>
<td></td>
</tr>
<tr>
<td>compatibility with other features</td>
<td>14-5</td>
</tr>
<tr>
<td>defaults</td>
<td>14-4</td>
</tr>
<tr>
<td>described</td>
<td>14-1</td>
</tr>
<tr>
<td>tunnel ports and ACLs</td>
<td>27-3</td>
</tr>
<tr>
<td>tunnel ports with other features</td>
<td>14-6</td>
</tr>
<tr>
<td>802.1S</td>
<td>See MSTP</td>
</tr>
<tr>
<td>802.1W</td>
<td>See RSTP</td>
</tr>
<tr>
<td>802.1X</td>
<td>See port-based authentication</td>
</tr>
<tr>
<td>802.3X flow control</td>
<td>10-15</td>
</tr>
<tr>
<td>access-denied response, VMPS</td>
<td>11-27</td>
</tr>
<tr>
<td>access groups</td>
<td></td>
</tr>
<tr>
<td>IP</td>
<td>27-21</td>
</tr>
<tr>
<td>Layer 3</td>
<td>27-21</td>
</tr>
<tr>
<td>accessing</td>
<td></td>
</tr>
<tr>
<td>clusters, switch</td>
<td>6-16</td>
</tr>
<tr>
<td>command switches</td>
<td>6-13</td>
</tr>
<tr>
<td>member switches</td>
<td>6-16</td>
</tr>
<tr>
<td>switch clusters</td>
<td>6-16</td>
</tr>
<tr>
<td>access lists</td>
<td></td>
</tr>
<tr>
<td>See ACLs</td>
<td></td>
</tr>
<tr>
<td>access ports</td>
<td></td>
</tr>
<tr>
<td>and Layer 2 protocol tunneling</td>
<td>14-9</td>
</tr>
<tr>
<td>defined</td>
<td>10-3</td>
</tr>
<tr>
<td>in switch clusters</td>
<td>6-11</td>
</tr>
<tr>
<td>accounting</td>
<td></td>
</tr>
<tr>
<td>with RADIUS</td>
<td>8-28</td>
</tr>
<tr>
<td>with TACACS+</td>
<td>8-11, 8-17</td>
</tr>
<tr>
<td>ACEs</td>
<td></td>
</tr>
<tr>
<td>and QoS</td>
<td>28-7</td>
</tr>
<tr>
<td>defined</td>
<td>27-2</td>
</tr>
<tr>
<td>Ethernet</td>
<td>27-2</td>
</tr>
<tr>
<td>IP</td>
<td>27-2</td>
</tr>
<tr>
<td>ACLs</td>
<td></td>
</tr>
<tr>
<td>ACEs</td>
<td>27-2</td>
</tr>
<tr>
<td>and logging</td>
<td>27-7</td>
</tr>
<tr>
<td>any keyword</td>
<td>27-13</td>
</tr>
<tr>
<td>applying</td>
<td></td>
</tr>
<tr>
<td>on bridged packets</td>
<td>27-38</td>
</tr>
<tr>
<td>on multicast packets</td>
<td>27-40</td>
</tr>
<tr>
<td>on routed packets</td>
<td>27-39</td>
</tr>
<tr>
<td>on switched packets</td>
<td>27-37</td>
</tr>
<tr>
<td>time ranges to</td>
<td>27-17</td>
</tr>
</tbody>
</table>

A

<table>
<thead>
<tr>
<th>abbreviating commands</th>
<th>2-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABRs</td>
<td>30-29</td>
</tr>
<tr>
<td>AC (command switch)</td>
<td>6-13, 6-22</td>
</tr>
<tr>
<td>access-class command</td>
<td>27-20</td>
</tr>
<tr>
<td>access control entries</td>
<td></td>
</tr>
<tr>
<td>See ACEs</td>
<td></td>
</tr>
</tbody>
</table>
to Layer 2 and Layer 3 interfaces 27-20
to QoS 28-7
classifying traffic for QoS 28-36
comments in 27-19
compatibility on the same switch 27-2
compiling 27-21
configuration conflict examples 27-44
configuring with VLAN maps 27-36
declared 27-1
examples, not fitting in hardware 27-45
elements of 27-21, 28-36
extended IP
configuring for QoS classification 28-37
creating 27-11
matching criteria 27-8
feature manager 27-43
hardware and software handling 27-6
hardware support for 27-6
host keyword 27-13
IP
applying to interface 27-19
creating 27-8
declared 27-8
fragments and QoS guidelines 28-27
implicit deny 27-10, 27-14, 27-16
implicit masks 27-10
matching criteria 27-8
matching criteria for port ACLs 27-4
matching criteria for router ACLs 27-3
declared 27-15
options and QoS guidelines 28-27
undefined 27-21
violations, logging 27-16
virtual terminal lines, setting on 27-19
limiting actions 27-37
logging messages 27-10
log keyword 27-16
MAC extended 27-26, 28-38
matching 27-8, 27-21, 27-28
merge failure examples 27-46
monitoring 27-41
declared 27-15
not fitting in hardware 27-45
number per QoS class map 28-27
numbers 27-8
policy maps and QoS classification 28-27
port
and voice VLAN 27-4
declared 27-2
limitations 27-4
QoS 28-7, 28-36
router 27-2
standard IP
configuring for QoS classification 28-36
creating 27-9
matching criteria 27-8
support for 1-4
time ranges 27-17
undefined 27-28
unsupported features 27-7
using router ACLs with VLAN maps 27-36
VLAN maps
configuration guidelines 27-30
configuring 27-29
declared 27-4
active router 31-1
adding secure addresses 7-26
addresses
displaying the MAC address table 7-26
dynamic
accelerated aging 15-9
changing the aging time 7-22
default aging 15-9
defined 7-20
learning 7-21
preventing frame forwarding 35-5
removing 7-23
filtering frames by MAC address 35-6
MAC, adding secure 7-26
multicast
group address range 33-1
STP address management 15-8
secure
adding 7-26
described 7-26
static
adding and removing 7-25
defined 7-20
address resolution 30-8
Address Resolution Protocol
See ARP
address table, adding secure addresses 7-26
adjacency tables, with CEF 30-76
administrative distances
defined 30-87
OSPF 30-34
routing protocol defaults 30-77
advertisements
CDP 21-1
IGRP 30-24
RIP 30-19
VTP 11-19, 12-3
aggregate addresses, BGP 30-60
aggregated ports
See EtherChannel
aggregate policers 28-49
aggregate policing 1-5
aging, accelerating 15-9
aging time
accelerated
for MSTP 16-20
for STP 15-9, 15-19
bridge table for fallback bridging 35-6
MAC address table 7-22
maximum
for MSTP 16-21
for STP 15-19
alarms, RMON 24-3
allowed-VLAN list 11-21
alternate routes, IGRP 30-25
area border routers
See ABRs
ARP
configuring 30-9
defined 30-8
encapsulation 30-10
static cache configuration 30-9
support for 1-2
ASBRs 30-29
AS-path filters, BGP 30-54
asymmetrical links, and 802.1Q tunneling 14-4
attributes, RADIUS
vendor-proprietary 8-31
vendor-specific 8-29
audience xxxiii
authentication
EIGRP 30-42
HSRP 31-8
local mode with AAA 8-36
NTP associations 7-4
RADIUS
key 8-21
login 8-23
TACACS+
defined 8-11
key 8-13
login 8-14
See also port-based authentication
authentication keys, and routing protocols 30-88
authoritative time source, described 7-2
authorization
with RADIUS 8-27
with TACACS+ 8-11, 8-16
authorized ports with 802.1X 9-4
autoconfiguration 4-3
automatic discovery
adding member switches 6-20
considerations
 beyond a non-candidate device 6-8, 6-9
 brand new switches 6-11
 connectivity 6-5
 different VLANs 6-7
management VLANs 6-8, 6-9
non-CDP-capable devices 6-6
non-cluster-capable devices 6-6
routed ports 6-10
creating a cluster standby group 6-22
in switch clusters 6-5
See also CDP
automatic QoS
 See QoS
automatic recovery, clusters 6-12
 See also HSRP
autonegotiation
duplex mode 1-2
interface configuration guidelines 10-13
mismatches 36-10
autonomous system boundary routers
 See ASBRs
autonomous systems, in BGP 30-48
Auto-RP, described 33-8
autosensing, port speed 1-2
auxiliary VLAN
 See voice VLAN

bandwidth for QoS
 allocating 28-63
described 28-13
bandwidth graphs 3-8
banners
 configuring
 login 7-20
message-of-the-day login 7-19
default configuration 7-18
 when displayed 7-18
BGP
 aggregate addresses 30-60
aggregate routes, configuring 30-60
CIDR 30-60
clear commands 30-63
community filtering 30-56
configuring neighbors 30-58
default configuration 30-46
described 30-45
enabling 30-48
monitoring 30-63
multipath support 30-51
neighbors, types of 30-48
path selection 30-51
peers, configuring 30-58
prefix filtering 30-55
resetting sessions 30-50
route maps 30-53
route reflectors 30-61
routing domain confederation 30-60
routiing session with multi-VRF CE 30-70
show commands 30-63
 supernets 30-60
support for 1-5
Version 4 30-45
binding cluster group and HSRP group 31-9
blocking packets 20-6

B

BackboneFast
described 17-10
enabling 17-19
support for 1-3
booting
 boot loader, function of 4-2
 boot process 4-1
 manually 4-13
 specific image 4-14
boot loader
 accessing 4-15
 described 4-2
 environment variables 4-15
 prompt 4-15
 trap-door mechanism 4-2
bootstrap router (BSR), described 33-8
Border Gateway Protocol
 See BGP
BPDU
 error-disabled state 17-3
 filtering 17-3
 RSTP format 16-5
BPDU filtering
 described 17-3
 enabling 17-16
 support for 1-3
BPDU guard
 described 17-3
 enabling 17-15
 support for 1-3
bridged packets, ACLs on 27-38
bridge groups
 See fallback bridging
bridge protocol data unit
 See BPDU
broadcast flooding 30-16
broadcast packets
 directed 30-13
 flooded 30-13
broadcast storm-control command 20-3
broadcast storms 20-1, 30-13
browser configuration 3-1, 6-1
buttons, CMS 3-28

cables, monitoring for unidirectional links 22-1
cache engines, redirecting traffic to 32-1
CAMs, ACLs not loading in 27-45
candidate switch
 adding 6-20
 automatic discovery 6-5
 defined 6-4
 HC 6-22
 passwords 6-20
 requirements 6-4
 standby group 6-22
 See also command switch, cluster standby group, and member switch
caution, described xxxiv
CC (command switch) 6-22
CDP
 and trusted boundary 28-32
 automatic discovery in switch clusters 6-5
 configuring 21-2
 default configuration 21-2
 described 21-1
 disabling for routing device 21-3, 21-4
 enabling and disabling
 on an interface 21-4
 on a switch 21-3
 Layer 2 protocol tunneling 14-7
 monitoring 21-5
 overview 21-1
 support for 1-2
 transmission timer and holdtime, setting 21-2
 updates 21-2
CEF 30-75
CGMP
as IGMP snooping learning method 19-6
clearing cached group entries 33-58
enabling server support 33-38
FastLeave feature 33-13
hosts
joining a group 33-12
leaving a group 33-13
joining multicast group 19-2
overview 33-11
server support only 33-11
switch support of 1-2
CIDR 30-60
Cisco Discovery Protocol
See CDP
Cisco Express Forwarding
See CEF
Cisco Group Management Protocol
See CGMP
Cisco Intelligence Engine 2100 Series Configuration
Registrar
See IE2100
Cisco Networking Services
See IE2100
CiscoWorks 2000 1-7, 26-4
classless interdomain routing
See CIDR
classless routing 30-7
class maps for QoS
configuring per physical port 28-39
configuring per-port per-VLAN 28-41
described 28-7
displaying 28-69
class of service
See CoS
clearing interfaces 10-21

CLI
abbreviating commands 2-4
command modes 2-1
described 1-7
editing features
enabling and disabling 2-7
keystroke editing 2-7
wrapped lines 2-8
error messages 2-5
filtering command output 2-9
getting help 2-3
history
changing the buffer size 2-5
described 2-5
disabling 2-6
recalling commands 2-6
managing clusters 6-25
no and default forms of commands 2-4
client mode, VTP 12-3
clock
See system clock
Cluster Management Suite
See CMS
clusters, switch
accessing 6-16
adding member switches 6-20
automatic discovery 6-5
automatic recovery 6-12
benefits 1-7
command switch configuration 6-19
compatibility 6-5
creating 6-18
creating a cluster standby group 6-22
described 6-1
LRE profile considerations 6-18
managing
 through CLI 6-25
 through SNMP 6-26
planning 6-5
planning considerations
 automatic discovery 6-5
 automatic recovery 6-12
 CLI 6-25
 host names 6-16
 IP addresses 6-16
 LRE profiles 6-18
 passwords 6-16
 RADIUS 6-17
 SNMP 6-17, 6-26
 switch-specific features 6-18
 TACACS+ 6-17
 redundancy 6-22
 troubleshooting 6-24
 verifying 6-24
See also candidate switch, command switch, cluster standby group, member switch, and standby command switch
cluster standby group
 and HSRP group 31-9
 automatic recovery 6-15
 considerations 6-13
 creating 6-22
 defined 6-2
 requirements 6-3
 virtual IP address 6-13
See also HSRP
cluster tree, described 3-5
CMS
 benefits 1-7
 cluster tree 3-5
 described 1-1, 1-7, 3-1
 displaying system messages 3-18
features 3-2
Front Panel images 3-6
Front Panel view 3-3
interaction modes 3-24
menu bar 3-13
online help 3-25
toolbar 3-19
tool tips 3-25
Topology view 3-10
window components 3-26
wizards 3-25
Coarse Wave Division Multiplexer GBIC modules
 See CWDM GBIC modules
command-line interface
 See CLI
cmd command modes 2-1
cmd commands
 abbreviating 2-4
 no and default 2-4
 setting privilege levels 8-8
cmd command switch
 accessing 6-13
 active (AC) 6-13, 6-22
 command switch with HSRP disabled (CC) 6-22
 configuration conflicts 36-10
 defined 6-2
 enabling 6-19
 passive (PC) 6-13, 6-22
 password privilege levels 6-25
 priority 6-13
 recovery
 from command-switch failure 6-13
 from failure 36-6
 from lost member connectivity 36-10
redundant 6-12, 6-22
replacing
 with another switch 36-8
 with cluster member 36-7
requirements 6-3
standby (SC) 6-13, 6-22
See also candidate switch, cluster standby group, member switch, and standby command switch

community list, BGP 30-57
community strings
 configuring 6-17, 26-7
 for cluster switches 26-4
 in clusters 6-17
 overview 26-4
 SNMP 6-17
config.text 4-12
configuration conflicts
 ACL, displaying 27-44
 recovering from lost member connectivity 36-10
configuration conflicts, recovering from lost member connectivity 36-10
configuration examples, network 1-8
configuration files
 clearing the startup configuration B-19
 creating using a text editor B-10
 default name 4-12
 deleting a stored configuration B-19
 described B-8
downloading
 automatically 4-12
 preparing B-10, B-13, B-16
 reasons for B-8
 using FTP B-13
 using RCP B-17
 using TFTP B-11
guidelines for creating and using B-9
invalid combinations when copying B-5
limiting TFTP server access 26-14
obtaining with DHCP 4-7
password recovery disable considerations 8-5
specifying the filename 4-13
system contact and location information 26-14
types and location 8-9
uploading
 preparing B-10, B-13, B-16
 reasons for B-8
 using FTP B-15
 using RCP B-18
 using TFTP B-12
VMPS database 11-28
configuration guidelines, multi-VRF CE 30-68
configuration settings, saving 4-10
configure terminal command 10-7
configuring inline power 10-14
config-vlan mode 2-2, 11-6
corruptions, configuration 36-10
congestion-avoidance techniques 28-12
congestion-management techniques 28-12, 28-15
connections, secure remote 8-37
connectivity problems 36-11
consistency checks in VTP version 2 12-4
console port, connecting to 2-10
content-routing technology
 See WCCP
coditions
 command xxxiv
 for examples xxxiv
 publication xxxiv
text xxxiv
CoS
 in Layer 2 frames 28-2
 override priority 13-5
 trust priority 13-6
CoS-to-DSCP map for QoS 28-52
CoS-to-egress-queue map 28-57
counters, clearing interface 10-21
CPU q. in show forward command output 36-20
crashinfo file 36-20
cross-stack UplinkFast, STP described 17-5 enabling 17-18 fast-convergence events 17-7 Fast Uplink Transition Protocol 17-6 limitations 17-8 normal-convergence events 17-7 Stack Membership Discovery Protocol support for 1-3 cryptographic software image 8-37 customer edge devices 30-65 CWDM GBIC modules network example 1-17 wavelength colors on CMS 3-6 CWDM OADM modules 1-17

D daylight saving time 7-13 debugging enabling all system diagnostics 36-17 enabling for a specific feature 36-17 redirecting error message output 36-18 using commands 36-16 default commands 2-4 default configuration 802.1Q tunneling 14-4 802.1X 9-9 auto-QoS 28-18 banners 7-18 BGP 30-46 booting 4-12 CDP 21-2 DHCP 18-3 DNS 7-17 EIGRP 30-39 EtherChannel 29-8 fallback bridging 35-3 HSRP 31-3 IGMP 33-31 IGMP filtering 19-20 IGMP snooping 19-5 IGRP 30-25 initial switch information 4-3 IP addressing, IP routing 30-4 IP multicast routing 33-13 Layer 2 interfaces 10-12 Layer 2 protocol tunneling 14-9 MAC address table 7-22 MSDP 34-4 multi-VRF CE 30-67 MVR 19-14 NTP 7-4 optional spanning-tree features 17-14 OSPF 30-30 password and privilege level 8-2 RADIUS 8-20 RIP 30-19 RMON 24-3 RSPAN 23-8 RSTP and MSTP 16-12 SNMP 26-6 SPAN 23-8 standard QoS 28-25 STP 15-10 system message logging 25-3 system name and prompt 7-15 TACACS+ 8-13 UDLD 22-3 VLAN, Layer 2 Ethernet interfaces 11-18 VLANs 11-7 VMPS 11-30 voice VLAN 13-2 VTP 12-6 WCCP 32-5 default gateway 4-10, 30-11 default networks 30-78
default routes 30-78
default routing 30-2
deleting VLANs 11-10
description command 10-17
designing your network, examples 1-8
destination addresses, in ACLs 27-12
detecting indirect link failures, STP 17-10
device discovery protocol 21-1
device labels 3-12
Device Manager 3-4
 See also Switch Manager
device pop-up menu, Front Panel view 3-20
DHCP-based autoconfiguration
 client request message exchange 4-4
 configuring
 client side 4-3
 DNS 4-6
 relay device 4-6
 server-side 4-5
 TFTP server 4-5
 example 4-8
 lease options
 for IP address information 4-5
 for receiving the configuration file 4-5
 overview 4-3
 relationship to BOOTP 4-3
 relay support 1-6
 support for 1-2
DHCP option 82
 configuration guidelines 18-4
 default configuration 18-3
 displaying 18-7
 enabling
 relay agent 18-4
 relay agent information option 18-4
 example, metropolitan Ethernet network 18-2
 forwarding address, specifying 18-5
 helper address 18-6
 message exchange process 18-2
 overview 18-1
 policy for reforwarding 18-5
 protected ports for subscriber isolation 18-7
 reforwarding policy 18-5
 subscriber identification 18-2
 support for 1-2
 suppressing broadcasts 18-7
 validating 18-4
Differentiated Services architecture, QoS 28-2
Differentiated Services Code Point 28-2
Diffusing Update Algorithm (DUAL) 30-38
directed unicast requests 1-2
directories
 changing 8-3
 creating and removing 8-4
 displaying the working 8-3
discovery, clusters
 See automatic discovery
display options, Topology view 3-13
Disqualification Code option 3-24
Distance Vector Multicast Routing Protocol
 See DVMRP
distance-vector protocols 30-2
distribute-list command 30-86
DNS
 and DHCP-based autoconfiguration 4-6
 default configuration 7-17
 displaying the configuration 7-18
 overview 7-16
 setting up 7-17
 support for 1-2
documentation
 related xxxiv
document conventions xxxiv
domain names
 DNS 7-16
 VTP 12-8
Domain Name System
 See DNS
dot1q-tunnel switchport mode 11-17

do double-tagged packets
 802.1Q tunneling 14-2
Layer 2 protocol tunneling 14-9

downloading
configuration files
 preparing B-10, B-13, B-16
 reasons for B-8
 using FTP B-13
 using RCP B-17
 using TFTP B-11
image files
 deleting old image B-23
 preparing B-21, B-25, B-29
 reasons for B-19
 using FTP B-26
 using RCP B-30
 using TFTP B-22

drop threshold for Layer 2 protocol packets 14-10

DSCP 1-5, 28-2
DSCP-to-CoS map for QoS 28-54
DSCP-to-DSCP-mutation map for QoS 28-55
DSCP-to-threshold map for QoS 28-60

DTP 1-4, 11-16
DUAL finite state machine, EIGRP 30-38
duplex mode, configuring 10-13

DVMRP
 all-DVMRP-routers multicast group address 33-11
 autosummarization
 configuring a summary address 33-54
 disabling 33-56
 connecting PIM domain to DVMRP router 33-46
 enabling unicast routing 33-50
 interoperability
 with Cisco devices 33-44
 with IOS software 33-11
 mrinfo requests, responding to 33-49

neighbors
 advertising the default route to 33-48
 discovery with Probe messages 33-11, 33-44
 displaying information 33-49
 prevent peering with nonpruning 33-52
 rejecting nonpruning 33-51
overview 33-11
routes
 adding a metric offset 33-56
 advertising all 33-56
 advertising the default route to neighbors 33-48
 caching DVMRP routes learned in report messages 33-50
 changing the threshold for syslog messages 33-54
 deleting 33-58
 displaying 33-58
 favoring one over another 33-56
 limiting the number injected into MBONE 33-53
 limiting unicast route advertisements 33-44
 route table, building 33-11
 source distribution tree, building 33-11
 support for 1-6
 tunnels
 configuring 33-46
 displaying neighbor information 33-49
dynamic access mode 3-9
dynamic access ports
 characteristics 11-3
 configuring 11-31
 defined 10-3
dynamic addresses
 See addresses
dynamic desirable trunking mode 11-17
Dynamic Host Configuration Protocol
 See DHCP-based autoconfiguration
dynamic port VLAN membership
- described 11-28
- reconfirming 11-32
- troubleshooting 11-34
- types of connections 11-31
- VMPS database configuration file 11-28

dynamic routing 30-2
Dynamic Trunking Protocol
See DTP

E

EBGP 30-44
ing editing features
- enabling and disabling 2-7
- keystrokes used 2-7
- wrapped lines 2-8
ing error messages
during command entry 2-5
setting the display destination device 25-4
severity levels 25-8
system message format 25-2
EtherChannel
- automatic creation of 29-3
- channel groups
 - binding physical and logical interfaces 29-2
 - numbering of 29-3
 - configuration guidelines 29-8
-configuring
 - Layer 2 interfaces 29-9
 - Layer 3 physical interfaces 29-12
 - Layer 3 port-channel logical interfaces 29-11
default configuration 29-8
destination MAC address forwarding 29-6
displaying status 29-18
-forwarding methods 29-14
-interaction
 - with STP 29-8
 - with VLANs 29-9
-LACP, support for 1-2
Layer 3 interface 30-3
load balancing 29-6, 29-14
-logical interfaces, described 29-2
-number of interfaces per 29-2
-overview 29-1
PAgP
aggregate-port learners 29-5
compatibility with Catalyst 1900 29-15
displaying status 29-18
-interaction with other features 29-6
learn method and priority configuration 29-15
-modes 29-4
-overview 29-3
-silent mode 29-4
-support for 1-2

EIGRP
-and IGRP 30-40
-authentication 30-42
-components 30-38
-configuring 30-40
default configuration 30-39
definition 30-38
-interface parameters, configuring 30-41
-monitoring 30-43
-support for 1-5
-enable password 8-4
-enable secret password 8-4
-encryption for passwords 8-4
Enhanced IGRP
-See EIGRP
-environment variables
-function of 4-16
-location in Flash 4-15
equal-cost routing 1-6, 30-76
Index

port-channel interfaces
- described 29-2
- numbering of 29-3
port groups 10-5
source MAC address forwarding 29-6
- support for 1-2
EtherChannel guard
- described 17-12
- enabling 17-19
Ethernet VLANs
- adding 11-8
- defaults and ranges 11-8
- modifying 11-8
events, RMON 24-3
examples
- conventions for xxxiv
- network configuration 1-8
expedite queue for QoS
10/100 Ethernet ports
- allocating bandwidth 28-67
- configuring 28-66
- described 28-15
Gigabit-capable Ethernet ports
- allocating bandwidth 28-63
- configuring 28-62
- described 28-12
expert mode 3-24
extended-range VLANs
- configuration guidelines 11-12
- configuring 11-12
- creating 11-12, 11-13
- defined 11-1
extended system ID
- MSTP 16-14
- STP 15-4, 15-12
Extensible Authentication Protocol over LAN 9-1
- exterior routes, IGRP 30-24
- external BGP
- See EBGP
- external neighbors, BGP 30-48

F

fallback bridging
- and protected ports 35-4
bridge groups
- creating 35-4
- described 35-1
- displaying 35-12
- function of 35-2
- number supported 35-4
- removing 35-4
bridge table
- changing the aging time 35-6
- clearing 35-12
- displaying 35-12
configuration guidelines 35-3
connecting interfaces with 10-7
- default configuration 35-3
- described 35-1
frame forwarding
- filtering by MAC address 35-6
- flooding packets 35-2
- for static addresses 35-5
- forwarding packets 35-2
- preventing for dynamically learned stations 35-5
- to static addresses 35-5
overview 35-1
STP
- disabling on an interface 35-12
- forward-delay interval 35-10
- hello BPDU interval 35-10
- interface priority 35-8
maximum-idle interval 35-11
path cost 35-9
switch priority 35-8
VLAN-bridge STP 35-1, 35-2
support for 1-6
SVIs and routed ports 35-1
VLAN-bridge STP 15-8
fallback VLAN name 11-28
fan fault indication 3-5
Fast Uplink Transition Protocol 17-6
feature manager, ACL 27-43
FIB 30-76
fiber-optic, detecting unidirectional links 22-1
files
 copying B-4
 crashinfo
 description 36-20
 displaying the contents of 36-20
 location 36-20
deleing B-5
 displaying the contents of B-8
tar
 creating B-6
 displaying the contents of B-6
 extracting B-7
 image file format B-20
file system
 displaying available file systems B-2
 displaying file information B-3
 local file system names B-1
 network file system names B-4
 setting the default B-3
filtering
 in a VLAN 27-29
 non-IP traffic 27-26
 show and more command output 2-9
 with fallback bridging 35-6
filters, IP
 See ACLs, IP

Flash device, number of B-1
flash updates, IGRP 30-25
flooded traffic, blocking 20-6
flow-based packet classification 1-5
flowcharts
 QoS classification 28-6
 QoS policing and marking 28-10
 QoS queueing and scheduling
 10/100 ports 28-15
 Gigabit-capable ports 28-12
flow control 1-2, 10-15
forward-delay time
MSTP 16-20
STP 15-6, 15-19
Forwarding Information Base
 See FIB
forwarding non-routable protocols 35-1
Front Panel images, CMS 3-6
Front Panel view
 cluster tree 3-5
 described 3-3
 pop-up menus 3-20
 port icons 3-6
 port LEDs 3-8
 RPS LED 3-7
 switch images 3-6
FTP
 accessing MIB files A-3
 configuration files
 downloading B-13
 overview B-12
 preparing the server B-13
 uploading B-15
 image files
 deleting old image B-28
 downloading B-26
 preparing the server B-25
 uploading B-28
GBICs
1000BASE-LX/LH module 1-10
1000BASE-SX module 1-10
1000BASE-T module 1-10
1000BASE-ZX module 1-10
CWDM module 1-17
GigaStack module 1-10
 security and identification 36-10
get-bulk-request operation 26-3
get-next-request operation 26-3, 26-4
get-request operation 26-3, 26-4
get-response operation 26-3
Gigabit GBIC modules
 See GBICs
Gigabit Interface Converters
 See GBICs
GigaStack GBIC
 fast transition of redundant link 17-5
 See also GBICs
global configuration mode 2-2
graphs, bandwidth 3-8
guide
 audience xxxiii
 purpose of xxxiii
guide mode 1-8, 3-24

help, for the command line 2-3
Help Contents 3-25
history
 changing the buffer size 2-5
 described 2-5
 disabling 2-6
 recalling commands 2-6
history table, level and number of syslog messages 25-10
host name list, CMS 3-27
host names
 abbreviations appended to 6-22
 in clusters 6-16
hosts, limit on dynamic ports 11-34
Hot Standby Router Protocol
 See HSRP
HP OpenView 1-7
HSRP
 authentication string 31-8
 automatic cluster recovery 6-15
 binding to cluster group 31-9
 cluster standby group considerations 6-13
 command-switch redundancy 1-3
 configuring 31-3
 default configuration 31-3
 definition 31-1
 monitoring 31-10
 overview 31-1
 priority 31-6
 routing redundancy 1-5
 timers 31-8
 tracking 31-6
See also clusters, cluster standby group, and standby command switch

hardware, determining ACL configuration fit 27-45
HC (candidate switch) 6-22
hello time
 MSTP 16-19
 STP 15-18
Index

IBPG 30-44
ICMP
 redirect messages 30-11
 support for 1-6
 time exceeded messages 36-13
 tracert and 36-13
 unreachable messages 27-6
 unreaches and ACLs 27-6
ICMP ping
 executing 36-11
 overview 36-11
ICMP Router Discovery Protocol
 See IRDP
icons
 colors
 cluster tree 3-5
 Topology view 3-12
 Front Panel view 3-6
toolbar 3-19
 Topology view 3-11
IDS, using with SPAN and RSPAN 23-2
IE2100
 CNS embedded agents
 described 5-5
 enabling automated configuration 5-6
 enabling configuration agent 5-9
 enabling event agent 5-8
Configuration Registrar
 configID, deviceID, hostname 5-3
 configuration service 5-2
 described 5-1
 event service 5-3
 described 1-7
 support for 1-2
IEEE 802.1P 13-1
IFS 1-2
IGMP
 configuring the switch
 as a member of a group 33-34
 statically connected member 33-36
 controlling access to groups 33-35
 default configuration 33-31
 deleting cache entries 33-58
 displaying groups 33-58
 fast switching 33-37
 host-query interval, modifying 33-36
 joining multicast group 19-2
 join messages 19-2
 leave processing, enabling 19-9
 leaving multicast group 19-4
 multicast reachability 33-34
 overview 33-3
 queries 19-3
 support for 1-2
 Version 1
 changing to Version 2 33-32
 hosts joining a group 33-3
 hosts leaving a group 33-3
 membership queries 33-3
 overview 33-3
 query-response model 33-3
 Version 2
 changing to Version 1 33-32
 enhancements over Version 1 33-4
 hosts leaving a group 33-4
 maximum query response time value 33-33
 new features 33-4
 overview 33-4
 pruning groups 33-33
 query timeout value 33-32
IGMP filtering
 configuring 19-20
 default configuration 19-20
 described 19-20
 monitoring 19-23
IGMP groups, setting the maximum number 19-22
IGMP profile
 applying 19-21
 configuration mode 19-20
 configuring 19-20
IGMP snooping
 configuring 19-5
 default configuration 19-5
 definition 19-1
 enabling and disabling 19-5
 global configuration 19-5
 Immediate Leave 19-4
 method 19-6
 monitoring 19-9
 support for 1-2
 VLAN configuration 19-6
IGP 30-29
IGRP
 advertisements 30-24
 alternate routes 30-25
 configuring 30-26
 default configuration 30-25
 described 30-24
 exterior routes 30-24
 flash updates 30-25
 interior routes 30-24
 load balancing 30-25
 poison-reverse updates 30-25
 split horizon 30-28
 support for 1-5
 system routes 30-24
 traffic sharing 30-26
 unequal-cost load balancing 30-25
 Immediate-Leave, IGMP 19-4
 Intelligence Engine 2100 Series CNS Agents
 See IE2100
 interaction modes, CMS 3-24
 interface
 number 10-7
 range macros 10-10
 interface command 10-7
 interface configuration mode 2-3
 interfaces
 configuration guidelines 10-13
 configuring 10-7
 configuring duplex mode 10-13
 configuring speed 10-13
 counters, clearing 10-21
 described 10-17
 descriptive name, adding 10-17
 displaying information about 10-19
 flow control 10-15
 management 1-7
 monitoring 10-19
 naming 10-17
 physical, identifying 10-7
 range of 10-8
 restarting 10-22
 shutting down 10-22
 supported 10-7
 types of 10-1
 interfaces range macro command 10-10
 Interior Gateway Protocol
 See IGP
 Interior Gateway Routing Protocol
 See IGRP
 interior routes, IGRP 30-24
 internal BGP
 See IBGP
 internal neighbors, BGP 30-48
Internet Control Message Protocol
 See ICMP
Internet Group Management Protocol
 See IGMP
Inter-Switch Link
 See ISL
inter-VLAN routing 1-6, 30-2
Intrusion Detection System
 See IDS
inventory, cluster 6-24
IOS File System
 See IFS
ip access-group command 27-21
IP ACLs
 applying to an interface 27-19
 extended, creating 27-11
 for QoS classification 28-7
 implicit deny 27-10, 27-14, 27-16
 implicit masks 27-10
 logging 27-16
 named 27-15
 standard, creating 27-9
 undefined 27-21
 virtual terminal lines, setting on 27-19
IP addresses
 candidate or member 6-4, 6-16
 classes of 30-5
 cluster access 6-2
 command switch 6-3, 6-13, 6-16
 default configuration 30-4
 for IP routing 30-4
 MAC address association 30-8
 monitoring 30-17
 redundant clusters 6-13
 standby command switch 6-13, 6-16
 See also IP information
IP broadcast address 30-15
ip cef command 30-76
IP directed broadcasts 30-13
ip igmp profile command 19-20
IP information
 assigned
 manually 4-10
 through DHCP-based autoconfiguration 4-3
 default configuration 4-3
IP multicast routing
 addresses
 all-hosts 33-1
 all-multicast-routers 33-1
 all-PIM-routers 33-10
 Cisco-RP-Announce 33-8
 Cisco-RP-Discovery 33-8
 host group address range 33-1
 administratively-scoped boundaries, described 33-42
 and IGMP snooping 19-1, 19-5
Auto-RP
 adding to an existing sparse-mode cloud 33-19
 benefits of 33-18
 clearing the cache 33-58
 configuration guidelines 33-15
 IOS release 33-5
 overview 33-8
 preventing candidate RP spoofing 33-21
 preventing join messages to false RPs 33-20
 setting up in a new internetwork 33-19
 using with BSR 33-27
bootstrap router
 configuration guidelines 33-15
 configuring candidate BSRs 33-25
 configuring candidate RPs 33-26
 defining the IP multicast boundary 33-24
 defining the PIM domain border 33-22
 IOS release 33-5
 overview 33-8
 using with Auto-RP 33-27
Cisco implementation 33-2
configuring
 basic multicast routing 33-15
 IP multicast boundary 33-42
 TTL threshold 33-40
default configuration 33-13
enabling
 multicast forwarding 33-15
 PIM mode 33-16
group-to-RP mappings
 Auto-RP 33-8
 BSR 33-8
MBONE
 deleting sdr cache entries 33-58
 described 33-39
 displaying sdr cache 33-59
 enabling sdr listener support 33-39
 limiting DVMRP routes advertised 33-53
 limiting sdr cache entry lifetime 33-39
 SAP packets for conference session announcement 33-39
 Session Directory (sdr) tool, described 33-39
monitoring
 packet rate loss 33-59
 peering devices 33-59
 tracing a path 33-59
multicast forwarding, described 33-9
PIMv1 and PIMv2 interoperability 33-14
protocol interaction 33-2
reverse path check (RPF) 33-9
routing table
 deleting 33-58
 displaying 33-58
RP
 assigning manually 33-17
 configuring Auto-RP 33-18
 configuring PIMv2 BSR 33-22
 monitoring mapping information 33-27
 using Auto-RP and BSR 33-27
statistics, displaying system and network 33-58
TTL thresholds, described 33-40
See also CGMP
See also DVMRP
See also IGMP
See also PIM
IP phones
 and QoS 13-1
 automatic classification and queueing 28-17
 configuring 13-3
 trusted boundary for QoS 28-32
IP precedence 28-2
IP-precedence-to-DSCP map for QoS 28-52
IP protocols
 in ACLs 27-12
 routing 1-5
IP routes, monitoring 30-89
IP routing
 connecting interfaces with 10-6
 enabling 30-18
IP traceroute
 executing 36-13
 overview 36-13
IP unicast routing
 address resolution 30-8
 administrative distances 30-77, 30-87
 ARP 30-8
 assigning IP addresses to Layer 3 interfaces 30-6
 authentication keys 30-88
 broadcast
 address 30-15
 flooding 30-16
 packets 30-13
 storms 30-13
 classless routing 30-7
 configuring static routes 30-77
 default
 addressing configuration 30-4
 gateways 30-11
Index

networks 30-78
routes 30-78
routing 30-2
directed broadcasts 30-13
dynamic routing 30-2
enabling 30-18
EtherChannel Layer 3 interface 30-3
IGP 30-29
inter-VLAN 30-2
IP addressing
 classes 30-5
 configuring 30-4
IRDP 30-12
Layer 3 interfaces 30-3
MAC address and IP address 30-8
passive interfaces 30-85
protocols
 distance-vector 30-2
 dynamic 30-2
 link-state 30-2
proxy ARP 30-8
redistribution 30-79
reverse address resolution 30-8
routed ports 30-3
static routing 30-2
steps to configure 30-3
subnet mask 30-5
subnet zero 30-6
supernet 30-7
UDP 30-15
with SVIs 30-3
See also BGP
See also EIGRP
See also IGRP
See also OSPF
See also RIP
ip unreachables command 27-6
IRDP
 configuring 30-12
 definition 30-12
 support for 1-6
ISL
 and trunk ports 10-3
 encapsulation 1-4, 11-16
 trunking with 802.1 tunneling 14-4
 trunk mode 3-9

J
Java plug-in configuration 3-1, 6-1
join messages, IGMP 19-2

K
KDC
 described 8-32
 See also Kerberos
Kerberos
 authenticating to
 boundary switch 8-35
 KDC 8-35
 network services 8-35
 configuration examples 8-32
 configuring 8-35
 credentials 8-32
 described 8-32
 KDC 8-32
 operation 8-34
 realm 8-33
 server 8-33
 switch as trusted third party 8-32
 terms 8-33
 TGT 8-34
 tickets 8-32
key distribution center
 See KDC

L

l2protocol-tunnel command 14-11
LACP
 See EtherChannel
Layer 2 frames, classification with CoS 28-2
Layer 2 interfaces, default configuration 10-12
Layer 2 protocol tunneling
 configuring 14-9
 default configuration 14-9
 defined 14-7
 guidelines 14-10
Layer 2 traceroute
 and ARP 36-16
 and CDP 36-15
 described 36-15
IP addresses and subnets 36-16
MAC addresses and VLANs 36-15
multicast traffic 36-15
multiple devices on a port 36-16
supported switches 36-15
unicast traffic 36-15
usage guidelines 36-15
Layer 2 trunks 11-16
Layer 3 features 1-5
Layer 3 interfaces
 assigning IP addresses to 30-6
 changing from Layer 2 mode 30-6
 types of 30-3
Layer 3 packets, classification methods 28-2
LDAP 5-2
leave processing, IGMP 19-9
LEDs
 port 3-8
 RPS 3-7
legend, CMS icons and labels 3-19
lightweight directory access protocol
 See LDAP
line configuration mode 2-3
Link Aggregation Control Protocol
 See LACP
link labels 3-12
link pop-up menu, Topology view 3-21
links, unidirectional 22-1
link state advertisements (LSAs) 30-33
link-state protocols 30-2
lists, CMS 3-28
load balancing, IGRP 30-25
logging messages, ACL 27-10
login authentication
 with RADIUS 8-23
 with TACACS+ 8-14
login banners 7-18
log messages
 See system message logging
long-distance, high-bandwidth transport configuration
 example 1-17
Long-Reach Ethernet (LRE) technology 1-10
loop guard
 described 17-13
 enabling 17-20
 support for 1-3
LRE profiles, considerations in switch clusters 6-18

M

mac access-group command 27-28
MAC ACLs and Layer 2 interfaces 27-28
MAC addresses
 adding
 secure 7-26
 sticky secure 20-8
 aging time 7-22
 and VLAN association 7-21
 building the address table 7-21
default configuration 7-22
displaying 7-26
dynamic
 learning 7-21
 removing 7-23
in ACLs 27-26
IP address association 30-8
static
 adding 7-25
 characteristics of 7-25
 removing 7-25
MAC address multicast entries, monitoring 19-10
MAC address-to-VLAN mapping 11-27
MAC extended access lists 27-26, 28-5, 28-38
MAN
 CWDM configuration example 1-17
 long-distance, high-bandwidth transport configuration example 1-17
manageability features 1-2
management options
 benefits
 clustering 1-7
 CMS 1-7
CLI 2-1
CMS 3-1
CNS 5-1
overview 1-7
management VLAN
 considerations in switch clusters 6-8, 6-9
discovery through different management VLANs 6-9
discovery through same management VLAN 6-8
mapping tables for QoS
 configuring
 CoS-to-DSCP 28-52
 CoS-to-egress-queue 28-57
 DSCP 28-51
 DSCP-to-CoS 28-54
 DSCP-to-DSCP-mutation 28-55
 DSCP-to-threshold 28-60
 IP-precedence-to-DSCP 28-52
 policed-DSCP 28-53
described 28-10
marking
 action in policy map 28-43
 action with aggregate policers 28-49
described 28-4, 28-8
matching, ACLs 27-8
maximum aging time
 MSTP 16-21
 STP 15-19
maximum hop count, MSTP 16-21
maximum-paths command 30-51, 30-76
member mode, VLAN port 11-3
member switch
 adding 6-20
 automatic discovery 6-5
defined 6-2
managing 6-25
passwords 6-16
recovering from lost connectivity 36-10
requirements 6-4
See also candidate switch, cluster standby group, and standby command switch
memory, optimizing 7-27
menu bar
 described 3-13
 variations 3-14
messages
 logging ACL violations 27-16
 system 3-18
to users through banners 7-18
metrics, in BGP 30-52
metric translations, between routing protocols 30-82
metropolitan-area networks
 See MANs
metro tags 14-2
MIBs
accessing files with FTP A-3
location of files A-3
overview 26-1
SNMP interaction with supported A-1
minimum-reserve levels
assigning to a queue 28-15, 28-66
configuring the buffer size 28-16, 28-65
default size 28-15
mini-point-of-presence
See POP
mirroring traffic for analysis 23-1
mismatches, autonegotiation 36-10
Mode button 3-8
modes, port 3-8
modules, GBIC
1000BASE-LX/LH 1-10
1000BASE-SX 1-10
1000BASE-T 1-10
1000BASE-ZX 1-10
CWDM 1-17
GigaStack 1-10
monitoring
802.1Q tunneling 14-12
access groups 27-41
ACL
configuration 27-41
configuration conflicts 27-44
fit in hardware 27-45
information 27-41
BGP 30-63
cables for unidirectional links 22-1
CDP 21-5
CEF 30-76
EIGRP 30-43
fallback bridging 35-12
features 1-6
HSRP 31-10
IGMP
filters 19-23
snooping 19-9
interfaces 10-19
IP
address tables 30-17
multicast routing 33-57
routes 30-89
Layer 2 protocol tunneling 14-12
MSDP peers 34-19
multicast router interfaces 19-10
multi-VRF CE 30-75
MVR 19-18
network traffic for analysis with probe 23-1
OSPF 30-37
port
blocking 20-14
protection 20-14
RP mapping information 33-27
source-active messages 34-19
speed and duplex mode 10-14
traffic flowing among switches 24-1
traffic suppression 20-14
tunneling 14-12
VLAN
filters 27-42
maps 27-42
VLANs 11-15
VMPS 11-33
VTP 12-15
MSDP

and dense-mode regions
 sending SA messages to 34-17
 specifying the originating address 34-18
benefits of 34-3
clearing MSDP connections and statistics 34-19
controlling source information
 forwarded by switch 34-12
 originated by switch 34-8
 received by switch 34-14
default configuration 34-4
filtering
 incoming SA messages 34-14
 SA messages to a peer 34-12
 SA requests from a peer 34-11
join latency, defined 34-6
meshed groups
 configuring 34-16
 defined 34-16
originating address, changing 34-18
overview 34-1
peer-RPF flooding 34-2
peers
 configuring a default 34-4
 monitoring 34-19
 peering relationship, overview 34-1
 requesting source information from 34-8
shutting down 34-16
source-active messages
 caching 34-6
 clearing cache entries 34-19
 defined 34-2
 filtering from a peer 34-11
 filtering incoming 34-14
 filtering to a peer 34-12
 limiting data with TTL 34-14
 monitoring 34-19
 restricting advertised sources 34-9

MSTP

boundary ports
 configuration guidelines 16-13
 described 16-10
BPDU filtering
 described 17-3
 enabling 17-16
BPDU guard
 described 17-3
 enabling 17-15
CIST, described 16-8
configuration guidelines 16-12
configuring
 forward-delay time 16-20
 hello time 16-19
 link type for rapid convergence 16-22
 maximum aging time 16-21
 maximum hop count 16-21
MST region 16-13
 path cost 16-18
 port priority 16-17
 root switch 16-14
 secondary root switch 16-16
 switch priority 16-19
CST
 defined 16-8
 operations between regions 16-9
default configuration 16-12
default optional feature configuration 17-14
displaying status 16-23
enabling the mode 16-13
EtherChannel guard
 described 17-12
 enabling 17-19
extended system ID
 affects on root switch 16-14
 affects on secondary root switch 16-16
 unexpected behavior 16-15
interface state, blocking to forwarding 17-2
interoperability with 802.1D
 described 16-11
 restarting migration process 16-22
IST
 defined 16-8
 master 16-8
 operations within a region 16-8
loop guard
 described 17-13
 enabling 17-20
mapping VLANs to MST instance 16-13
MST region
 CIST 16-8
 configuring 16-13
 described 16-7
 hop-count mechanism 16-10
IST 16-8
 supported spanning-tree instances 16-7
optional features supported 1-3
overview 16-7
Port Fast
 described 17-2
 enabling 17-14
preventing root switch selection 17-12
root guard
 described 17-12
 enabling 17-20
root switch
 affects of extended system ID 16-14
 configuring 16-15
 unexpected behavior 16-15
shutdown Port Fast-enabled port 17-3
multicast groups
 and IGMP snooping 19-5
Immediate Leave 19-4
joining 19-2
leaving 19-4
static joins 19-8
multicast packets
 ACLs on 27-40
 blocking 20-6
multicast router interfaces, monitoring 19-10
multicast router ports, adding 19-7
Multicast Source Discovery Protocol
 See MSDP
multicast storm-control command 20-3
multicast storms 20-1
Multicast VLAN Registration
 See MVR
Multiple Spanning Tree Protocol
 See MSTP
multiple VPN routing/forwarding in customer edge devices
 See multi-VRF CE
multi-VRF CE
 configuration example 30-71
 configuration guidelines 30-68
 configuring 30-67
 default configuration 30-67
 defined 30-65
 displaying 30-75
 monitoring 30-75
 network components 30-67
 packet-forwarding process 30-67
 support for 1-6
MVR
 configuring interfaces 19-16
 default configuration 19-14
 described 19-12
 modes 19-16
 monitoring 19-18
 setting global parameters 19-15
 support for 1-2
N

N
amed IP ACLs 27-15
NameSpace Mapper
 See NSM
native VLAN
 and 802.1Q tunneling 14-4
 configuring 11-22
default 11-22
negotiate trunk mode 3-9
neighbor discovery/recovery, EIGRP 30-38
neighbors, BGP 30-58
network configuration examples
 increasing network performance 1-9
 large network 1-14
 long-distance, high-bandwidth transport 1-17
 providing network services 1-9
 small to medium-sized network 1-12
network design
 performance 1-9
 services 1-9
network management
 CDP 21-1
 RMON 24-1
 SNMP 26-1
Network Time Protocol
 See NTP
no commands 2-4
non-IP traffic filtering 27-26
nontrunking mode 11-17
normal-range VLANs
 configuration modes 11-6
defined 11-1
no switchport command 10-5
note, described xxxiv
not-so-stubby areas
 See NSSA
NSM 5-3
NSSA, OSPF 30-33

NTP
 associations
 authenticating 7-4
 defined 7-2
 enabling broadcast messages 7-6
 peer 7-5
 server 7-5
default configuration 7-4
displaying the configuration 7-10
overview 7-2
restricting access
 creating an access group 7-8
 disabling NTP services per interface 7-9
source IP address, configuring 7-9
stratum 7-2
support for 1-2
synchronizing devices 7-5
time
 services 7-2
 synchronizing 7-2

O

OADM modules
 See CWDM OADM modules
online help 3-25
Open Shortest Path First
 See OSPF
optical add/drop multiplexer modules
 See CWDM OADM modules
optimizing system resources 7-27
options, management 1-7
OSPF
 area parameters, configuring 30-33
 configuring 30-31
default configuration
 metrics 30-34
 route 30-34
 settings 30-30
described 30-29
interface parameters, configuring 30-32
LSA group pacing 30-36
monitoring 30-37
router IDs 30-36
route summarization 30-34
support for 1-5
virtual links 30-34
out-of-profile markdown 1-5
output interface, getting information about 36-20
overheating indication, switch 3-5

P

packet modification, with QoS 28-17
PAgP
See EtherChannel
parallel paths, in routing tables 30-76
passive interfaces
configuring 30-85
OSPF 30-34
pass-through mode 28-33
passwords
default configuration 8-2
disabling recovery of 8-5
encrypting 8-4
for security 1-4
in clusters 6-16, 6-20
overview 8-1
recovery of 36-2
setting
enable 8-3
enable secret 8-4
Telnet 8-6
with usernames 8-7
VTP domain 12-8

path cost
MSTP 16-18
STP 15-16
PBR
defined 30-82
enabling 30-84
fast-switched policy-based routing 30-84
local policy-based routing 30-84
support for 1-6
PC (passive command switch) 6-13, 6-22
peers, BGP 30-58
performance, network design 1-9
performance features 1-2
per-VLAN rapid Spanning Tree (PVRST) 16-2
per-VLAN Spanning Tree (PVST) 15-2
PE to CE routing, configuring 30-70
physical ports 10-2
PIM
default configuration 33-13
dense mode
(S,G) notation 33-6
graft messages 33-6
overview 33-5
pruning and SPT 33-5
rendezvous point (RP), described 33-7
RPF lookups 33-10
displaying neighbors 33-59
enabling a mode 33-16
neighbor discovery and adjacencies 33-10
overview 33-5
router-query message interval, modifying 33-30
shared tree and source tree, overview 33-28
shortest path tree, delaying the use of 33-29
sparse mode
(*,G) notation 33-7
join messages and shared tree 33-7
overview 33-7
prune messages 33-8
RPF lookups 33-10
support for 1-6
versions
 interoperability 33-14
 supported 33-5
 troubleshooting interoperability problems 33-28
v2 improvements 33-5
PIM-DVMRP, as snooping method 19-6
ping
 character output description 36-12
 executing 36-11
 overview 36-11
poison-reverse updates, IGRP 30-25
policed-DSCP map for QoS 28-53
policers
 configuring
 for each matched traffic class 28-43
 for more than one traffic class 28-49
 described 28-4
 displaying 28-69
 number of 1-5, 28-9
 types of 28-8
policing
 described 28-4
 token bucket algorithm 28-8
policy-based routing
 See PBR
policy maps for QoS
 characteristics of 28-43
 configuring 28-43
 described 28-7
 displaying 28-69
POP 1-15
port ACLs
 and voice VLAN 27-4
 defined 27-2
 limitations 27-4
Port Aggregation Protocol
 See EtherChannel
 See PAgP
port-based authentication
authenticationserver
 defined 9-2
 RADIUS server 9-2
client, defined 9-2
configuration guidelines 9-10
configuring
 manual re-authentication of a client 9-14
 quiet period 9-14
 RADIUS server 9-13
 RADIUS server parameters on the switch 9-12
 switch-to-client frame-retransmission number 9-15
 switch-to-client retransmission time 9-15
default configuration 9-9
 described 9-1
device roles 9-2
 displaying statistics 9-17
 EAPOL-start frame 9-3
 EAP-request/identity frame 9-3
 EAP-response/identity frame 9-3
 enabling
 802.1X authentication 9-10
 802.1X with port security 9-16
 periodic re-authentication 9-13
 per-user ACLs 9-10
 VLAN assignment 9-10
 encapsulation 9-2
 initiation and message exchange 9-3
 method lists 9-10
 ports
 authorization state and dot1x port-control command 9-4
 authorized and unauthorized 9-4
 voice VLAN 9-5
 resetting to default values 9-17
 support for 1-4
 switch
 as proxy 9-2
 RADIUS client 9-2
topologies, supported 9-8
with per-user ACLs 9-6
with port security 9-5
with VLAN assignment 9-7

port blocking 1-2, 20-6

port-channel
See EtherChannel

Port Fast
described 17-2
enabling 17-14
mode, spanning tree 11-30
support for 1-3

port icons, Front Panel view 3-6

port LEDs
port modes 3-8

port membership modes, VLAN 11-3
port modes, described 3-8

port pop-up menu, Front Panel view 3-21

port priority
MSTP 16-17
STP 15-15

ports
802.1Q trunk 3-9
802.1Q tunnel 11-3
access 10-3
blocking 20-6
dynamic access 3-9, 11-3
forwarding, resuming 20-7
ISL trunk 3-9
negotiate trunk 3-9
protected 20-5
routed 10-4
secure 20-7
static-access 3-9, 11-3, 11-11
switch 10-2
trunks 11-3, 11-16
VLAN assignments 11-11

port security
aging 20-12
and QoS trusted boundary 28-32
configuring 20-10
default configuration 20-9
described 20-7
displaying 20-14
sticky learning 20-8
violations 20-8
with other features 20-9
port-shutdown response, VMPS 11-27
power, inline 10-14
preferential treatment of traffic
See QoS

prefix lists, BGP 30-55
preventing unauthorized access 8-1
priority
HSRP 31-6
overriding CoS 13-5
trusting CoS 13-6
private VLAN edge ports
See protected ports

privileged EXEC mode 2-2
privilege levels
changing the default for lines 8-9
command switch 6-25
exiting 8-10
logging into 8-10
mapping on member switches 6-25
overview 8-2, 8-8
setting a command with 8-8
protected ports 1-4, 20-5
protocol-dependent modules, EIGRP 30-39
Protocol-Independent Multicast Protocol
See PIM

provider edge devices 30-65
proxy ARP
 configuring 30-10
 definition 30-8
 with IP routing disabled 30-11
pruning, VTP
 enabling 12-13
 enabling on a port 11-22
 examples 12-5
 overview 12-4
pruning-eligible list
 changing 11-22
 for VTP pruning 12-4
VLANs 12-14
publications, related xxxiv
PVRST 11-2
PVST 11-2

Q
QoS
 auto-QoS
 categorizing traffic 28-18
 configuration and defaults display 28-22
 configuration guidelines 28-20
 described 28-17
 displaying 28-22
 effects on NVRAM configuration 28-20
 egress queue defaults 28-18
 enabling for VoIP 28-21
 basic model 28-4
 classification
 class maps, described 28-7
 defined 28-4
 flowchart 28-6
 forwarding treatment 28-3
 in frames and packets 28-3
 trust DSCP, described 28-5
 trust IP precedence, described 28-5
 types for IP traffic 28-5
 types for non-IP traffic 28-5
 pass-through mode, described 28-33
 default port CoS value 28-31
 DSCP maps 28-51
 DSCP trust states bordering another domain 28-34
 egress queues on 10/100 Ethernet ports 28-64
 egress queues on Gigabit-capable Ethernet ports 28-57
 IP extended ACLs 28-37
 IP standard ACLs 28-36
 MAC ACLs 28-38
 configuration examples
 distribution layer 28-72
 existing wiring closet 28-70
 intelligent wiring closet 28-71
 auto-QoS 28-20
 standard QoS 28-26
 configuring aggregate policers 28-49
 auto-QoS 28-17
 default port CoS value 28-31
 DSCP maps 28-51
 DSCP trust states bordering another domain 28-34
 egress queues on 10/100 Ethernet ports 28-64
 egress queues on Gigabit-capable Ethernet ports 28-57
 IP extended ACLs 28-37
 IP standard ACLs 28-36
 MAC ACLs 28-38
 pass-through mode 28-33
IP ACLs, described 28-5, 28-7
MAC ACLs, described 28-5, 28-7
policy maps 28-43
port trust states within the domain 28-29
trusted boundary 28-32
default auto configuration 28-18
default standard configuration 28-25
displaying statistics 28-69
enabling globally 28-28
flowcharts
classification 28-6
policing and marking 28-10
queueing and scheduling 28-12, 28-15
implicit deny 28-7
IP phones
automatic classification and queueing 28-17
detection and trusted settings 28-17, 28-32
mapping tables
CoS-to-DSCP 28-52
CoS-to-egress-queue 28-57
displaying 28-69
DSCP-to-CoS 28-54
DSCP-to-DSCP-mutation 28-55
DSCP-to-threshold 28-60
IP-precedence-to-DSCP 28-52
policed-DSCP 28-53
types of 28-10
marked-down actions 28-46
marking, described 28-4, 28-8
overview 28-2
packet modification 28-17
pass-through mode 28-33
policers
configuring 28-46, 28-49
described 28-8
displaying 28-69
number of 28-9
types of 28-8
policies, attaching to an interface 28-9
policing
described 28-4, 28-8
token bucket algorithm 28-8
policy maps
characteristics of 28-43
configuring 28-43
displaying 28-69
queueing, defined 28-4
queues
CoS-to-egress-queue map 28-57
for 10/100 Ethernet ports 28-15
high priority (expedite) 28-13, 28-62
minimum-reserve levels 28-65
serviced by WRR 28-13, 28-16
size of 28-12, 28-15
size ratios 28-58
tail-drop threshold percentages 28-13, 28-59
WRED drop-percentage thresholds 28-13, 28-61
WRR scheduling 28-63
scheduling
allocating bandwidth on 10/100 Ethernet ports 28-67
allocating bandwidth on Gigabit-capable ports 28-63
defined 28-4
support for 1-5
tail drop
configuring drop threshold percentages 28-59
described 28-13
trust states
bordering another domain 28-34
described 28-5
trusted device 28-32
within the domain 28-29
WRED
configuring drop-percentage thresholds 28-61
described 28-14
WRR scheduling 28-63
quality of service
See QoS
queries, IGMP 19-3
R

RADIUS
attributes
 vendor-proprietary 8-31
 vendor-specific 8-29
configuring
 accounting 8-28
 authentication 8-23
 authorization 8-27
 communication, global 8-21, 8-29
 communication, per-server 8-20, 8-21
 multiple UDP ports 8-21
default configuration 8-20
defining AAA server groups 8-25
displaying the configuration 8-31
identifying the server 8-20
in clusters 6-17
limiting the services to the user 8-27
method list, defined 8-20
operation of 8-19
overview 8-18
suggested network environments 8-18
tracking services accessed by user 8-28
Random Early Detection, described
range
 macro 10-10
 of interfaces 10-8

Rapid Spanning Tree Protocol
 See RSTP

RARP 30-8
rcommand command 6-25

RCP
configuration files
 downloading B-17
 overview B-16
 preparing the server B-16
 uploading B-18
image files
 deleting old image B-32
 downloading B-30
 preparing the server B-29
 uploading B-32
reconfirmation interval, VMPS, changing 11-32
recovery procedures 36-1
redundancy
 EtherChannel 29-2
 features 1-3
 HSRP 31-1
 STP
 backbone 15-9
 multidrop backbone 17-5
 path cost 11-25
 port priority 11-24
redundant clusters
 See cluster standby group
redundant links and UplinkFast 17-17
reliable transport protocol, EIGRP 30-38
reloading software 4-17
Remote Authentication Dial-In User Service
 See RADIUS
Remote Copy Protocol
 See RCP
Remote Network Monitoring
 See RMON
removing secure addresses 7-26
resets, in BGP 30-50
resetting a UDLD-shutdown interface 22-5
restricting access
 NTP services 7-7
 overview 8-1
 passwords and privilege levels 8-2
 RADIUS 8-18
 TACACS+ 8-10
 retry count, VMPS, changing 11-33
reverse address resolution 30-8
Reverse Address Resolution Protocol
See RARP
 RFC
1058, RIP 30-19
1112, IP multicast and IGMP 19-2
1157, SNMPv1 26-2
1163, BGP 30-44
1166, IP addresses 30-5
1253, OSPF 30-29
1267, BGP 30-44
1305, NTP 7-2
1587, NSSAs 30-29
1757, RMON 24-2
1771, BGP 30-44
1901, SNMPv2C 26-2
1902 to 1907, SNMPv2 26-2
2236, IP multicast and IGMP 19-2
2273-2275, SNMPv3 26-2
 RIP
 advertisements 30-19
 authentication 30-22
 configuring 30-20
 default configuration 30-19
 described 30-19
 hop counts 30-19
 split horizon 30-22
 summary addresses 30-22
 support for 1-5
 RMON
 default configuration 24-3
 displaying status 24-6
 enabling alarms and events 24-3
 groups supported 24-2
 overview 24-1
 statistics
 collecting group Ethernet 24-5
 collecting group history 24-5
 support for 1-6
 root guard
 described 17-12
 enabling 17-20
 support for 1-3
 root switch
 MSTP 16-14
 STP 15-12
 route calculation timers, OSPF 30-35
 route dampening, BGP 30-62
 routed packets, ACLs on 27-39
 routed ports
 configuring 30-3
 defined 10-4
 in switch clusters 6-10
 IP addresses on 10-18, 30-3
 route-map command
 for policy-based routing 30-84
 route maps
 policy-based routing, defined 30-83
 route maps, BGP 30-53
 router ACLs 27-2
 route reflectors, BGP 30-61
 router ID, OSPF 30-36
 route selection, BGP 30-51
 route summarization, OSPF 30-34
 route targets, VPN 30-67
 routing
 default 30-2
 dynamic 30-2
 redistribution of information 30-79
 static 30-2
 routing domain confederation, BGP 30-60
 Routing Information Protocol
 See RIP
 routing protocol administrative distances 30-77
 RPS LED 3-7
Index

RSPAN
configuration guidelines 23-16
default configuration 23-8
destination ports 23-5
displaying status 23-23
IDS 23-2
interaction with other features 23-7
monitored ports 23-4
monitoring ports 23-5
overview 1-6, 23-1
received traffic 23-3
reflector port 23-5
session limits 23-8
sessions
creating 23-17
defined 23-3
limiting source traffic to specific VLANs 23-22
monitoring VLANs 23-21
removing source (monitored) ports 23-20
specifying monitored ports 23-17
source ports 23-4
transmitted traffic 23-4
VLAN-based 23-6

RSTP
active topology, determining 16-2
BPDU
format 16-5
processing 16-6
configuration guidelines 16-12
designated port, defined 16-2
designated switch, defined 16-2
interoperability with 802.1D
 described 16-11
 restarting migration process 16-22
topology changes 16-6
overview 16-2
port roles
 described 16-2
 synchronized 16-4
 proposal-agreement handshake process 16-3
 rapid convergence
 edge ports and Port Fast 16-3
 point-to-point links 16-3, 16-22
 root ports 16-3
 root port, defined 16-2
See also MSTP
running configuration, saving 4-10

S
SC (standby command switch) 6-13, 6-22
scheduled reloads 4-17
SDM
configuring 7-29
described 7-27
templates
 number of 7-27
resources used for Fast Ethernet switches 7-28
resources used for Gigabit Ethernet switches 7-28
sdm prefer extended-match command 30-68
secure addresses
 adding 7-26
 described 7-26
secure ports, configuring 20-7
secure remote connections 8-37
Secure Shell
 See SSH
security, port 20-7
security features 1-4
sequence numbers in log messages 25-8
server mode, VTP 12-3
service-provider network
 DHCP option 82 18-1
 MSTP and RSTP 16-1
service-provider networks
 and 802.1Q tunneling 14-1
 and customer VLANs 14-2
Layer 2 protocols across 14-7
set-request operation 26-4
setup program, failed command switch replacement 36-7, 36-8
severity levels, defining in system messages 25-8
show access-lists hw-summary command 27-7
show cdp traffic command 21-5
show cluster members command 6-25
show configuration command 10-17
show fm command 27-43
show forward command 36-19
show interfaces command 10-14, 10-17
show l2protocol command 14-11
show mac access-group command 27-28
show running-config command
 displaying ACLs 27-20, 27-30, 27-33
 interface description in 10-17
show tcam command 27-43
shutdown command on interfaces 10-22
shutdown threshold for Layer 2 protocol packets 14-9
Simple Network Management Protocol
 See SNMP
SNAP 21-1
SNMP
 accessing MIB variables with agent
 described 26-4
 disabling 26-7
 community strings
 configuring 26-7
 for cluster switches 26-4
 overview 26-4
 configuration examples 26-15
 default configuration 26-6
 groups 26-9
 in-band management 1-3
 in clusters 6-17
 informs
 and trap keyword 26-11
 described 26-5
 differences from traps 26-5
 enabling 26-13
 limiting access by TFTP servers 26-14
 limiting system log messages to NMS 25-10
 manager functions 1-7, 26-3
 managing clusters with 6-26
 MIBs
 location of A-3
 supported A-1
 notifications 26-5
 overview 26-1, 26-4
 status, displaying 26-16
 system contact and location 26-14
 trap manager, configuring 26-12
 traps
 described 26-3, 26-5
 differences from informs 26-5
 enabling 26-11
 enabling MAC address notification 7-23
 overview 26-1, 26-4
 types of 26-11
 users 26-9
 versions supported 26-2
 snooping, IGMP 19-1
 software images
 location in Flash B-20
 recovery procedures 36-2
 scheduling reloads 4-17
 tar file format, described B-20
 See also downloading and uploading source addresses, in ACLs 27-12
 SPAN
 configuration guidelines 23-9
 default configuration 23-8
 destination ports 23-5
 displaying status 23-23
 IDS 23-2
 interaction with other features 23-7
 monitored ports 23-4
monitoring ports 23-5
overview 1-6, 23-1
received traffic 23-3
session limits 23-8
sessions
creating 23-10
defined 23-3
limiting source traffic to specific VLANs 23-15
monitoring VLANs 23-14
removing destination (monitoring) ports 23-13
removing source (monitored) ports 23-13
specifying monitored ports 23-10
source ports 23-4
transmitted traffic 23-4
VLAN-based 23-6
spanning tree and native VLANs 11-18
Spanning Tree Protocol
See STP
speed, configuring on interfaces 10-13
split horizon
IGRP 30-28
RIP 30-22
SSH
configuring 8-38
cryptographic software image 8-37
described 8-37
displaying settings 8-38
Stack Membership Discovery Protocol 17-6
Standby Command Configuration window 6-23
standby command switch
configuring 6-22
considerations 6-13
defined 6-2
priority 6-13
requirements 6-3
virtual IP address 6-13
See also cluster standby group and HSRP
standby group, cluster
See cluster standby group and HSRP
standby ip command 31-4
standby router 31-1
standby timers, HSRP 31-8
startup configuration
booting
manually 4-13
specific image 4-14
clearing 8-19
configuration file
automatically downloading 4-12
specifying the filename 4-13
default boot configuration 4-12
static access mode 3-9
static access ports
assigning to VLAN 11-11
defined 10-3, 11-3
static addresses
See addresses
static IP routing 1-6
static MAC addressing 1-4
static routes, configuring 30-77
static routing 30-2
static VLAN membership 11-2
statistics
802.1X 9-17
CDP 21-5
interface 10-20
IP multicast routing 33-58
OSPF 30-37
QoS ingress and egress 28-69
RMON group Ethernet 24-5
RMON group history 24-5
SNMP input and output 26-16
VTP 12-15
sticky learning
configuration file 20-8
defined 20-8
disabling 20-8
enabling 20-8
saving addresses 20-8
storm control
configuring 20-3
described 20-1
displaying 20-14
thresholds 20-2
STP
accelerating root port selection 17-4
BackboneFast
 described 17-10
 enabling 17-19
BPDU filtering
 described 17-3
 enabling 17-16
BPDU guard
 described 17-3
 enabling 17-15
BPDU message exchange 15-2
configuration guidelines 15-11
configuring
 forward-delay time 15-19
 hello time 15-18
 in cascaded stack 15-20
 maximum aging time 15-19
 path cost 15-16
 port priority 15-15, 16-17
 root switch 15-12
 secondary root switch 15-14
 switch priority 15-17
cross-stack UplinkFast
 described 17-5
 enabling 17-18
default configuration 15-10
default optional feature configuration 17-14
designated port, defined 15-3
designated switch, defined 15-3
detecting indirect link failures 17-10
disabling 15-11
displaying status 15-20
EtherChannel guard
 described 17-12
 enabling 17-19
extended system ID
 affects on root switch 15-12
 affects on the secondary root switch 15-14
 overview 15-4
 unexpected behavior 15-13
features supported 1-3
inferior BPDU 15-3
interface state, blocking to forwarding 17-2
interface states
 blocking 15-7
 disabled 15-8
 forwarding 15-6, 15-7
 learning 15-7
 listening 15-7
 overview 15-5
Layer 2 protocol tunneling 14-7
limitations with 802.1Q trunks 15-8
load sharing
 overview 11-23
 using path costs 11-25
 using port priorities 11-24
loop guard
 described 17-13
 enabling 17-20
multicast addresses, affect of 15-8
optional features supported 1-3
overview 15-2
path costs 11-25, 11-26
Port Fast
 described 17-2
 enabling 17-14
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>port priorities</td>
<td>11-24</td>
</tr>
<tr>
<td>preventing root switch selection</td>
<td>17-12</td>
</tr>
<tr>
<td>redundant connectivity</td>
<td>15-9</td>
</tr>
<tr>
<td>root guard</td>
<td></td>
</tr>
<tr>
<td>described</td>
<td>17-12</td>
</tr>
<tr>
<td>enabling</td>
<td>17-20</td>
</tr>
<tr>
<td>root port, defined</td>
<td>15-3</td>
</tr>
<tr>
<td>root switch</td>
<td></td>
</tr>
<tr>
<td>affects of extended system ID</td>
<td>15-12</td>
</tr>
<tr>
<td>configuring</td>
<td></td>
</tr>
<tr>
<td>election</td>
<td>15-3</td>
</tr>
<tr>
<td>unexpected behavior</td>
<td>15-13</td>
</tr>
<tr>
<td>settings in a cascaded stack</td>
<td>15-20</td>
</tr>
<tr>
<td>shutdown Port Fast-enabled port</td>
<td>17-3</td>
</tr>
<tr>
<td>superior BPDU</td>
<td>15-3</td>
</tr>
<tr>
<td>supported number of spanning-tree instances</td>
<td>15-2</td>
</tr>
<tr>
<td>timers, described</td>
<td>15-4</td>
</tr>
<tr>
<td>UplinkFast</td>
<td></td>
</tr>
<tr>
<td>described</td>
<td>17-4</td>
</tr>
<tr>
<td>enabling</td>
<td>17-17</td>
</tr>
<tr>
<td>VLAN-bridge</td>
<td>15-8</td>
</tr>
<tr>
<td>stratum, NTP</td>
<td>7-2</td>
</tr>
<tr>
<td>stub areas, OSPF</td>
<td>30-33</td>
</tr>
<tr>
<td>subnet mask</td>
<td>30-5</td>
</tr>
<tr>
<td>subnet zero</td>
<td>30-6</td>
</tr>
<tr>
<td>summer time</td>
<td>7-13</td>
</tr>
<tr>
<td>SunNet Manager</td>
<td>1-7</td>
</tr>
<tr>
<td>supernet</td>
<td>30-7</td>
</tr>
<tr>
<td>SVIs</td>
<td></td>
</tr>
<tr>
<td>and IP unicast routing</td>
<td>30-3</td>
</tr>
<tr>
<td>and router ACLs</td>
<td>27-3</td>
</tr>
<tr>
<td>connecting VLANs</td>
<td>10-6</td>
</tr>
<tr>
<td>defined</td>
<td>10-4</td>
</tr>
<tr>
<td>routing between VLANs</td>
<td>11-2</td>
</tr>
<tr>
<td>switch clustering technology</td>
<td></td>
</tr>
<tr>
<td>See clusters, switch</td>
<td></td>
</tr>
<tr>
<td>switch console port</td>
<td>1-3</td>
</tr>
<tr>
<td>switched packets, ACLs on</td>
<td>27-37</td>
</tr>
<tr>
<td>switched ports</td>
<td>10-2</td>
</tr>
<tr>
<td>Switch Manager</td>
<td>3-4</td>
</tr>
<tr>
<td>See also Device Manager</td>
<td></td>
</tr>
<tr>
<td>switchport block multicast command</td>
<td>20-6</td>
</tr>
<tr>
<td>switchport block unicast command</td>
<td>20-6</td>
</tr>
<tr>
<td>switchport command</td>
<td>10-11</td>
</tr>
<tr>
<td>switchport mode dot1q-tunnel command</td>
<td>14-6</td>
</tr>
<tr>
<td>switchport protected command</td>
<td>20-5</td>
</tr>
<tr>
<td>switch priority</td>
<td></td>
</tr>
<tr>
<td>MSTP</td>
<td>16-19</td>
</tr>
<tr>
<td>STP</td>
<td>15-17</td>
</tr>
<tr>
<td>switch software features</td>
<td>1-1</td>
</tr>
<tr>
<td>switch virtual interface</td>
<td></td>
</tr>
<tr>
<td>See SVI</td>
<td></td>
</tr>
<tr>
<td>synchronization, BGP</td>
<td>30-48</td>
</tr>
<tr>
<td>syslog</td>
<td></td>
</tr>
<tr>
<td>See system message logging</td>
<td></td>
</tr>
<tr>
<td>system clock</td>
<td></td>
</tr>
<tr>
<td>configuring</td>
<td></td>
</tr>
<tr>
<td>daylight saving time</td>
<td>7-13</td>
</tr>
<tr>
<td>manually</td>
<td>7-11</td>
</tr>
<tr>
<td>summer time</td>
<td>7-13</td>
</tr>
<tr>
<td>time zones</td>
<td>7-12</td>
</tr>
<tr>
<td>displaying the time and date</td>
<td>7-11</td>
</tr>
<tr>
<td>overview</td>
<td>7-1</td>
</tr>
<tr>
<td>See also NTP</td>
<td></td>
</tr>
<tr>
<td>System Database Management</td>
<td></td>
</tr>
<tr>
<td>See SDM</td>
<td></td>
</tr>
<tr>
<td>system message logging</td>
<td></td>
</tr>
<tr>
<td>default configuration</td>
<td>25-3</td>
</tr>
<tr>
<td>defining error message severity levels</td>
<td>25-8</td>
</tr>
<tr>
<td>disabling</td>
<td>25-4</td>
</tr>
<tr>
<td>displaying the configuration</td>
<td>25-12</td>
</tr>
<tr>
<td>enabling</td>
<td>25-4</td>
</tr>
<tr>
<td>facility keywords, described</td>
<td>25-12</td>
</tr>
<tr>
<td>level keywords, described</td>
<td>25-9</td>
</tr>
<tr>
<td>limiting messages</td>
<td>25-10</td>
</tr>
<tr>
<td>message format</td>
<td>25-2</td>
</tr>
<tr>
<td>overview</td>
<td>25-1</td>
</tr>
<tr>
<td>sequence numbers, enabling and disabling</td>
<td>25-8</td>
</tr>
</tbody>
</table>
setting the display destination device 25-4
synchronizing log messages 25-6
syslog facility 1-6
timestamps, enabling and disabling 25-7
UNIX syslog servers
configuring the daemon 25-11
configuring the logging facility 25-11
facilities supported 25-12
system messages on CMS 3-18
system MTU
802.1Q tunneling 14-5
maximums 14-5
system name
default configuration 7-15
default setting 7-15
manual configuration 7-15
See also DNS
system prompt
default setting 7-15
manual configuration 7-16
system resource templates 7-27
system routes, IGRP 30-24

T

tables, CMS 3-28
tabs, CMS 3-28
TACACS+
accounting, defined 8-11
authentication, defined 8-11
authorization, defined 8-11
configuring
accounting 8-17
authentication key 8-13
authorization 8-16
login authentication 8-14
default configuration 8-13
displaying the configuration 8-17
identifying the server 8-13
in clusters 6-17
limiting the services to the user 8-16
operation of 8-12
overview 8-10
support for 1-4
tracking services accessed by user 8-17
tagged packets
802.1Q 14-3
Layer 2 protocol 14-7
tail drop
described 28-13
support for 1-5
tar files
creating 8-6
displaying the contents of 8-6
extracting 8-7
image file format 8-20
TCAMs
ACL regions 27-47
ACLs not loading in 27-45
allocations, monitoring 27-48
monitoring usage 27-47
Telnet
accessing management interfaces 2-10
from a browser 2-10
number of connections 1-2
setting a password 8-6
templates, system resources 7-27
Terminal Access Controller Access Control System Plus
See TACACS+
terminal lines, setting a password 8-6
ternary content addressable memory. See TCAM
TFTP
configuration files
downloading 8-11
preparing the server 8-10
uploading 8-12
configuration files in base directory 4-6
configuring for autoconfiguration

image files
 deleting B-23
 downloading B-22
 preparing the server B-21
 uploading B-24
limiting access by servers 26-14

TFTP server 1-2
threshold, traffic level 20-2
time
 See NTP and system clock
time-range command 27-17
time ranges in ACLs 27-17
timestamps in log messages 25-7
time zones 7-12
Token Ring VLANs
 support for 11-5
 VTP support 12-4

toolbar 3-19
tool tips 3-25

Topology view
 described 3-2, 3-10
 device icons 3-12
 device labels 3-12
 display options 3-13
 icons 3-11
 link labels 3-12

TOS 1-5

trace route, Layer 2
 and ARP 36-16
 and CDP 36-15
 described 36-15

IP addresses and subnets 36-16
MAC addresses and VLANs 36-15
multicast traffic 36-15
multiple devices on a port 36-16
supported switches 36-15
unicast traffic 36-15
usage guidelines 36-15
traceroute command 36-13
 See also IP traceroute

traffic
 blocking flooded 20-6
 fragmented 27-5
 unfragmented 27-5
traffic policing 1-5
traffic suppression 20-2
transparent mode, VTP 12-3, 12-11

trap-door mechanism 4-2

traps
 configuring MAC address notification 7-23
 configuring managers 26-11
 defined 26-3
 enabling 7-23, 26-11
 notification types 26-11
 overview 26-1, 26-4

troubleshooting
 connectivity problems 36-11
 detecting unidirectional links 22-1
 determining packet disposition 36-19
 displaying crash information 36-20
 GBIC security and identification 36-10
 PIMv1 and PIMv2 interoperability problems 33-28
 show forward command 36-19
 with CiscoWorks 26-4
 with debug commands 36-16
 with ping 36-11
 with system message logging 25-1
 with traceroute 36-13
 trunking encapsulation 1-4
trunk ports
 configuring 11-20
 defined 10-3, 11-3
encapsulation 11-20, 11-25, 11-26
trunks
 allowed-VLAN list 11-21
 configuring 11-20, 11-25, 11-26
 ISL 11-16
 load sharing
 setting STP path costs 11-25
 using STP port priorities 11-24
 native VLAN for untagged traffic 11-22
 parallel 11-25
 pruning-eligible list 11-22
 to non-DTP device 11-16
 understanding 11-16
trusted boundary for QoS 28-32
tunneling
 802.1Q 14-1
 defined 14-1
 Layer 2 protocol 14-7
tunnel ports
 802.1Q, configuring 14-6
 802.1Q and ACLs 27-3
 defined 11-3
 described 10-4, 14-1
 incompatibilities with other features 14-5
twisted-pair Ethernet, detecting unidirectional links 22-1
type-of-service
 See TOS

link-detection mechanism 22-1
neighbor database 22-2
overview 22-1
resetting an interface 22-5
status, displaying 22-6
support for 1-3
UDP, configuring 30-15
unauthorized ports with 802.1X 9-4
unequal-cost load balancing, IGRP 30-25
unicast storm control command 20-3
unicast storms 20-1
unicast traffic, blocking 20-6
UniDirectional Link Detection protocol
 See UDLD
UNIX syslog servers
 daemon configuration 25-11
 facilities supported 25-12
 message logging configuration 25-11
 unrecognized Type-Length-Value (TLV) support 12-4
upgrading software images
 See downloading
UplinkFast
 described 17-4
 enabling 17-17
 support for 1-3
uploading
coloration files
 preparing B-10, B-13, B-16
 reasons for B-8
 using FTP B-15
 using RCP B-18
 using TFTP B-12
image files
 preparing B-21, B-25, B-29
 reasons for B-19
 using FTP B-28
 using RCP B-32
 using TFTP B-24

U

UDLD
 default configuration 22-3
 echoing detection mechanism 22-2
 enabling
 globally 22-4
 per interface 22-4
User Datagram Protocol
See UDP
user EXEC mode 2-2
username-based authentication 8-7

V
version-dependent transparent mode 12-4
virtual IP address
 cluster standby group 6-13, 6-22
 command switch 6-13, 6-22
 See also IP addresses
Virtual Private Network
See VPN
virtual router 31-1, 31-2
vlan.dat file 11-4
VLAN ACLs
 See VLAN maps
VLAN configuration
 at bootup 11-7
 saving 11-7
VLAN configuration mode 2-2, 11-6
VLAN database
 and startup configuration file 11-7
 and VTP 12-1
 VLAN configuration saved in 11-7
 VLANs saved in 11-4
vlan database command 11-6
vlan dot1q tag native command 14-4
vlan global configuration command 11-6
VLAN management domain 12-2
VLAN Management Policy Server
 See VMPS
VLAN map entries, order of 27-30
VLAN maps
 applying 27-33
 common uses for 27-33
 configuration example 27-34
 configuration guidelines 27-30
 configuring 27-29
 creating 27-30
 defined 27-2
denying access example 27-35
denying and permitting packets 27-31
displaying 27-42
 examples 27-35
 support for 1-4
 usage 27-4
VLAN membership
 confirming 11-32
 modes 11-3
VLAN Query Protocol
See VQP
VLANs
 adding 11-8
 adding to VLAN database 11-8
 aging dynamic addresses 15-9
 allowed on trunk 11-21
 and spanning-tree instances 11-2, 11-6, 11-13
 configuration guidelines, normal-range VLANs 11-5
 configuration options 11-6
 configuring 11-1
 configuring IDs 1006 to 4094 11-12
 connecting through SVIs 10-6
 creating in config-vlan mode 11-8
 creating in VLAN configuration mode 11-9
 customer numbering in service-provider networks 14-3
 default configuration 11-7
 deleting 11-10
 described 10-2, 11-1
 displaying 11-15
 extended-range 11-1, 11-12
 features 1-3
 illustrated 11-2
 internal 11-13
 limiting source traffic with RSPAN 23-22
 limiting source traffic with SPAN 23-15
 modifying 11-8
monitoring with RSPAN 23-21
monitoring with SPAN 23-14
native, configuring 11-22
normal-range 11-1, 11-4
number supported 1-3
parameters 11-4
port membership modes 11-3
static-access ports 11-11
STP and 802.1Q trunks 15-8
supported 11-2
Token Ring 11-5
traffic between 11-2
VLAN-bridge STP 15-8, 35-1
VTP modes 12-3
VLAN Trunking Protocol
See VTP
VLAN trunks 11-16
VMPS
administering 11-33
configuration example 11-34
configuration guidelines 11-30
default configuration 11-30
description 11-27
dynamic port membership
described 11-28
reconfirming 11-32
troubleshooting 11-34
entering server address 11-31
mapping MAC addresses to VLANs 11-27
monitoring 11-33
reconfirmation interval, changing 11-32
reconfirming membership 11-32
retry count, changing 11-33
voice VLAN
Cisco 7960 phone, port connections 13-1
configuration guidelines 13-3
configuring IP phones for data traffic
override CoS of incoming frame 13-5
trust CoS priority of incoming frame 13-6
configuring ports for voice traffic in
802.1P priority tagged frames 13-4
802.1Q frames 13-4
connecting to an IP phone 13-3
default configuration 13-2
described 13-1
displaying 13-6
VPN
configuring routing in 30-70
forwarding 30-67
in service provider networks 30-65
routes 30-65
VPN routing and forwarding table
See VRF
VQP 1-3, 11-27
VRF
defining 30-67
tables 30-65
VTP
adding a client to a domain 12-14
advertisements 11-19, 12-3
and extended-range VLANs 12-1
and normal-range VLANs 12-1
client mode, configuring 12-10
configuration
global configuration mode 12-7
guidelines 12-8
privileged EXEC mode 12-7
requirements 12-9
saving 12-7
VLAN configuration mode 12-7
configuration mode options 12-7
configuration requirements 12-9
configuration revision number
 guideline 12-14
 resetting 12-14
configuring
 client mode 12-10
 server mode 12-9
 transparent mode 12-11
consistency checks 12-4
default configuration 12-6
described 12-1
disabling 12-11
domain names 12-8
domains 12-2
Layer 2 protocol tunneling 14-7
 modes
 client 12-3, 12-10
 server 12-3, 12-9
 transitions 12-3
 transparent 12-3, 12-11
monitoring 12-15
passwords 12-8
pruning
 disabling 12-13
 enabling 12-13
 examples 12-5
 overview 12-4
 support for 1-4
pruning-eligible list, changing 11-22
server mode, configuring 12-9
statistics 12-15
support for 1-4
Token Ring support 12-4
transparent mode, configuring 12-11
using 12-1

version, guidelines 12-8
version 1 12-4
version 2
 configuration guidelines 12-8
 disabling 12-13
 enabling 12-12
 overview 12-4

W

WCCP
 authentication 32-4
 configuration guidelines 32-5
 default configuration 32-5
 described 32-2
 displaying 32-9
 enabling 32-6
 features unsupported 32-4
 forwarding method 32-3
 Layer-2 header rewrite 32-3
 MD5 security 32-4
 message exchange 32-3
 monitoring and maintaining 32-9
 negotiation 32-3
 packet redirection 32-4
 packet-return method 32-3
 redirecting traffic received from a client 32-6
 setting the password 32-6
 unsupported WCCPv2 features 32-4
web-based management software
 See CMS
Web Cache Communication Protocol
 See WCCP
Weighted Random Early Detection
 See WRED
Index

IN-45

Catalyst 3550 Multilayer Switch Software Configuration Guide

Weighted Round Robin
 See WRR
weighted round robin, described 28-4
window components, CMS 3-26
wizards 1-8, 3-25
WRED 1-5, 28-14
WRR 1-5, 28-4

X

XMODEM protocol 36-2